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1. Introduction

   Several researchers have noted that during the reproduction period 

parental fish exhibit the state resembling stress[1-4]. It is unclear if 

the stress in reproducing fish identical to the stress in response to 

extreme factors or are there any differences between these states? 

Clarification of this uncertainty necessitate the comparative analysis 

of physiological and biochemical processes observed in fish in 

response to stressors and during the period of reproduction.

2. Dynamics of physiological and biochemical 
parameters in freshwater fish from the beginning of 
stress impact to the end of acclimation to new conditions

   The comparative analysis of available data revealed the 

consequence of the processes taking place in freshwater fish in 

response to stress impacts[5]. It was shown that on the one hand 

the stressors cause a series of damages in the organism (Figure 

1, right part), but on the other hand, enhance the protective 

functions (Figure 1, left part) withstanding development of harmful 

processes. 

2.1. Damaging effects of stress-factors

   Many factors of physical and chemical (toxicants) natures cause 

direct structural damages, first of fish gills[6]. However, all types of 
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stressors possess common mechanism of destabilization of organism. 

In 1972 it was hypothesized that damaging and malfunctions at stress 

are realized via peroxides and free radicals[7]. The stressors reinforce 

nonenzymatic pathway of the oxidation by free radicals of energetic 

and plastic substances in the organs and tissues[8]. This results in the 

formation of aggressive free radicals. These radicals directly bind 

with oxygen and produce toxic peroxidation products.

   It was shown that during initial stage of stress the organs and 

tissues of mammals[7,9,10], and fish[11-15] accumulate harmful 

substances possessing hemolytic activity: aggressive radical, “debris 

of organic molecules, lipid peroxides, etc. These substances cause 

various damaged in the organism (Figure 1, right part), including 

increase in the permeability of cellular membranes. As a result, the 

blood passing fish gill capillary system loses ions, mainly sodium 

and chlorine[16-21]moving into the freshwater. This leads to the 

decrease in concentration of these electrolytes in the organism’s 

internal environment[16-18,20,22] (Figure 2). 

   Decline of the level of sodium and chlorine ions in the blood 

plasma of freshwater fish that takes place during the initial stage 

of stress is accompanied by drop of the osmolality of the organism 

internal environment[22]. As a result the osmotic pressures in the 

extracellular and intracellular liquids of the organism differ sharply 

and this jump of pressures facilitates transfer of water into the cells 

leading to the swelling of the latter. At hyponatremia the water 
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content in the muscles of roach increases by 1.8%[23]. The increase 

in the water content in brain is especially injurious. The skull 

prevents expansion of the brain tissue. This is the brain edema at 

hyponatremia is accompanied by the rise of intracranial pressure 

with a range of relative negative consequences including high 

mortality[24].

   It was found that during initial two to four hours of stress the 

leakage of potassium ions from cells prevail resulting in sharp 

increase in potassium concentration in the blood plasma[16,25] 

(Figure 2). Considerable increase in the blood plasma potassium 

content and its decrease in the cells lead to the decline in the gradient 

of this cation between tissue cells and intracellular liquid. This 

results in the drop of the membrane potential of cells. The membrane 

potential is a source of physical energy used for varies functions 

of cells including secondary transport of a range of substances via 

surfaces of cellular membranes[26]. Its decrease at stress should lead 

to the decrease in the ability to fulfill transport functions. Many 

enzymes are situated on the cellular membranes at their activities 

depend on the value of cell membrane potential. It was revealed 

that during the initial stage of stress in common carp the level of 

potassium in the extracellular liquid increases[27]. This should result 

in the decrease in the membrane potential and is accompanied by 

inhibition of acetylcholine esterase activity. 

   To withstand damaging processes at stress (Figure 1, right part) the 

protective functions are enhanced by nervous and endocrine systems. 

These functions relate to the GAS (Figure 1, left part).

2.2. Protective functions at stress 

   The stressors perceived by nervous system serve as “alarm signals” 

entering various sectors of brain and hypothalamus. Hypothalamus 

modifies and coordinates the perceived information and affects the 

organism via various neuroendocrine pathways. 

