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1. Introduction

   Diatoms are considered as a euryhaline and eurythermal 
phytoplankton group, which inhabit and dominate the phytoplankton 
community in shallow, turbulent and upwelling region as coastal 
area. They are generally adapted to low light levels and are, 
therefore, able to survive in the turbid conditions[1]. Phytoplankton 
distribution patterns reflect the interplay between phytoplankton 
growth rates, commonly regulated by light, inorganic nutrients, 
temperature, light availability, nutrient inputs, residence times and 
turbulence[2,3]. These controlling factors depend on the spatial and 
temporal variability of physical parameters such as depth, flow 
velocity, and turbidity[4,5]. Diatoms tend to have significantly higher 

maximum uptake rates of nutrients than any other group[6]. Indeed, 
diatoms are the preferred food of many grazers and organisms in 
the upper trophic levels and thus form the basis for many of the 
productive fisheries. Changes in the diatom community can be 
related to corresponding fluctuations in water chemistry. Factors 
known to affect diatom distribution include salinity and trace metal 
levels, pH, total nitrogen and total phosphorus[7,8]. Hydrodynamism 
in coastal waters induces major changes in physic (depth, turbulence 
etc.) and chemical (pH, salinity, nutrients etc.) characteristics and 
in turn influence the community structure of biota in general and 
especially phytoplankton, as these conditions profoundly influence 
production of phytoplankton.
   The purpose of this study was to investigate the seasonal and 
the daily distribution of diatoms in the three tidal periods (flood, 
slack and ebb period) during the spring tide in Kerkennah Islands 
in Southern Tunisia. In fact, on a time scale of hours, advection of 
water during ebb and flood determine strong changes of several 
fundamental parameters of the water column, such as salinity, 
nutrients and suspended particulate matter[9] and phytoplankton 
distribution[10]. The extent of such variations will vary significantly 
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depending on spring-neap tidal state or amplitude[11-13]. Moreover, 
matters may be greatly complicated by other environmental 
variables, such as precipitation rate, affecting fresh water discharge, 
winds[11] and current velocity[12].

2. Materials and methods

2.1. Study area

   This study was carried out in Kerkennah Islands during 2007 from 
Cercina station located in the western coast of Kerkennah (34°41'27'' 
N; 11°07'45'' E) (Southern Tunisia) with depths ranging from 3 to 5 
m (Figure 1). This station is influenced by regional water circulation 

and directly exposed to the arrival of prevailing cold water from 
the channels of Louza (North of Sfax) and warmer water from the 
channel between Sfax and Kerkennah[13,14].

2.2. Sampling and analysis

   Samples were seasonally collected in the station Cercina 
successively during the 10 days corresponding to spring tide. 
Sampling water was collected through 3 h intervals of the tidal 
cycle: flood (T1), slack (T2) and ebb (T3) period. Environmental 
variables such as salinity and temperature were measured in the field 
concomitantly as phytoplankton sampling. Additionally, nutrients 
(ammonium, nitrite, nitrate, phosphate and silicate) were analysed in 
a laboratory with Auto-analyser Luebbe type. Three water samples 
replicate of one-litter were collected by Kuttner bottle and fixed 
with formaldehyde (5%). Microalgae enumeration was performed 
with an inverted microscope after fixation with Lugol solution (final 
concentration 1% v / v) and settling for 48 h using Uthermöhl (1 958) 

method[15]. Abundances were expressed in number of organisms per 
liter of sample.
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Figure 1. Map of the study area showing the sampling station of Cercina.
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2.3. Statistical analyses

   Permutational multivariate analysis of variance was used to analyze 
differences in abundance of diatoms between seasons, days and 
hours[16]. Permutational multivariate analysis of variance gives the 
permutation P-value for each test it performs. Data were transformed 
where necessary to meet the assumption of homogeneity of variances 
(homogeneity confirmed by non-significant Cochran’s C test). 
Student-Newman-Keuls (SNK) test was employed for a posteriori 
multiple comparisons of means. Similarity percentage analysis was 
used seasonally to identify the contribution of individual species 
with the pattern of similarity and dissimilarity between the different 
tidal periods. To link species variability to environmental parameters, 
Pearson’s correlation was applied to physical (temperature and 
salinity) and chemical parameters [NO2

-, NO3
-, NH4

+, PO4
3-, total 

nitrogen, total phosphate and Si(OH)4]. 

