STUDIA UNIVERSITATIS MOLDAVIAE

Revistă științifică a Universității de Stat din Moldova, 2014, nr.7(77)

ON MULTIPLICATION GROUPS OF ISOSTROPHIC QUASIGROUPS

Ion GRECU

Moldova State University

A loop (Q,\cdot) is called a middle Bol loop if every loop isotope of (Q,\cdot) satisfies the identity $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$ (i.e. if the anti-autmorphic inverse property is universal in (Q,\cdot)). Middle Bol loops are isostrophes of left (right) Bol loops. Multiplication groups of a quasigroup (Q,\cdot) and of loops which are isostrophic to (Q,\cdot) are characterized. In particular, it is proved that the right multiplication group of a middle Bol loop coincides with the left (right) multiplication group of the corresponding right (left) Bol loop. Some properties of the stabilizer of an element $h \in Q$ in the right (left) multiplication groups are established.

Keywords: Bol loop, middle Bol loop, isostrophy, universal properties, multiplication groups, stabilizer.

ASUPRA GRUPURILOR MULTIPLICATIVE ALE CVASIGRUPURILOR IZOSTROFE

Bucla (Q, \cdot) se numește buclă medie Bol dacă în orice buclă izotopă cu (Q, \cdot) are loc identitatea $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$ (adică, dacă proprietatea anti-automorfică de inversabilitate este universală în bucla (Q, \cdot)). Buclele medii Bol sunt izostrofi ai buclelor Bol la stânga (dreapta). În lucrare sunt caracterizate grupurile multiplicative ale unui cvasigrup (Q, \cdot) și ale buclelor care sunt izostrofe cu (Q, \cdot) . În particular, se demonstrează că grupul multiplicativ la dreapta al unei bucle medii Bol coincide cu grupul multiplicativ la stânga (dreapta) al buclei Bol la dreapta (stânga) corespunzătoare buclei (Q, \cdot) . Sunt stabilite un șir de proprietăți ale stabilizatorului unui element $h \in Q$ în grupurile multiplicative la dreapta (stânga) ale cvasigrupurilor izostrofe.

Cuvinte-cheie: buclă Bo, buclă medie Bol, izostrofie, proprietăți universale, grupuri multiplicative, stabilizator.

Introduction

A grupoid (Q, \cdot) is called a quasigroup if the equations $a \cdot x = b$ and $y \cdot a = b$ have unique solutions in Q, for $\forall a, b \in Q$. Two quasigroups (Q, \cdot) and (Q, *) are isotopic (and we say that (Q, *) is an isotope of (Q, \cdot)) if there exist three one-to-one mappings $\alpha, \beta, \gamma \in S_Q$, such that $x * y = \gamma^{-1}(\alpha x \cdot \beta y)$, $\forall x, y \in Q$. The triple (α, β, γ) is called an isotopy of the quasigroup (Q, \cdot) and we'll denote $(*) = (\cdot)^{(\alpha, \beta, \gamma)}$. If $(*) = (\cdot)$ then (α, β, γ) is called an autotopism of (Q, \cdot) . If (Q, A) is a quasigroup and $\sigma \in S_3$. The operation ${}^{\sigma}A$, definited by the equivalence

$${}^{\sigma}A(x_{\sigma(1)}, x_{\sigma(2)}) = x_{\sigma(3)} \Leftrightarrow A(x_1, x_2) = x_3$$

is called a parastrophe of the operation *A*. The isotopes of a parastrophe of the quasigroup (Q, A) are called isotrophes of (Q, A). A quasigroup with a neutral element is called a loops. The loops satisfying the identity $(xy \cdot z)y = x(yz \cdot y)$ (respectively $x(y \cdot xz) = (x \cdot yx)z$) are called left Bol loops (respectively, right Bol loops) [1, 3, 6]. The theory of left (right) Bol loops was developed in a series of works by *Bol G., Robinson D.A., Pflugfelder H.O., R.P. Burn, E.G. Goodaire, Nagy G.P., Kiechle H.*, and others.

The loops satisfying one of the identities $x(yz \cdot x) = xy \cdot zx$, $z(x \cdot zy) = (zx \cdot z)y$, or $x(z \cdot yz) = (xz \cdot y)z$ (witch are equivalent in loops) are called Moufang loops.

A loop (Q, \cdot) is called a middle Bol loop if it satisfies the following identity

$$x \cdot (yz \setminus x) = (x/z) \cdot (y \setminus x),$$

where ",", (,,") is the right division (respectively, left division) in the loop (Q, \cdot) . Middle Bol loops were defined by V. Belousov in [1]. Moreover, the last identity is a necessary and sufficient condition for the universality of the anti-automorphic inverse property $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$. A. Gwaramija proved in [2] that a loop (Q, \circ) is middle Bol if and only if there exists a right Bol loop (Q, \cdot) such that

$$x \circ y = (y \cdot xy^{-1})y, \qquad (1)$$

for every $x, y \in Q$. From (1) follows $(y \cdot x) \circ y^{-1} = [y^{-1} \cdot (yx \cdot y)] \cdot y^{-1} = xy \cdot y^{-1} = x$, for every $x, y \in Q$, so we have

$$y \cdot x = x//y^{-1}$$
, (2)