2.2.1. Hypothalamic-sympathetic-chromaffin cell axis
   The first pathway relates to the release of catecholamines from the 

chromaffin cells, mainly via the preganglion cholinergic filaments of 

the sympathetic nervous system. However, the transection of these 

nerves does not prevent fully the secretion of catecholamines during 

the stress. It is suggested that in fish other factors (e.g. transported by 

the blood) participate in the above mentioned process[28]. Activation 

of chromaffin system at stress[29,30] leads to fast and sharp (by tenths 

times) concentration of catecholamines in blood plasma [28,30-34]. 

These hormones are responsible for various functions. They accelerate 

the consumption of oxygen by gill by means of increase in the rate of 

respiration, gill blood current, diffusion capacity of gill and transporting 

capacity of blood for oxygen via β-adrenergic receptors[28].

   Catecholamines enhance the energetic metabolism. These hormones 

cause disintegration of polymers to monomers owing to increase in 

glycogenolysis, lipolysis and gluconeogenesis[35-38]. In addition, these 

hormones enhance oxidative function of mitochondria, functioning 

of the respiratory chain, oxygen consumption and, as a result, the 

generation of energy in a form of ATP[39].

Figure 2. Dynamics of Na, K, concentrations in plasma of the roach at acute stress[16,18], and during different seasons[3,4]. 
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2.2.2. Hypothalamic-pituitary-interrenal axis
   The second pathway of the realization of protective processes at 

stress relates to the hypothalamic-pituitary-interrenal axis typical 

for terrestrial vertebrates and fish[40,41]. Hypothalamus secretes 

corticotrophin-releasing factor, arginine-vasotocin, isotocin and 

neuropeptide Y at stress. These substances reach hypophysis and 

stimulate releasing of adrenocorticotrophic hormone, melanophor-

stimulating hormone (MSH) and beta-endorphin[42-44] (Figure 1, left 

part). As a result, the concentration of these hormones in the blood 

plasma increases[45-47]. The blood current delivers these hormones 

into the interrenal tissues enhancing the activity of the latter[29], and 

increase in the concentrations of cortisol[48-53], and corticosterone in 

the blood plasma[54].

   Cortisol is the main glucocorticoid hormone in fish. It provides 

various functions: inhibits synthesis of proteins and enhances their 

degradation in the lymphoid, connective and muscle tissues. The 

amino acids released from proteins metabolize fast resulting in the 

negative nitrogen balance. These catabolic processes are determined 

by the induction of enzymes, especially of the enzymes responsible 

for catabolism of amino acids and for gluconeogenesis[39,55,56]. As a 

result, the synthesis of proteins is suppressed which leads to the growth 

rate retardation. In addition, cortisol stimulates metabolism of lipids by 

decomposition of fat. As a result, the level in fatty acids increases in the 

blood plasma[57,58]. Treatment of cortisol leads to the decrease in the 

level of lipids in the liver and muscles of coho salmon[57].

   The reactions related to the energetic metabolism include the 

antioxidant system. The action of this system is directed towards 

the neutralization of the free radical processes[8]. The activation of 

energetic metabolism at stress is “automatically” accompanied by 

the enhancement of the antioxidant function. Catecholamines and 

corticosteroids stimulate the energetic metabolism and enhance the 

antioxidant system.

   It is known that during the initial stage of stress the resistance 

of the organism decrease (the “alarm reaction”)[59]. This indicates 

that at that time the effects of damage and malfunctions prevail 

over the adaptive reactions. It is suggests that at stress high levels 

of circulating catecholamines and corticosteroids in the blood 

plasma cause various disorders, including hyperhydration, loss of 

electrolytes and nonelectrolytes[32,33,41,60-62] as well as decrease 

in the resistance of erythrocytes to the blood current[63] in the 

freshwater fish. It is likely that this opinion is based upon the formal 

correlation between the increase in the concentrations of various 

hormones in the blood plasma and simultaneous manifestation 

of the damaging processes noted at stress. However, in reality 

the situation is different. Hypophysectomy[64], interrenalectomy 

and stanniusectomy[65] carried out separately and resulted in the 

desalination of the fish in the freshwater. The same phenomena 

are registered at the initial stage of stress in the intact animals 

resembling the situation when the endocrine glands do not function 

or excise. The situation is paradoxical: on the one hand at stress 

the functions of endocrine systems enhance accompanied by the 

increase in the concentrations of various hormones in the blood 

plasma, but on the other hand, the disorder of water-salt metabolism 

takes place at the high functional activity of the endocrine systems 

(Figure 2) which is typical at the excision of endocrine organs. 