Table 1 

ANOVA results for physic-chemical variables on the three tidal periods.

Source of variation df Salinity Temperature NO2 NO3 PO4 Si(OH)2 NH4
+

MS F MS F MS F MS F MS F MS F MS F

Winter Tidal period 2 0.072 0.097 13.50 12.56* 0.034 5.92* 1.03 6.33* 0.04 1.96 2.21 1.25 5.86 5.37*

Residual 27 0.75 1.05 0.01 0.16 0.02 1.77 1.04

SNK test - T1 > T2 = T3 T2 > T1 = T3 T1 < T2 = T3 - - T1 < T2 = T3

Spring Tidal period 2 15.64 0.16 44.27 0.67 1.68 4.61* 1.79 4.29* 5.55 1.59 4.01 2.39 21.88 11.13*

Residual 27 95.87 66.33 0.36 0.42 3.48 1.67 1.96

SNK test - - T1 < T2 = T3 T1 < T2 = T3 - - T1 < T2 = T3

Summer Tidal period 2 2.93 1.73 6.55 1.69 0.23 5.37* 2.25 8.71* 0.31 6.96* 1.03 1.83 14.85 1.52

Residual 27 1.69 3.86 0.04 0.26 0.04 0.56 0.26

SNK test - - T1 < T2 = T3 T1 < T2 = T3 T1 < T2 = T3 - -

Autumn Tidal period 2 0.02 0.17 0.07 0.15 0.07 3.82* 0.49 2.61 0.19 7.99* 25.11 5.97* 51.41 17.04*

Residual 27 0.11 0.50 0.02 0.19 0.02 4.2 3.02

SNK test - - T1 < T2 = T3 - T1 < T2 = T3 T1 < T2 = T3 T1 < T2 = T3
*: Significant at level 0.05. MS: Mean square.

Figure 2. Variations in salinity, temperature, nitrite, nitrate, ammonia, silicate and phosphate in the surface waters in Cercina during four seasons with the 

three tidal periods of spring tide.
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3. Results

   Temperature varied significantly between seasons (ANOVA, F 
= 157.33, n = 36, P < 0.05) and the highest values of temperature 
(27.59 °C) were recorded in summer on the T1 period, while the 
lowest value (15.1 °C) were detected in winter on T3 period (Figure 
2). Salinity varied significantly (ANOVA, F = 8.75, n = 36, P < 
0.05) according to seasons. Water salinity varied from 38.20 g/L 
in spring to 42.13 g/L in summer during the T1 period (Figure 2). 
Salinity increased mainly in spring and decreased in autumn and 
winter. No significant difference was detected for salinity for all 
seasons while for temperature significant difference between the 
three tidal periods was detected only in winter (Table 1). The nitrite 
NO2

- fluctuated between seasons (ANOVA, F = 13.48, n = 36, P < 
0.05) and the concentration values ranged between 0.08 µmol/L in 
winter to 1.08 µmol/l in spring. Significant difference was detected 
between the three tidal periods and SNK post-hoc test revealed that 
those concentration values were high during the T2 and T3 periods 
for all seasons (Table 1). Nitrate NO3