for every $x, y \in Q$, where "//" is the left division in (Q, \circ) . On the other hand, denoting $x \cdot y = z$, $x = y \setminus x$, from (2) follows: $z = (y \setminus z)//y^{-1} \Leftrightarrow z \circ y^{-1} = y \setminus z$, so

$$z \circ y = y^{-1} \backslash z, \tag{3}$$

for every $x, y \in Q$. Hence, the loops (Q, \cdot) and (Q, \circ) are isostrophic. Also, it is shown in [4] that a loop (Q, \circ) is middle Bol if and only if there exists a left Bol loop (Q, \cdot) such that

$$x \circ y = y(y^{-1}x \cdot y),$$

for every $x, y \in Q$. From the last equality follows:

$$\begin{aligned} x \cdot y &= x / / y^{-1}, \\ x \circ y &= x / y^{-1}, \end{aligned}$$
 (4)

for every $x, y \in Q$. Other properties of middle Bol lop are studied in [2,4,5].

Let (Q, \cdot) be a quasigroup. Denote by $L_a^{(\cdot)}$ (resp. $R_a^{(\cdot)}$) the left (resp., right) translation with the element a in (Q, \cdot) . We will use below the notations:

 $LM(Q,\cdot) = \langle L_x | x \in Q \rangle$ – the left multiplication group of (Q,\cdot) ,

 $RM(Q,\cdot) = \langle R_x | x \in Q \rangle$ – the right multiplication group of (Q,\cdot) ,

 $M(Q,\cdot) = \langle L_x, R_x | x \in Q \rangle$ - the multiplication group of (Q, \cdot) ,

where $L_a^{(\cdot)}(y) = a \cdot y$, $R_a^{(\cdot)}(y) = y \cdot a$, $\forall a, y \in Q$. **Remark 1.** It is proved in [5] that two middle Bol loops are isotopic if and only if the corresponding right (left) Bol loops are isotopic. Relations between multiplication groups of a quasigroup and those of its principal isotopes are found by K. Sciukhin in [7].

Theorem 1. [7] Let the loop (Q, \circ) be a principal izotope, of a quasigroup (Q, \cdot) , with isotopy $x \circ y = \varphi(x) \cdot$ $\psi(y)$. Then the following statements hold:

- 1. $LM(Q, \circ) = \langle L_x^{(\cdot)} \psi | x \in Q \rangle = \langle L_x^{(\cdot)-1} L_y^{(\cdot)} | x, y \in Q \rangle;$
- 2. $RM(Q,\circ) = \langle R_{\gamma}^{(\cdot)}\varphi | y \in Q \rangle = \langle R_{\gamma}^{(\cdot)-1}R_{\chi}^{(\cdot)} | x, y \in Q \rangle;$
- 3. $M(Q,\circ) = \langle L_x^{(\cdot)}\psi, R_y^{(\cdot)}\varphi | x, y \in Q \rangle = \langle L_x^{(\cdot)-1}L_y^{(\cdot)}, R_u^{(\cdot)-1}R_v^{(\cdot)} | x, y, u, v \in Q \rangle;$ 4. If $\psi \in Aut(Q,\circ)$ then $LM(Q,\circ) \lhd LM(Q,\cdot);$
- 5. If $\psi \in Aut(Q,\circ)$ then $RM(Q,\circ) \lhd RM(Q,\cdot)$;
- 6. If $\psi \in Aut(Q,\circ)$ then $M(Q,\circ) \lhd M(Q,\cdot)$;

Let (Q, \cdot) be a quasigroup and $x \in Q$, will use below the mapping $I_x^{(\cdot)}: Q \to Q$ $I_x^{(\cdot)}(y) = y \setminus x, \forall y \in Q$. Remark that $I_x^{(\cdot)}$ is a bijection, and that $I_x^{(\cdot)-1}(y) = x/y$, $\forall y \in Q$. **Proposition 1.** [8] Let (Q, \cdot) be a quasigroup and $\varphi, \psi \in S_Q$, such that the isostroph (Q, \circ) , where $x \circ y =$

 $\psi(y)\setminus\varphi(x), \forall x, y \in Q$, is a loop. The following statements hold:

- 1. $LM(Q,\circ) = \langle I_x^{(\cdot)} \psi | x \in Q \rangle;$
- 2. $RM(Q,\circ) = \langle L_x^{(\cdot)-1}\varphi | x \in Q \rangle = \langle L_x^{(\cdot)-1}L_y^{(\cdot)} | x, y \in Q \rangle \le LM(Q,\cdot);$
- 3. $M(Q,\circ) = \langle I_x^{(\cdot)}\psi, L_y^{(\cdot)}\varphi|x, y \in Q \rangle = \langle I_x^{(\cdot)}\psi, L_y^{(\cdot)-1}L_z^{(\cdot)}|x, y, z \in Q \rangle;$
- 4. If φ is an automorphism of (Q, \circ) then $RM(Q, \circ) \leq LM(Q, \cdot)$;
- 5. $LM(Q,\cdot) = \langle RM(Q,\circ), \varphi \rangle.$

Corollary 1. [8] If (Q, \circ) is a middle Bol loop and (Q, \cdot) be the corresponding right Bol loop. Then the following equalities are true:

 $RM(Q,\circ) = LM(Q,\cdot).$

Proposition 2. Let (Q,\cdot) be a quasigroup and $\varphi, \psi \in S_Q$ such that the isostroph (Q,\circ) , where $x \circ y =$ $\varphi(x)/\psi(y), \forall x, y \in Q$, is a loop. The following statements hold:

- 1. $LM(Q,\circ) = \langle I_x^{(\cdot)-1}\psi | x \in Q \rangle;$
- 2. $RM(Q,\circ) = \langle R_{\gamma}^{(\cdot)-1}\varphi | y \in Q \rangle = \langle R_{\gamma}^{(\cdot)-1}R_{x}^{(\cdot)} | x, y \in Q \rangle \le RM(Q,\cdot);$
- 3. $M(Q,\circ) = \langle I_x^{(\cdot)-1}\psi, R_y^{(\cdot)-1}\varphi | x, y \in Q \rangle = \langle I_x^{(\cdot)-1}\psi, R_y^{(\cdot)-1}R_z^{(\cdot)} | x, y, z \in Q \rangle;$ 4. $RM(Q,\circ) \lhd RM(Q,\cdot), \text{ if } \varphi \text{ is an automorphism of } (Q,\circ);$
- 5. $RM(Q, \cdot) = \langle RM(Q, \circ), \varphi \rangle.$

Proof. 1. According to the definition, $x \circ y = \varphi(x)/\psi(y)$, which implies $L_x^{(\circ)}(y) = I_{\varphi(x)}^{(\circ)-1}\psi(y)$, so $LM(Q,\circ) = \langle I_{\varphi(x)}^{(\cdot)-1}\psi | x \in Q \rangle.$

2. Let $e \in Q$ be the unit of the loop (Q, \circ) . Then $x = x \circ e = \varphi(x)/\psi(e) \Rightarrow \varphi(x) = x \cdot \psi(e)$ so $R_{\psi(e)}^{(\cdot)}(x) = \varphi(x), \, \forall x \in Q, \text{i.e } \varphi = R_{\psi(e)}^{(\cdot)}$.

Revistă științifică a Universității de Stat din Moldova, 2014, nr.7(77)

Hence, from $x \circ y = \varphi(x)/\psi(y)$ follows $R_y^{(\circ)}(x) = R_{\psi(y)}^{(\cdot)-1}\varphi(x), \forall x \in Q$, so on the other hand $R_y^{(\circ)} = R_{\psi(y)}^{(\cdot)-1}\varphi = R_{\psi(y)}^{(\cdot)-1}R_{\psi(e)}^{(\cdot)}$. In particular, we get that, for $\forall y \in Q$, the following equality holds:

$$R_{y}^{(\cdot)-1} = R_{\psi^{-1}(y)}^{(\circ)} \varphi^{-1} .$$
⁽⁷⁾

(6)

Using (6), we have:

 $RM(Q, \circ) = \langle R_y^{(\circ)} | y \in Q \rangle = \langle R_x^{(\cdot)-1} \varphi | x \in Q \rangle \subseteq \langle R_x^{(\cdot)-1} R_y^{(\cdot)} | x, y \in Q \rangle.$ On the oth

biner hand,

$$R_{x}^{(\cdot)-1}R_{y}^{(\cdot)} = R_{\psi(\psi^{-1}(x))}^{(\cdot)}R_{\psi(e)}^{(\cdot)}R_{\psi(e)}^{(\cdot)-1}R_{\psi(\psi^{-1}(y))}^{(\cdot)} = R_{\psi^{-1}(x)}^{(\circ)}R_{\psi^{-1}(y)}^{(\circ)-1} \in RM(Q,\circ),$$
so

$$RM(Q,\circ) = \langle R_{x}^{(\cdot)-1}R_{y}^{(\cdot)} | x, y \in Q \rangle.$$

3. Follows from 1 and 2.

4. Let φ be an automorphism of (Q, \circ) , then $\varphi(x \circ y) = \varphi(x) \circ \varphi(y)$, for every $x, y \in Q$, so $\varphi R_y^{(\circ)}(x) = \varphi(x) \circ \varphi(y)$. $R_{\alpha(y)}^{(\circ)}\varphi(x)$, $\forall x \in Q$, hence $\varphi R_{y}^{(\circ)} = R_{\alpha(y)}^{(\circ)}\varphi$, $\forall y \in Q$, and

$$\varphi R_{y}^{(\circ)} \varphi^{-1} = R_{\varphi(y)}^{(\circ)}, \tag{8}$$

for every $y \in Q$. Using (7) and (8), let's show that for every $R_x^{(\cdot)} \in RM(Q, \cdot)$ and every $R_y^{(\circ)} \in RM(Q, \circ)$, we have $R_x^{(\cdot)} R_y^{(\circ)} R_x^{(\cdot)-1} \in RM(Q, \circ)$:

$$R_{x}^{(\circ)}R_{y}^{(\circ)}R_{x}^{(\circ)-1} = \varphi R_{\psi^{-1}(x)}^{(\circ)-1}R_{y}^{(\circ)}R_{\psi^{-1}(x)}^{(\circ)}\varphi^{-1} = \varphi R_{\psi^{-1}(x)}^{(\circ)-1}\varphi^{-1}\varphi R_{y}^{(\circ)}\varphi^{-1}\varphi R_{\psi^{-1}(x)}^{(\circ)}\varphi^{-1} = R_{\varphi(\psi^{-1}(x))}^{(\circ)}R_{\varphi(y)}^{(\circ)}R_{\varphi(\psi^{-1}(x))}^{(\circ)} \in RM(Q, \circ).$$