This phenomenon indicates at the initial stage of acute stress the 

hormones are seemingly deficient. At the very beginning of the 

stress response the protective functions related to the GAS (Figure 

1, left part) do not compensate for damages (Figure 1, right part). 

As a result, the latter processes prevail resulting in the decrease 

of the organism resistance (the “alarm reaction” according to 

Selye[59]). The protective functions can not withstand development 

of damaging consequences of the stress instantly. Only with time the 

adaptive mechanisms repair the damages recovering and stabilizing 

the organism parameters either at new or at initial levels (Figure 2). 

This provides an improved stability for an organism (the “stage of 

resistance” according to Selye[59]). Long and strong stressor causes 

the exhaustion of the adaptive resources in the organism leading 

to the prevalence of destabilizing symptoms over the protective 

reactions (the “stage of exhaustion” according to Selye[59]).

3. Dynamics of physiological-biochemical parameters 
during the reproduction period in freshwater fish

   As at stress the fish during the pre-spawning period exhibit 

enhancement of protective functions related to GAS (Figure 1, left 

part). In various fishes shortly before the spawning the activity 

of hypothalamus hypophysis neurosecretory systems increases 

which is accompanied by secretion of neurohormones of preoptic-

hypophyseal neurosecretory system to blood[1,2]. With blood current 

the hormones of hypophysis reach interrenal gland[66-69] stimulating 

release of various corticosteroids into blood[66-71] including 

cortisol[72-80].

   Corticosteroids realize transition of metabolism to the catabolic 

pathway owing to acceleration of gluconeogenesis, process of 

formation of glucose from noncarbohydrate sources[55] including 

protein.Concentration of proteins and amino acids decreases before 

spawning in fish blood serum and tissues[81-84]. Enhancement of 

gluconeogenesis and dissipation of glycogen (mainly in the liver) 

result in the increase blood plasma glucose which takes place before 

spawning as well[85]. Further the glucose is used for the energetic 

purposes. In addition, during the pre-spawning period the amount 

of accumulated fat in the fish body and various organs and tissues 

sharply decreases[83,86-89]. This indicates the increase in the share of 

lipolysis in the energetic metabolism.

   Before spawning the activation of sympathetic nervous 

system accompanied by the increase in the blood catecholamine 

concentrations takes place is fish[90]. Catecholamines acting via 

β-adrenergic receptors accelerate consumption of oxygen by fish 

gill increasing the rates of respiration, blood current in gill, diffusion 

capacity of gill and transporting capacity of blood for oxygen[28].

   It was revealed that before spawning the oxygen consumption rise 

in the whole organism and in separate tissues rises[91,92]. In addition, 

catecholamines enhance gluconeogenesis[36] and aerobic metabolism 

by increase in the Kreps cycle substrates[93]. It was also shown that 

the activity of the enzymes involved in Kreps cycle increases before 

spawning[94,95] .

   As it was shown above during the initial stage of at the 

development of GAS (Figure 1, left part) the signs of malfunctions 

of ionic homeostasis were observed (Figure 2). At the pre-spawning 
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period the situation is opposite: at the increase in the manifestations 

of GAS the protective functions related to maintaining of the 

ionic homeostasis prevail. For instance, before spawning in the 

roach blood plasma the concentration of sodium significantly 

increased by 10.1%; of potassium, decreased by 6.2 times (Figure 

2). Pre-spawning increase in the content of sodium was observed 

in fish species as well[96,97]. This relates to the increase in the 

concentrations of various hormones in the blood plasma.