- also varied significantly 
between seasons (ANOVA, F = 10.73, n = 36, P < 0.05) and the 
highest concentration (1.55 µmol/L) was recorded in spring, while 
the lowest concentration was detected in summer and winter (0.50 
and 0.53 µmol/L respectively). Significant difference was detected 
between the three tidal periods in winter, spring and summer. 
The highest concentration was revealed in the T2 and T3 periods. 
Orthophosphate PO4 differed between seasons (ANOVA, F = 33.17, 
n = 36, P < 0.05) and the highest concentration values were recorded 
in spring (2.11 µmol/L). Significant difference for orthophosphate 
concentration was recorded between the three tidal periods only 
in summer and autumn where the high concentration values were 
recorded in the T2 and T3 periods. Ammonium NH4

+ concentration 
varied between seasons (ANOVA, F = 3.85, n = 36, P < 0.05) and 
the high concentration was recorded in autumn (9.29 µmol/L). 
Significant difference was recorded between the tidal periods on 
the winter, spring and autumn periods and the highest concentration 
values were observed on the slack and ebb period. Silicate Si(OH)2 

concentrations fluctuated between seasons (ANOVA, F = 4.43, n = 
36, P < 0.05). The silicate concentrations were high in spring and 
autumn and low in winter and summer. Significant difference was 
recorded between the tidal periods only in autumn and the high 
concentration was recorded on the T2 and T3 periods.  
   A total of 36 diatom species were identified in the study area 
inluding Achnanthes brevipes (Bory), Amphiprora paludosa 
W.Smith ,  1853,  Amphora  angus ta  Gregory,  Amphora 

proteus (Ehrenberg), Asterionella glacialis Castracane 1 886, 
Asterionellopsis glacialis Castracane, Bacillaria paxillifera 
(Gmelin), Bellerochea malleus (Heurck), Biddulphia alternans 
(Bailey) Van Heurck 1 885, Chaetoceros didymus Ehrenberg 
1845, Coscinodiscus sp. (Ehrenberg), Climacosphenia moniligera 
(Ehrenberg),  Dactyliosolen fragil issimus (Castracane), 
Grammatophora oceanica Ehrenberg 1840, Gyrosigma sp., 
Guinardia delicatula (Cleve) Hasle in Hasle & Syvertsen 1997, 
Hemiaulus hauckii (Ehrenberg), Leptocylindrus danicus Cleve 
1889, Licmophora gracilis (Ehrenberg) Grunow, Melosira 
moniliformis (Agardh), Navicula sp. (Bory), Nitzschia fontifuga 
Cholnoky 1962, Nitzschia pellucida Grunow 1880, Nitzschia 
acutissima (Hassall), Nitzschia longissima (Brébisson in Kützing) 
Ralfs, Pinnularia viridis (Nitzsch) Ehrenberg 1843, Plagiotropis 
lepidoptera (Pfitzer), Pleurosigma simonsenii (Smith), Pseudo-
nitzschia sp. (Peragallo), Skeletonema costatum (Greville) Cleve 
1873, Striatella unipunctata (Lyngbye) C. A. Agardh, 1832, 
Thalassiosira decipiens (Jørgensen), Toxarium undulatum Bailey 
1 854, Triceratium shadboltianum (Ehrenberg), Rhizosolenia alata 
(Brightwell) and Rhabdonema adriaticum Kützing 1844. The 
mean abundance of diatoms fluctuated between seasons and showed 
a significant seasonal variability (ANOVA: F = 8.93, n = 239, P < 
0.001). The highest diatom abundance [(7 397.75 ± 1 048.53) cell/
L] was detected in spring whereas the lowest abundance [(976.00 ± 
97.83) cell/L] was detected in winter (Figure 3). For autumn, spring 
and summer, significant difference was detected between the three 
tidal periods (Table 2). SNK test revealed that the highest abundances 
were detected specially in the T1 and T3 periods whereas the lowest 
abundances were detected in the T2 periods. Similarity percentage 
analysis revealed that in winter, the most abundant diatom species 
contributing to dissimilarity between the different tidal periods 
were Nitzchia longissima, Navicula sp. and Guinardia delicatula, 
whereas in spring the main species contributing to dissimilarity 
between the three tidal periods were Navicula sp., Skelletonema 
costatum, Cocinodiscus sp., Nitzchia fontifuga and Plagiotropis 
Lepidoptera (Table 3). In summer, Navicula sp., Nitzschia 
longissima, Pleurosigma simonsenii, Climacosphenia moniligera, 
Amphora angusta and Amphiprora paludosa were the main diatom 
species contributing to dissimilarity, while in autumn Navicula sp., 
Nitzchia fontifuga, Guinardia delicatula, Pleurosigma simonsenii, 
Climacosphena moniligera, Striatella unipunctata, Thalassiosira 
decipiens and Rhabdonema adriaticum were the main species 
contributing to dissimilarity. Significant positive correlations were 
found between diatom species and physico-chemical parameters 
such as temperature, NO2