Analogously, using (7) and (8) we'll prove that $R_x^{(\cdot)-1}R_y^{(\circ)}R_x^{(\cdot)} \in RM(Q,\circ)$:

$$R_{x}^{(\cdot)-1}R_{y}^{(\circ)}R_{x}^{(\cdot)} = R_{\psi^{-1}(x)}^{(\circ)}\varphi^{-1}R_{y}^{(\circ)}\varphi R_{\psi^{-1}(x)}^{(\circ)-1} = R_{\psi^{-1}(x)}^{(\circ)-1}R_{\varphi^{-1}(y)}^{(\circ)}R_{\psi^{-1}(x)}^{(\circ)} \in RM(Q, \circ).$$

So as

$$R_{x}^{(\cdot)}R_{y}^{(\circ)-1}R_{x}^{(\cdot)-1} = \left(R_{x}^{(\cdot)}R_{y}^{(\circ)}R_{x}^{(\cdot)-1}\right)^{-1} = \left(R_{\varphi(\psi^{-1}(x))}^{(\circ)-1}R_{\varphi(y)}^{(\circ)}R_{\varphi(\psi^{-1}(x))}^{(\circ)}\right)^{-1} \in RM(Q, \circ)$$

and

$$R_{x}^{(\circ)-1}R_{y}^{(\circ)-1}R_{x}^{(\circ)} = \left(L_{x}^{(\circ)-1}R_{y}^{(\circ)}L_{x}^{(\circ)}\right)^{-1} = \left(R_{\psi^{-1}(x)}^{(\circ)-1}R_{\varphi^{-1}(y)}^{(\circ)}R_{\psi^{-1}(x)}^{(\circ)}\right)^{-1} \in RM(Q, \circ),$$

we get that: $\delta R_y^{(\circ)} \delta^{-1}$, $\delta^{-1} R_y^{(\circ)} \delta$, $\delta R_y^{(\circ)-1} \delta^{-1}$, $\delta^{-1} R_y^{(\circ)-1} \delta \in RM(Q, \circ)$, $\forall \delta \in RM(Q, \cdot)$. So, we proved that $RM(Q,\circ) \lhd RM(Q,\cdot).$

5. Using (7), we have $R_y^{(\cdot)} = \varphi R_{\psi^{-1}(y)}^{(\circ)-1} \in \langle RM(Q,\circ), \varphi \rangle$, so $RM(Q,\cdot) \subseteq \langle RM(Q,\circ), \varphi \rangle$. So as $\varphi = R_{\psi(e)}^{(\cdot)} \in \langle R_x^{(\cdot)} | x \in Q \rangle$ (see the proof of 2.) and $R_x^{(\circ)} = R_{\psi(x)}^{(\cdot)-1} R_{\psi(e)}^{(\cdot)} \in \langle R_x^{(\cdot)} | x \in Q \rangle$, we get that $\langle RM(Q,\circ), \varphi \rangle \subseteq \langle R_x^{(\cdot)} | x \in Q \rangle$. $RM(Q,\cdot)$, so $RM(Q,\cdot) = \langle RM(Q,\circ), \varphi \rangle$. \Box

Corollary 2. Let (Q, \circ) be a middle Bol loop, and let (Q, \cdot) be the corresponding left Bol loop. Then $RM(Q,\circ) = RM(Q,\cdot).$

Proof. According to (4) $x \cdot y = x//y^{-1} = x//I(y)$, for every $x, y \in Q$, where $I: Q \to Q, I(x) = x^{-1}$. From the Proposition 2, p. 2, for $\varphi = \varepsilon$, and $\psi = I$, we obtain $RM(Q, \circ) = \langle R_{\gamma}^{(\cdot)-1} | \gamma \in Q \rangle = RM(Q, \cdot)$. \Box **Proposition 3.** Let (Q, \cdot) be a quasigroup and $\varphi, \psi \in S_Q$, such that the isostroph (Q, \circ) , where $x \circ y =$ $\varphi(x) \setminus \psi(y), \forall x, y \in Q$, is a loop. The following statements hold:

- 1. $RM(Q,\circ) = \langle I_y^{(\circ)} \varphi | y \in Q \rangle;$ 2. $LM(Q,\circ) = \langle L_y^{(\circ)-1} \psi | y \in Q \rangle = \langle L_x^{(\circ)-1} L_y^{(\circ)} | x, y \in Q \rangle \le LM(Q,\circ);$ 3. $M(Q,\circ) = \langle I_y^{(\circ)} \varphi, L_x^{(\circ)-1} \psi | x, y \in Q \rangle = \langle I_z^{(\circ)} \varphi, L_x^{(\circ)-1} L_y^{(\circ)} | x, y, z \in Q \rangle;$
- 4. If ψ is an automorphism of (Q, \circ) then $LM(Q, \circ) \lhd LM(Q, \cdot)$;
- 5. $LM(Q, \cdot) = \langle LM(Q, \circ), \psi \rangle.$

Proof. 1. By the definition, $\circ y = \varphi(x) \setminus \psi(y)$, which implies $R_y^{(\circ)}(x) = I_{\psi(y)}^{(\cdot)} \varphi(x)$, so $RM(Q, \circ) = I_{\psi(y)}^{(\cdot)} \varphi(x)$. $\langle I_{\psi(y)}^{(\cdot)}\varphi|y\in Q\rangle.$