   It was shown that cortisol enhances uptake of sodium and chlorine 

ions in the fresh-water fish gill from the environment[65,98]. This 

hormone facilitates differentiation of chloride cells in gill and 

increase specific activity of ion-transporting enzymes in gill, 

intestine and kidney[99,100]. Injections of cortisol and prolactin to 

hypophysectomized eel Anguilla anguilla L. increased concentration 

of sodium in the blood plasma to normal values and facilitated 

dehydration of tissues[101]. Adrenalin enhances uptake of sodium 

by gill[102] and prevents desalination of the organism[103] in the fish 

adapted to freshwater. The level of prolactin in the fish blood plasma 

rises before spawning[104]. This hormone decreases elimination of 

sodium from the organism by decreases in the permeability of gill 

epithelium and increased reabsorption of this ion in kidney[105].

   Before spawning the level of potassium decreases considerably in 

the blood plasma of roach (Figure 2) and other fish species[97,106,107]. 

The fish blood plasma potassium level decrease in pre-spawning 

may relate to a certain extent to the effect of catecholamines. The 

experiments in vitro revealed that these hormones accelerated 

transport of potassium ions from plasma to erythrocytes of fish[108-

112], frogs and pigeons[113]. Considerable decline of potassium 

level in blood causes increase in the gradient of concentrations of 

this cation between tissue cells and extracellular fluid. This leads 

to growth of the membrane potential in the cells. The membrane 

potential is a source of physical energy used for various functions 

of cell[26] including increase in the membrane-bound enzymes. 

For example, considerable increase in the activity of acetylcholine 

esterase and content of soluble fractions of proteins was revealed in 

the roach brain before spawning[114]. Increase in the physiological 

activity of the fish organism before spawning is accompanied by 

increase in the use of both forms of energy: chemical (ATP) and 

physical (membrane potential).

   Comparative analysis revealed that in the freshwater fish with 

nonrecurring spawning the protective functions related to GAS enhance 

both at the initial period of stress and during the pre-spawning period 

(Figure 1, left part). As for the damaging processes (Figure 1, right 

part) the pattern of their dynamics during the initial stage of stress is 

strikingly different: at the initial stage of stress the damaging effects 

dominate over the protective processes which results in the decrease in 

the resistance of the organism. As opposite, during the pre-spawning 

period at the increase in GAS the protective functions are prevailing 

facilitating increase in the resistance of spawner. It was shown that 

during the pre-spawning period the resistance to stressors increase[97] 

along with increase in the thermal resistance in muscles[115] while 

the concentration of calcium in the erythrocytes and muscle tissues 

decrease[3,116]. Reduction of the intracellular calcium leads to the 

stabilization of cytoskeleton[117], determining increase in the resistance 

to any damaging factors at the level of cell.

   The facts given above indicate that during the initial stage of stress 

due to domination of the damaging effects over the protective reactions 

the level of resistance of an organism decreases which corresponds 

to the Selye’s “alarm reaction”[59]. Before spawning only protective 

systems dominate facilitating increase in the level of resistance in the 

spawner (Selye’s “resistance stage”). That is, the absence of the alarm 

reaction is a characteristic of the pre-spawning period.

   Why during the initial stage of stress at the enhancement of 

adaptive functions (Figure 1, left part) the damaging processes are 

manifested (Figure 1, right part) while, as opposite, before spawning 

only protective reactions prevail? This is because the stressors fall 

upon the organism suddenly enhancing simultaneously both the 

protective functions and the processes related to the damage of the 

affected organism. At this situation the protective system activated 

in the response to stress impact are unable to instantly withstand 

the damaging effects of extreme factors. As a result, for some time 

(the durations of this period depends on the strength of the factors 

and extent of the damage) the damaging processes dominate over 

the adaptive reactions causing decrease in the organism resistance 

(the “alarm reaction”). With time, strengthen protective functions 

eliminate stress-induced malfunctions and provide higher resistance 

to the organism (the “resistance stage’).