-, Si(OH)4, NO3
- and PO4

3- while no 

Table 2 

ANOVA results of seasonal variation of diatom on the three tidal periods.

Source of 
variation

df Winter Spring Summer Autumn
MS F P (perm) MS F P (perm) MS F P (perm) MS F P (perm)

Tidal period 2 0.09 1.83 0.169 0.79 9.23 0.000 0.59 6.15 0.004 0.457 5.621 0.006
Residual 57 0.05 0.086 0.096 0.08
Cochran's C-test C = 0.461 ns C = 0.856 ns C = 0.558 ns C = 0.669 ns
Transformation Ln(x + 1) Ln(x + 1) Ln(x + 1) Ln(x + 1)
SNK test - T2 < T1 < T3 T2 < T1 = T3 T2 < T1 = T3

MS: Mean square; P (perm): P-value based on Permanova test.

Table 4 

Spearman correlation coefficients between the studied physico-chemical variables and diatom abundance.

Pearson correlation Salinity Temperature NO2
- Si(OH)4 NO3

- NH4
+ PO4

3-

Diatom 0.120 0.273* 0.256** 0.129* 0.211* 0.028 0.385**

*: Significant at level 0.05, **: Significant at level 0.01.
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significant correlation was found with salinity and ammonium 

(NH4
+) (Table 4).

Figure 3. Mean abundance of diatoms (cells/L ± SD) at the three time 

interval of spring tide and for each season in the station of Cercina.
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Table 3 

The main diatom species contributing to the dissimilarity between the three 

tidal periods for each season.  

Season Period Average dissimilarity Average dissimilarity of the main species 

Winter Flood 
vs slack 
period

68.93 Nitzchia longissima (18.90)

Navicula sp. (14.67)

Guinardia delicatula (12.67)  

Ebb vs 
Slack 
period

59.49 Navicula sp. (18.89) 

Nitzchia longissima (14.06)

Guinardia delicatula (10.89)  

Flood 
vs ebb 
period

62.02 Navicula sp. (19.27)

Nitzchia longissima (18.98)

Guinardia delicatula (13.91)  

Spring Flood 
vs slack 
period

83.70 Navicula sp. (13.41)

Skelletonema costatum (10.79)

Cocinodiscus (7.66) 

Ebb vs 
Slack 
period

84.55 Navicula sp. (10.35)

Cocinodiscus (10.32)

Skelletonema costatum (9.20) 

Flood 
vs ebb 
period

81.12 Cocinodiscus (11.03)

Navicula sp. (9.76)

Nitzchia fontifuga (7.32)

Plagiotropis sp. (5.70)  

Summer Flood 
vs slack 
period

73.67 Navicula sp. (16.09)

Nitzchia longissima (12.97)

Pleurosigma simonsenii (9.48)

Climacosphena moniligera (6.76)

Amphora angusta (6.22)

Ebb vs 
Slack 
period

73.30 Navicula sp. (16.04)

Nitzchia longissima (9.39)    

Pleurosigma simonsenii (8.48)

Cocinodiscus sp. (7.74)

Climacosphena moniligera (6.93)