2. Let $e \in Q$ be the unit of the loop (Q, \circ) . Then $y = e \circ y = \varphi(e) \setminus \psi(y) \Rightarrow \psi(y) = \varphi(e) \cdot y$ so $L_{\varphi(e)}^{(\cdot)}(y) = \psi(y), \forall y \in Q, \text{ i.e. } \psi = L_{\varphi(e)}^{(\cdot)}.$ Hence, from $x \circ y = \varphi(x) \setminus \psi(y)$ follows $L_x^{(\circ)}(y) = L_{\varphi(x)}^{(\cdot)-1} \psi(y),$ $\forall x \in Q$, which implies

$$L_x^{(\circ)}(y) = L_{\varphi(x)}^{(\circ)-1} \psi = L_{\varphi(x)}^{(\circ)-1} L_{\varphi(e)}^{(\circ)}.$$
(9)

In particular, we get that, for $x \in Q$, the following equality holds:

$$L_x^{(\cdot)-1} = L_{\varphi^{-1}(x)}^{(\circ)} \psi^{-1} .$$
⁽¹⁰⁾

Using (9) and the equality $\psi = L_{\varphi(e)}^{(\cdot)}$ we have:

 $LM(Q, \circ) = \langle L_{\mathcal{V}}^{(\circ)} | y \in Q \rangle = \langle L_{\mathcal{V}}^{(\cdot)-1} \psi | y \in Q \rangle \subseteq \langle L_{x}^{(\cdot)-1} L_{\mathcal{V}}^{(\cdot)} | x, y \in Q \rangle.$ On the other hand,

 $L_{x}^{(\cdot)-1}L_{y}^{(\cdot)} = L_{\varphi(\varphi^{-1}(x))}^{(\cdot)}L_{\varphi(e)}^{(\cdot)}L_{\varphi(e)}^{(\cdot)-1}L_{\varphi(\varphi^{-1}(y))}^{(\cdot)} = L_{\varphi^{-1}(x)}^{(\circ)}L_{\varphi^{-1}(y)}^{(\circ)-1} \in LM(Q, \circ),$

 $LM(Q,\circ) = \langle L_x^{(\cdot)-1} L_y^{(\cdot)} | x, y \in Q \rangle.$ 3. Follows from 1. and 2.

4. Let ψ be an automorphism of (Q, \circ) , then $\psi(x \circ y) = \psi(x) \circ \psi(y)$, for every $x, y \in Q$. The last equality implies: $L_x^{(\circ)}(y) = L_{\psi(x)}^{(\circ)}\psi(y)$, $\forall x \in Q$, hence $\psi L_x^{(\circ)} = L_{\psi(x)}^{(\circ)}\psi$, $\forall x \in Q$, and $\psi L_x^{(\circ)}\psi^{-1} = L_{\psi(x)}^{(\circ)}$ (11)

for every $x \in Q$. Using (10) and (11), let's show that for every $L_x^{(\cdot)} \in LM(Q, \cdot)$ and $L_y^{(\circ)} \in LM(Q, \circ)$, to show that $L_{\nu}^{(\cdot)}L_{\nu}^{(\circ)}L_{\nu}^{(\cdot)-1} \in LM(Q,\circ)$:

$$L_{x}^{(\circ)}L_{y}^{(\circ)}L_{x}^{(\circ)-1} = \psi L_{\varphi^{-1}(x)}^{(\circ)-1}L_{y}^{(\circ)}L_{\varphi^{-1}(x)}^{(\circ)}\psi^{-1} = \psi L_{\varphi^{-1}(x)}^{(\circ)-1}\psi^{-1}\psi L_{y}^{(\circ)}L_{\varphi^{-1}(x)}^{(\circ)}\psi^{-1}\psi^{-1} = L_{\psi(\varphi^{-1}(x))}^{(\circ)}L_{\psi(x)}^{(\circ)}L_{\psi(\varphi^{-1}(x))}^{(\circ)} \in LM(Q, \circ).$$

Analogously, using (10) and (11) we'll prove that $L_x^{(\cdot)-1}L_y^{(\circ)}L_x^{(\cdot)} \in LM(Q,\circ)$: $L_x^{(\cdot)-1}L_y^{(\circ)}L_x^{(\circ)} = L_{\varphi^{-1}(x)}^{(\circ)}\psi^{-1}L_y^{(\circ)}\psi L_{\varphi^{-1}(x)}^{(\circ)-1} = L_{\varphi^{-1}(x)}^{(\circ)}L_{\varphi^{-1}(y)}^{(\circ)}L_{\varphi^{-1}(x)}^{(\circ)-1} \in RM(Q,\circ).$ So as

$$L_x^{(\cdot)} L_y^{(\circ)-1} L_x^{(\cdot)-1} = \left(L_x^{(\cdot)} L_y^{(\circ)} L_x^{(\circ)-1} \right)^{-1} = \left(L_{\psi(\varphi^{-1}(x))}^{(\circ)-1} L_{\psi(x)}^{(\circ)} L_{\psi(\varphi^{-1}(x))}^{(\circ)} \right)^{-1} \in LM(Q, \circ)$$