   As opposite, there are no sudden impacts before the spawning. This 

is why there are no damages to the organism. The state resembling 

strong stress occurs in the spawner only at the moment of spawning 

particularly (Figure 2). Both during the initial stage of stress and during 

the spawning the content of blood plasma sodium in fish drops sharply 

while the content of potassium rises. At that, in terms of the strength 

of the effect the moment of spawning is comparable to the acute stress 

(Figure 2). This means that during the stress the physiological and 

biochemical systems of spawner are subject to the strain comparable 

to that one at the extreme impacts. After the spawning, the resistance 

of fish decreases[97, 115,118] indicating the exhaustion of the efficiency 

of protective functions. This state corresponds to the Selye’s “stage 

of exhaustion”[59]. The analysis of the muscles of roach immediately 

after the spawning confirms the exhaustion of the active physiological 

systems. During this period the concentration of sodium in the muscles 

rose by 16.9 mmol/kg wet mass; of potassium, as opposite, decreased 

by 27.5 mmol/kg wet mass[4]. Presumably, these changes take place 

owing to insufficient ability (exhaustion) of the sodium pump in the 

cellular membranes to evacuate the sodium ions in exchange for 

potassium. Then, within two to three weeks, both at stress and after 

spawning the parameters of ionic homeostasis recover and stabilize 

within the normal limits (Figure 2).

   This clarifies the biological meaning of the enhancement of 

protective functions (Figure 1, left part) prior to the beginning of 

the spawning-induced impact. In the series of generations the acts 

of spawning repeat in a certain fish species at similar ecological 

conditions. Such cyclically standard situation promoted a set 

of adaptations triggering the protective systems in advance to 

the stress load related to spawning and forming a sort of “safety 

factor”. If before the spawning such safety factor was not developed 

the reproducing fish may have died either during the spawning 

or after it owing to sharp decrease in the resistance and in the 

ability to maintain the ionic homeostasis below the permissible 
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levels. The post-spawning mortality in some less resistant fish is 

documented[119].

   As it was noted above it is believed that during the stress high 

levels of catecholamines and corticosteroids in the blood plasma 

cause various malfunctions including impairment of the water-salt 

homeostasis[32,33,41,60-62,120] in freshwater fish. In this respect the 

studies on various functions during the pre-spawning period is an 

ideal model for revealing real effects of neuroendocrine system. 

During this period the neural and endocrinal functions enhance 

long before the spawning induced stress. Since before spawning 

no extreme factor affects the organism there are no damaging 

effects acting. This is why before spawning the effects of neural 

and endocrinal systems are manifested per se without simultaneous 

effects of spawning-related damaging factors.

   No damaging processes affect fish during the pre-spawning 

period. As opposite during this period the protective effects 

dominate resulting in the increases in the organism resistance. If 

neuroendocrine systems causes damages to organism as it issupposed 

by many researchers[32,33,40,41,60-62,120], then the malfunctions 

should be evident during the pre-spawning period. However it is not 

occur. Hence, the enhancement of the neural and endocrinal systems 

during the initial stage of stress and before spawning is directed 

towards the providing of only the adaptive functions.

4. Conclusions

   The comparative analysis revealed that the enhancement of 

protective functions related to the GAS takes place in the reproducing 

freshwater fish with nonrecurrent spawning both at the initial stage 

of stress and during the pre-spawning period. However, during the 

initial stage of stress the damaging effects dominate over the adaptive 

processes resulting in the decrease in the organism resistance (the 

“alarm reaction” according to Selye[59]). As opposite, during the pre-

spawning period at the intensification of GAS only the protective 

systems dominate facilitating the increase in the level of resistance 

in the spawner (the “stage of resistance” according to Selye[59]). 

The alarm stage is not manifested before spawning. The state 

comparable to strong stress occurs in the reproducing fish only at the 

act of spawning. This is accompanied by decrease in the organism 

resistance. This indicates the exhaustion of the protective functions 

and corresponds to the Selye’s “stage of exhaustion”[59]. With time 

(within two to three weeks), both at stress and after spawning the 

physiological-biochemical parameters recover and stabilize within 

the normal limits.
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