Amphiprora paludosa (5.27)

Flood 
vs ebb 
period

75.16 Navicula sp. (15.98)

Pleurosigma simonsenii (8.92)

Nitzchia longissima (8.31) 

Cocinodiscus sp. (7.58)

Climacosphena moniligera (5.86)

Autumn Flood 
vs slack 
period

61.96 Navicula sp. (15.56)         

Nitzchia fontifuga (13.54)

Guinardia delicatula (11.36) 

Pleurosigma simonsenii (9.99)

Climacosphena moniligera (6.37)

Ebb vs 
Slack 
period

61.88 Navicula sp. (13.49)          

Nitzchia fontifuga (13.58)

Guinardia delicatula (7.75)

Striatella unipunctata (7.11)

Thalassiosira decipiens (6.27)

Pleurosigma simonsenii (5.03)

Flood 
vs ebb 
period

68.21 Navicula sp. (13.58)         

Nitzchia fontifuga (12.16)

Guinardia delicatula (7.76)

Striatella unipunctata (6.51)

Pleurosigma simonsenii (5.88)

Thalassiosira decipiens (5.62)  

Rhabdonema adriaticum (5.05)

4. Discussion

   Seasonal distribution of diatom species was detected with a tidal 

distribution according to tide regime and therefore to the physico-

chemical parameters in Kerkennah Islands. The data-base was 

performed in order to collect enough information related to the 

diatom dynamics for the two scales: seasonal and tidal period. Our 

study shows two key results: a high abundance of diatoms recorded 

in spring and summer with maximum abundance occurring in the 

spring and a high abundance of diatom recorded in the T1 and T3 

periods. 

   Our results showed that Kerkennah Island was a complex 

system in which the spatial distribution and seasonal variability 

of abundance and composition of diatom species is affected by 

the variations of physico-chemical parameters that in turn are 

governed by the seasonal dynamics[9,17,18]. Seasonal variability 

of diatoms was revealed in the same area by Ben Brahim et al. 

showing that phytoplankton structure was dominated by diatoms 

both in abundance and the species number specially in spring and 

summer[17]. This prevalence of diatoms in such environment can 

be explained by the fact that the ebb period in this region is slightly 

longer than the flood period, with a greater maximum ebb speed than 

flood and with a general current of approximately 38 cm/s[19,20]. 

This situation generated a higher flow of nutrients and suspended 

particles into this area than elsewhere[21], creating changes in both 

diatom abundance and the community structure between regions. 

Similar result on seasonal variability was observed by Arndt et al. in 

the Scheldt Estuary (Netherlands) where the highest abundances of 

diatoms were occurred in summer (June until August)[4]. Sushanth 

and Rajashekhar also revealed a noticeable seasonal variation 

of diatoms species in Arabian Sea of Uttara (Kannada District, 

Karnataka) which may be attributed to the local climatic conditions 

and water exchange mechanism[22]. 

   Diatoms are valuable indicators of ecological quality as they 

respond directly and sensitively to many physical, chemical and 

biological changes in aquatic environment and may quickly 

respond to changing physical, chemical, and biological conditions 

in the environment[23,24]. The physicochemical parameters such 

as temperature, irradiance, salinity and nutrients were found to 

influence the occurrence of diatoms. Our results showed an increase 

of diatom in spring and summer with the maximum was reached in 

spring. In particular, temperature seemed to be the most important 

factors in the coastal ecosystem which may influence the distribution 

and abundance of phytoplankton. Water temperature affects the 

abundance of diatoms and most of them were correlated with 

temperature variation[25,26]. 