 $L_{x}^{(\cdot)-1}L_{y}^{(\circ)-1}L_{x}^{(\cdot)} = \left(L_{x}^{(\cdot)-1}L_{y}^{(\circ)}L_{x}^{(\cdot)}\right)^{-1} = \left(L_{\varphi^{-1}(x)}^{(\circ)}L_{\varphi^{-1}(y)}^{(\circ)}L_{\varphi^{-1}(x)}^{(\circ)-1}\right)^{-1} \in LM(Q, \circ).$ We get: $\delta L_{y}^{(\circ)}\delta^{-1}, \, \delta^{-1}L_{y}^{(\circ)}\delta, \, \delta L_{y}^{(\circ)-1}\delta^{-1}, \, \delta^{-1}L_{y}^{(\circ)-1}\delta \in LM(Q, \circ), \, \forall \delta \in LM(Q, \cdot); \, LM(Q, \circ) \trianglelefteq LM(Q, \cdot).$ 5. Follows from 2. . □

Proposition 4. Let (Q, \cdot) be a quasigroup and $\varphi, \psi \in S_Q$ such that the isostroph (Q, \circ) , where $x \circ y =$ $\psi(y)/\varphi(x), \forall x, y \in Q$, is a loop. The following statements hold:

1. $RM(Q,\circ) = \langle I_{\gamma}^{(\cdot)-1}\varphi | \gamma \in Q \rangle;$ 2. $LM(Q,\circ) = \langle R_y^{(\cdot)-1}\psi | y \in Q \rangle = \langle R_y^{(\cdot)-1}R_z^{(\cdot)} | y, z \in Q \rangle \le RM(Q,\cdot);$ 3. $M(Q,\circ) = \langle I_y^{(\cdot)-1}\varphi, R_x^{(\cdot)-1}\psi | x, y \in Q \rangle = \langle I_z^{(\cdot)-1}\varphi, R_x^{(\cdot)-1}R_y^{(\cdot)} | x, y, z \in Q \rangle;$ 4. If ψ is an automorphism of then $(Q, \circ)LM(Q, \circ) \lhd RM(Q, \cdot);$ 5. $RM(Q,\cdot) = \langle LM(Q,\circ), \psi \rangle.$

Proof. 1. According to the definition $x \circ y = \psi(y)/\varphi(x)$, which implies $R_y^{(\circ)}(x) = I_{\psi(y)}^{(\circ)-1}\varphi(x)$, so obtain $RM(Q,\circ) = \langle I_{\psi(y)}^{(\cdot)-1}\varphi | y \in Q \rangle.$

2. Let $e \in Q$ be the unit of the loop (Q,\circ) . Then $y = e \circ y = \psi(y)/\varphi(e) \Rightarrow \psi(y) = y \cdot \varphi(e) \Rightarrow R_{\varphi(e)}^{(\cdot)}(y) = \psi(y), \forall y \in Q$, i.e $\psi = R_{\varphi(e)}^{(\cdot)}$. Hence, from $x \circ y = \psi(y)/\varphi(x)$ follows $L_x^{(\circ)}(y) = R_{\varphi(x)}^{(\cdot)-1}\psi(y)$, $\forall x, y \in Q$, which implies

$$L_{x}^{(\circ)}(y) = R_{\varphi(x)}^{(\circ)-1}\psi = R_{\varphi(x)}^{(\circ)-1}R_{\varphi(e)}^{(\circ)}.$$
(12)

Revistă științifică a Universității de Stat din Moldova, 2014, nr.7(77)

In particular, we get that, for $x \in Q$, the following equality holds:

$$R_{\chi}^{(\cdot)-1} = L_{\varphi^{-1}(\chi)}^{(\circ)} \psi^{-1} .$$
(13)

Using (12), we have:

$$LM(Q,\circ) = \langle L_y^{(\circ)} | y \in Q \rangle = \langle R_y^{(\cdot)-1} \psi | y \in Q \rangle \subseteq \langle R_x^{(\cdot)-1} R_y^{(\cdot)} | x, y \in Q \rangle.$$

On the other hand,

$$R_{x}^{(\cdot)-1}R_{y}^{(\cdot)} = R_{\varphi(\varphi^{-1}(x))}^{(\cdot)-1}R_{\varphi(e)}^{(\cdot)}R_{\varphi(e)}^{(\cdot)-1}R_{\varphi(\varphi^{-1}(y))}^{(\cdot)} = L_{\varphi^{-1}(x)}^{(\circ)}L_{\varphi^{-1}(y)}^{(\circ)-1} \in LM(Q, \circ)$$

so

$$LM(Q,\circ) = \langle R_x^{(\cdot)-1} R_y^{(\cdot)} | x, y \in Q \rangle.$$

3. Follows from 1 and 2.

4. Let ψ be an automorphism of (Q, \circ) , using (13) and (11), let's show that for every $R_x^{(\cdot)} \in LM(Q, \cdot)$ and every $L_y^{(\circ)} \in RM(Q, \circ)$, we have $R_x^{(\cdot)} L_y^{(\circ)} R_x^{(\cdot)-1} \in LM(Q, \circ)$:

$$R_{x}^{(\cdot)}L_{y}^{(\circ)}R_{x}^{(\cdot)-1} = \psi L_{\varphi^{-1}(x)}^{(\circ)-1}L_{y}^{(\circ)}L_{\varphi^{-1}(x)}^{(\circ)}\psi^{-1} = \psi L_{\varphi^{-1}(x)}^{(\circ)-1}\psi^{-1}\psi L_{y}^{(\circ)}\psi^{-1}\psi L_{\varphi^{-1}(x)}^{(\circ)}\psi^{-1} = L_{\varphi^{-1}(x)}^{(\circ)$$