   The concentration of nutrients seems also to be an important factor 

that explains the dominance of diatoms as it influences the other 

environmental factors controlling diatoms[27]. Nitrate concentration 

is likely the most important predictor among the macronutrients and 

its positive effect on diatom abundance[28]. Moreover, silicic acid is 

known as an important predictor for the abundance of diatoms since 

it is used to build their frustules[29]. Phosphate exerts a significant 

influence on diatoms by operating growth characteristics and cell 

metabolism[30]. Diatoms were sensitive to changes in phosphate 

concentration; they were not able to dominate when phosphate was 
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deficient, although silicate and nitrate were in excess. Moreover, the 

cell number declined with decreasing phosphate concentration in the 

medium[31,32]. 

   Water motion in our study area (Cercina) is a system with a 

semidiurnal tide and showed horizontal displacement of water 

masses with a periodicity of 12 h[33]. The horizontal motion 

generates maxima in tidal current speeds and turbulent mixing with 

a periodicity of 6 h. Environmental forcing by the tidal cycle is an 

important driver of diatom variability in Cercina. In fact, diatom 

biomass in our study area exhibits variability at small temporal scales 

over the tidal period. Our result revealed that diatom concentration 

fluctuations correlated with different tidal periods and thus with 

horizontal transport of different water masses. Diatom concentrations 

consistently peaked on T1 and T3 in each season. Tides cause a 

pattern of stabilization-destabilization in circulation resulting in a 

highest abundance in flood and ebb periods during each season. 

   Lauria et al. showed that diatoms responded positively to 

turbulence, showing enhanced growth rates with increased mixing 

aeration and stirring in laboratory experiment when the depth 

reached his maximum, certainly due to the increase of nutrient 

supply of suspended particulate matter during water motion[34]. 

Otherwise, the turbidity maximum appears as a transient 

phenomenon related to tidal currents, dissipating rapidly by 

sedimentation during current slacks. In fact, turbulence generated 

by tidal current was the primary control over the transport and 

distribution of sediments and nutrients in field environments[35]. 

Diatoms are considerably less sensitive to turbulence and their 

lower affinity towards nutrients than dinoflagellate[36,37]. They are 

associated with eutrophic conditions owing to their fast growth rate 

and as consequence[38,39], they thrive in relatively turbulent and 

nutrient-rich waters[40]. Moderate mixing is essential to increase 

the available irradiance for diatoms photosynthesis as most of this 

group lack for active motility[41]. Indeed, Lauria et al. showed that 

diatoms were sinking organisms which relied on physical mixing 

to ensure sufficient photosynthesis active radiation levels to sustain 

production[34]. Those authors suggest that the centric diatoms 

used an opposing feature of the tides by being mixed throughout 

the water column during periods of intense mixing, and sinking 

under stable conditions. Similar result was found by Domingues 

et al. in Guadiana River’s estuary (Portugal) where tidally-induced 

resuspension is considered a primary mechanism governing the 

variability of suspended particulate matter and light in estuaries and 

so phytoplankton patchiness associated[42]. The same result was 

revealed also by Brunet and Lizon where significant differences were 

found in pennate diatoms abundance in the winter and spring, with 

higher values during spring tides and lower during neap tides[43]. 

This may probably be related to a higher vertical mixing induced 

by higher river flow during spring tides, leading to resuspension of 

microphytobenthic diatoms.

   Physico-chemical water quality parameters showed characteristic 

cyclic variations with the influence of tidal and so that resuspension 

events within field may impact nutrient cycling. Maximum 

concentrations occurred during slack and ebb periods. Seasonal 

cycling of physico-chemical water quality parameters was revealed 

in the same area of Gabes Gulf by Feki-Sahnoun et al. where the 

seasonal variability showed in the coastal water it was subjected 

to a marked seasonal cycle[44]. Cyclic pattern of physic-chemical 

parameters among tide periods was also observed by Montani et al. 

in Tidal Estuary in the Seto Inland Sea, Japan where low salinity 

water import was stronger at the lower low tide[45]. Similar result 

was showed also by Magni et al. in the Seto Inland Sea, Japan, 

where the major changes in nutrient concentrations depended on the 

tides, which nitrate and nitrite concentrations were quantified to be 

up to 1.8 times higher during the ebb than during the flood[46]. In our 

study, no significant difference of salinity was observed within the 

study area for all seasons. However, for nitrite and nitrate, the effect 

of the tide is important in determining the concentrations, which 

were stronger on flood and ebb periods.

   Moser et al. stated that diatoms were sensitive to a wide range of 

limnological and environmental variables and quickly responded 

to changing physical, chemical, and biological conditions in 

the environment[47]. In fact, each diatom species has its own 

characteristic ecophysiological traits which determine how it 

responds to the environment. Diatoms community structure is 

determined by a complex interaction between the physiological 

characteristics of each species, environmental conditions, resource 

availability and species competition[29]. The distribution of 

Guinardia delicatula, Skelletonema costatum, Climacosphena 

moniligera, Striatella unipunctata and Thalassiosira decipiens in 

the water column, is closely associated with the periods of increased 

mixing. These passive organisms were distributed throughout the 

water column during the increased shear at each tide[23-34]. 

   Navicula sp. was the main specie making difference between the 

three tidal periods for all seasons. Mutshinda et al. demonstrated 

that this specie had no irradiance as an important variable, whereas 

Nitzchia longissima had irradiance as an important variable and 

none had phosphate or silicic acid concentration as important 

variables, while Guinardia delicatula had no irradiance or nitrate 

as important predictors[29]. Generally, irradiance is an important 

variable for the major diatoms with abundance decreasing with 

increasing irradiance. Cell abundance of Cocinodiscus sp. was high 

in spring [(429 ± 334.61) cell/L] and summer [(152.67 ± 82.47) 

cell/L]. One of reasons of this increase was the warm weather, 

with longer hours of sunshine and the high concentration of NO3
-

[48]. Otherwise Cocinodiscus sp. was detected in significant 

number by Wasmund et al. in winter/spring and it was considered 

as cold water species[26]. The high abundance [(285 ± 152.1) cell/

L] of Thalassiosira decipiens was recorded in autumn on the ebb 

period when an increase in vertical mixing (in September/October) 

resulting in upward transport of remineralised nutrients from the 

bottom water. This centric diatom forms large chains and has high 

aggregation and sinking rates and was therefore better adapted to 

buoyancy during strong vertical advection and high water column 

mixing[49-51]. Tilstone et al. revealed in the Ría de Vigo (NW Spain) 

an increase in the biomass of Thalassiosira spp[52]. During the 

vertical convective fluxes coupled with the horizontal convective 

fluxes during upwelling while, the low biomass was related to 

periods of upwelling relaxation. Diatoms such as Thalassiosira sp., 

Skeletonema costatum and Cocinodiscus sp. form an important link 

in the food chain to zooplankton and fish larvae[52,53]; those latter 

observations are in concordance with our results and may explain the 

low abundance of diatom in the T2 period and their high growth in 
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the ebb and flood periods. In fact, tide and current tide is a defining 

environmental parameter that can potentially influence algal-

grazer interactions and may impose strong energetic and ecological 

constraints on both algae and herbivores[9-55]. Other research suggest 

that current tide has been shown to affect herbivore movement 

rates[56,57], patterns of immigration and colonization[38-57], and 

may control herbivore distribution across the streambed[58], as well 

as determine the taxonomic and architectural composition of their 

benthic algal food[59-61].

   Tide has various effects on the nutrients status and diatoms 

community (in terms of species composition, succession and 

abundance) between different tidal periods. Fluctuation in diatom 

composition and number has been correlated with changes in the 

circulation of water bodies and changes in nutrient regime. Physical 

and nutrient regimes are tightly coupled and it is often difficult to 

discern their individual effects on species successions and changes 

in biomass and primary production. Statistical results revealed the 

high abundance of diatom was detected in the flood and the ebb 

periods. This study therefore suggests the high-resolution monitoring 

programs that are essential to capture the natural variability of 

phytoplankton in coastal waters.
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