 $= L_{\psi(\varphi^{-1}(x))}^{(\circ)-1} L_{\psi(x)}^{(\circ)} L_{\psi(\varphi^{-1}(x))}^{(\circ)} \in LM(Q, \circ).$

Analogously, using (13) and (11) we'll prove that $R_x^{(\cdot)} L_y^{(\circ)} R_x^{(\cdot)-1} \in LM(Q, \circ)$:

$$R_{x}^{(\circ)-1}L_{y}^{(\circ)}R_{x}^{(\cdot)} = L_{\varphi^{-1}(x)}^{(\circ)}\psi^{-1}L_{y}^{(\circ)}\psi L_{\varphi^{-1}(x)}^{(\circ)-1} = L_{\varphi^{-1}(x)}^{(\circ)}L_{\psi^{-1}(y)}^{(\circ)}L_{\varphi^{-1}(x)}^{(\circ)-1} \in LM(Q, \circ).$$

So as

$$R_x^{(\cdot)}L_y^{(\circ)-1}R_x^{(\cdot)-1} = \left(R_x^{(\cdot)}L_y^{(\circ)}R_x^{(\cdot)-1}\right)^{-1} = \left(L_{\psi(\varphi^{-1}(x))}^{(\circ)}L_{\psi(x)}^{(\circ)}L_{\psi(\varphi^{-1}(x))}^{(\circ)}\right)^{-1} \in LM(Q,\circ)$$

and

$$R_{x}^{(\cdot)-1}L_{y}^{(\circ)-1}R_{x}^{(\cdot)} = \left(R_{x}^{(\cdot)-1}L_{y}^{(\circ)-1}R_{x}^{(\cdot)}\right)^{-1} = \left(L_{\varphi^{-1}(x)}^{(\circ)}L_{\psi^{-1}(y)}^{(\circ)}L_{\varphi^{-1}(x)}^{(\circ)-1}\right)^{-1} \in LM(Q,\circ),$$

we get that: $\delta L_y^{(\circ)} \delta^{-1}$, $\delta^{-1} L_y^{(\circ)} \delta$, $\delta L_y^{(\circ)-1} \delta^{-1}$, $\delta^{-1} L_y^{(\circ)-1} \delta \in LM(Q, \circ)$, $\forall \delta \in LM(Q, \cdot)$, i.e. we proved that $LM(Q, \circ) \triangleleft RM(Q, \cdot)$.

Follows from 2. \Box

Let (Q,\cdot) be a quaigroup $h \in Q$. The set $M(Q,\cdot)_h = \{\varphi \in M(Q,\cdot) | \varphi(h) = h\}$, i.e. the stabilizer of h in $M(Q,\cdot)$, is called the group of inner mappings, with respect to h, of (Q,\cdot) , and will be denoted by $I_h^{(\cdot)}$. Below we'll use also the notations

 $RM(Q,\cdot)_h = \{\varphi \in RM(Q,\cdot) | \varphi(h) = h\}$ for the stabilizer of h in $RM(Q,\cdot)$ and

 $(LM)_h^{(\cdot)} = \{\varphi \in LM(Q, \cdot) | \varphi(h) = h\}$ for the stabilizer of h in $LM(Q, \cdot)$.

Proposition 5. Let (Q,\cdot) be a quasigroup, $h \in Q$ and $\varphi, \psi \in S_Q$. If (Q,\circ) is isostroph of (Q,\cdot) given by the isostrophy $\circ y = \psi(y) \setminus \varphi(x)$, $\forall x, y \in Q$, then $RM(Q,\circ)_h = RM(Q,\circ) \cap LM(Q,\cdot)_h$. *Proof.* Let $\alpha \in RM(Q,\circ)_h$. Using Proposition 1 we get

$$\alpha \in RM(Q, \circ) \leq LM(Q, \cdot)$$
 and $\alpha(h) = h$,

so $\alpha \in RM(Q, \circ) \cap LM(Q, \cdot)_h$ i. e.

$$RM(Q,\circ)_h \subseteq RM(Q,\circ) \cap LM(Q,\cdot)_h.$$
⁽¹⁴⁾

Conversely, if $\alpha \in RM(Q,\circ) \cap LM(Q,\cdot)_h$, then $\alpha \in RM(Q,\circ)$ and $\alpha(h) = h$, i. e. $RM(Q,\circ) \cap LM(Q,\cdot)_h \subseteq RM(Q,\circ)_h.$ (15)

From (14) and (15) follows the equality $RM(Q,\circ)_h = RM(Q,\circ) \cap LM(Q,\cdot)_h$. **Corollary 3.** Let (Q,\cdot) be a right Bol loop and let (Q,\circ) be the corresponding middle Bol loop of (Q,\cdot) . Then, for every $h \in Q$, the following equality holds

$$RM(Q,\circ)_h = LM(Q,\cdot)_h$$

Proof. The proof follows from Corollary 1 and Proposition 5.

Proposition 6. Let (Q,\cdot) be a quasigroup, $h \in Q$ and $\varphi, \psi \in S_Q$. If (Q,\circ) is the isostroph of (Q,\cdot) given by $x \circ y = \varphi(x) / \psi(y), x, y \in Q$, then $RM(Q,\circ)_h = RM(Q,\circ) \cap RM(Q,\cdot)_h$. *Proof.* Let $RM(Q,\circ)_h$. Using Proposition 2 we get

$$\alpha \in RM(Q, \circ) \leq RM(Q, \cdot)$$
 and $\alpha(h) = h$,

so $\alpha \in RM(Q, \circ) \cap RM(Q, \cdot)_h$, i. e.

Matematică

$$RM(0,\circ)_h \subseteq RM(0,\circ) \cap LM(0,\cdot)_h. \tag{16}$$

Conversely, if $\alpha \in RM(Q, \circ) \cap RM(Q, \cdot)_h$, then $\alpha \in RM(Q, \circ)$ and $\alpha(h) = h$ i. e.

$$RM(Q,\circ) \cap RM(Q,\cdot)_h \subseteq RM(Q,\circ)_h. \tag{17}$$

From (16) and (17) follows the equality $RM(Q,\circ)_h = RM(Q,\circ) \cap RM(Q,\cdot)_h$. \Box **Corollary 4.** If (Q, \cdot) is a left Bol loop and (Q, \circ) is the corresponding middle Bol loop of (Q, \cdot) then

$$(RM)_h^{(\circ)} = (RM)_h^{(\cdot)}$$

Proof. The proof follows from Corollary 1 and Proposition 5. \Box **Proposition 7.** Let (Q, \cdot) be a quasigroup, $h \in Q$ and $\varphi, \psi \in S_Q$. If (Q, \circ) is the isostroph of (Q, \cdot) given by $x \circ y = \varphi(x) \setminus \psi(y), \forall x, y \in Q$, then $LM(Q, \circ)_h = LM(Q, \circ) \cap LM(Q, \cdot)_h$. *Proof.* Let $\alpha \in LM(Q, \circ)_h$. Using Proposition 3, we get: $\alpha \in LM(Q, \circ) < LM(Q, \circ) <$

$$\alpha \in LM(Q, \circ) \leq LM(Q, \cdot) \text{ and } \alpha(h) = h,$$

so
$$\alpha \in LM(Q, \circ) \cap LM(Q, \cdot)_h$$
, i. e.

$$LM(Q,\circ)_h \subseteq LM(Q,\circ) \cap LM(Q,\cdot)_h.$$
⁽¹⁸⁾

Conversely, if
$$\alpha \in LM(Q, \circ) \cap LM(Q, \cdot)_h$$
, then $\alpha \in LM(Q, \circ)$ and $\alpha(h) = h$ i. e.
 $LM(Q, \circ) \cap LM(Q, \cdot)_h \subseteq LM(Q, \circ)_h.$
(19)

From (18) and (19) follows the equality $LM(Q,\circ)_h = LM(Q,\circ) \cap LM(Q,\cdot)_h$. \Box **Proposition 8.** Let (Q, \cdot) be a quasigroup, $h \in Q$ and $\varphi, \psi \in S_Q$. If (Q, \circ) is isostroph of (Q, \cdot) given by the isostrophy $x \circ y = \psi(y)/\varphi(x)$, $\forall x, y \in Q$, then $LM(Q, \circ)_h = LM(Q, \circ) \cap RM(Q, \cdot)_h$. Р

Proof. Let
$$\alpha \in LM(Q, \circ)_h$$
. Using Proposition 4 we get:

$$\alpha \in LM(Q, \circ) \leq RM(Q, \cdot)$$
 and $\alpha(h) = h$,

so
$$\alpha \in LM(Q, \circ) \cap RM(Q, \cdot)_h$$
. i e

$$LM(Q,\circ)_h \subseteq LM(Q,\circ) \cap RM(Q,\cdot)_h.$$
⁽²⁰⁾

Conversely, if $\alpha \in LM(Q, \circ) \cap RM(Q, \cdot)_h$, then $\alpha \in LM(Q, \circ)$ and $\alpha(h) = h$ i. e. $LM(Q,\circ) \cap RM(Q,\cdot)_h \subseteq LM(Q,\circ)_h.$ (21)

From (20) and (21) follows the equality $LM(Q,\circ)_h = LM(Q,\circ) \cap RM(Q,\cdot)_h$. \Box

Bibliography:

- 1. БЕЛОУСОВ, В. Основы теории квазигруп и луп. Москва: Наука, 1967. 223 р.
- 2. ГВАРАМИА, В. Об одном классе луп. В: Ученые записки МГПИ, 1971, том 378, с.23-24.
- 3. ROBINSON, D.A. Bol loops. In: Trans.Amer.Math.Soc., 1966, vol.123, p.341–354.
- 4. SYRBU, P. On middle Bol loops. In: ROMAI J., 2010, vol.6(2), p.229-236.
- 5. GRECU, I., SYRBU, P. On some isostrophy invariants of Bol loops. In: Bull. Transylv. Univ. Braşov, Ser. C. 2012, vol.5(54), p.145-154.
- 6. PLUGFELDER, H.O. Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, Heldermann, 1990. 145 p.
- 7. SHCHUKIN, K.K. Action of a Group on a Quasigroup, A Special Course. Kishinev: Kishinev State University Press, 1985. (in Russian)
- 8. GRECU, I. On multiplication groups of of isostrophic quasigroups. In: Proceedings of the Third Conference of Mathematical Society of Moldova: IMCS-50, August 19-23, 2014, Chisinau, 2011.

Prezentat la 24.09.2014