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Abstract:

Optimizing completions in deviated and extended reach wells is a key to safe drilling and optimum
production, particularly in complex terrain and formations. This work summarizes the systematic methodology
and engineering process employed to identify and refine the highly effective completions solution used in ERW
completion system and install highly productive and robust hard wares in horizontal and Extended Reach Wells
for Oil and Gas. A case study of an offshore project was presented and discussed. The unique completion design,
pre-project evaluation and the integrated effort undertaken to firstly, minimize completion and formation damage.
Secondly, maximize gravel placement and sand control method .Thirdly, to maximize filter cake removal
efficiencies. The importance of completions technologies was identified and a robust tool was developed .More
importantly, the ways of deploying these tools to achieve optimal performance in ERW’s completions was done.
The application of the whole system will allow existing constraints to be challenged and overcome successfully;
these achievements was possible, by applying sound practical engineering principle and continuous optimization,
with respect to the rig and environmental limitation space and rig capacity.
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I. INTRODUCTION
. Well completion” is a means of installing hard

ware and equipments in the well, to allow a safe
and controlled flow of hydrocarbon from the well,
or it is also said to be a series of activities to
prepare an oil or gas well ready to produce
hydrocarbon to the surface in a safe and controlled
manner. (Hylkema et al, 2003).

Extended Reach Wells are wells that exceeded
some step-out/vertical depth ratio 2:1. However,
for most highly deviated wells in deep water
environment, this definition does not fit. Some
method has evolved to categories wells according to
their step out within different vertical depth ranges.

(Brady, et al, 2000). ERD wells then can be

described conveniently as shallow, intermediate
deep and ultra deep. Other variants are associated
with operating in deep water and high pressure and
high temperature environment. Currently there is no
generally accepted ERW well deformation the
current limitation for ERWs and UDWs is
approximately 40,000st MD. Maersk oil currently
has the longest shallow ERW. Exxon Mobil has the
longest intermediate ERW and GNPP Nedra has the
longest UDWs.(Sonowal, et al, 2009).

IL.WELL COMPLETIONS
The selection of which system to use is depends on
many factors. Firstly,whether the well is to be a

producer or an injector. Oil, gas and water can be
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produced; including;water, steam and waste
products - such as carbon dioxide and sulphur - can
be injected. More than one purpose can be present,
and the number of possibilities is thus large.
Completions are often split into two groups namely;
(1) Reservoir or lower completion

(2) Upper completion.

The lower completion is the connection between the
reservoir and the well. The upper completion is the
conduit from reservoir completion to surface
facilities. The major decisions that needs to be
made in regards to reservoir completion are namely ;
open hole versus cased hole, sand control
requirement and type of sand control, stimulation
and single or multi-zone. Choices for upper
completions; artificial lift and type, tubing size,
single or dual completion and tubing isolation,

packer or equivalent ( Fitnawan, et al 2009).

III. LOWERSECTION COMPLETION
OPTIMIZATION OF WELL UNIPORT U-
XXX

The lower completion optimization design was
quite straight forward. It was agreed to run the 6’
BHA along with the bit and scrapper. Installation of
the Reglink Screen Assy follows up immediately
before setting the CompSET packer II. In order to
ensure the reliability of the CompSET packer II in
of
determined that CompSET packer II be tested

terms its designed functionality, it was
before cleaning the wellbore. An overall designed
process flow diagram of this process is attached on

Appendix B.

IV. UPPER SECTION COMPLETION
OPTIMIZATION OF WELL UNIPORT U-
XXX

For the upper completion the process flow diagram

was quite complicated. First, based on the
horizontal hole profile; it was agreed to wear
head watch before the

bushings and wear

deployment of the 32l " upper completion string.

This is immediately followed by spacing out
completion string before it is landed and pressure
tested on position to ensure its integrity. If it passes
the test, then the BOP must be removed from the
wellhead order wise the completion string must be
spaced out, re run and tested. After the BOP has
been removed, the Xmas must be run, tested and
secured in position in order to ensure the well
integrity, once completion process is achieved.
Similarly an overall designed process flow diagram
of this process is attached on Appendix D. In order
to fully understand the theoretical aspect of this
developed proposed optimized horizontal well
completion plan, a mathematic model was
developed to function as a real time diagnostic tool

on site. This is detailed in the following section.

V. COMPUTER (SOFTWARE) MODEL
DEVELOPMENT

Complete-Smart software is developed for the
horizontal and extended reach well completion
operation for optimum well delivery. It contains
which include: Circulation

several modules

modeling, Pump output modeling, Packer setting
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and spacing out etc. Complete-Smart software was
developed from the platform of Microsoft Visual
Basic.Net. It uses the basis of Visual Basic (VB)
Programming Language. It has the advantage of
easy to use and very simple analysis. It can be
applied by engineers in the oil and gas industry and
those in other industry outside oil and gas. It can
easily be upgraded and updated and has the
flexibility of being

re-designed for special

operations should a customized operation is
required. It’s simple analytical method is intriguing
and you don’t have to click too many buttons before
getting the required result. The flow chart for the
model development of Complete-Smart software,

the lower and upper completion workflow are

shown in the Appendix A, B and C

VI.MODELING HYDRO TRIP
FUNCTIONALITY

The chasing pressure, Shearing efficiency and the
travelling velocity including all forces acting on the
hydro tri sub ball could be modelled. These
includes: Up trust, gravity due to its own weight,
buoyancy and the shearing force applied.

The advantage of this model is that it is used as a
Tempory tubing plug for setting hydraulically
actuated packers in single and dual well
completions. It can be run at any location in the
tubing string, has the features of full tubing ID ater
shearing, one body joint with antitorque locking
shaer value reliable shear

screws, adjustable

mechanism, and allows circulation prior to
dropping ball.
VII. CASESTUDY

The Uniport North 55ST is located in the eastern
part of the Niger Delta. The field was discovered in
October 1963 by exploratory well Uniport North 01
to date. The field has been developed by 55 wells
with a total of 98 drainage points oil production
from the field commenced in October 1955. A total
of thirty seven hydrocarbon bearing reservoir has
been penetrated in the field which lies within the
paralic sequence between 6,000 fss and 10,000 fss.

The field contains 59 oil bearing and 11 gas bearing
reservoir. The main objective of the Uniport north
55ST well completion phase was to drill the
horizontal section and install a sand control system
that will be stand alone and horizontal oil producer
on the C9000A, sand with 3-1/2 HCS producing
string. Install 3-1/2 TRSCSSSV and PDHS for
safety and well surveillance respectively as well as

gas lift mandrel for future artificial lifting.

Summary of Rig Specification
Tablel.: Rig Specification

Rig Contractor KCA Deutag
Rig Name T-76

Rig Type National 1320
Clear Height of Mast 1421t

Max. Static Hook Load 454 tons

Draw works
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TDS 95
9.06m

Top Drive System
RKB / GL

VIII. DISCUSSION OF CASE STUDY

Using the developed model the pore pressure and
fracture gradient profile was used to determine the
casing setting depth, burst and collapse criteria
design and in the final selection of the available
casing.

The simulation was based on the principle of Monte
Carlo probabilistic method. Figure 2 shows the
probability frequency distribution of every reservoir
pressure class within the reservoir system. The
probability that any of the class center lies between
the minimum and maximum value can then be
computer. For instance, the probability that the
reservoir pressure is less than equal to 5500Psi is
91.98%. This provides a very strong confidence
level.

, The casing pressure was recorded at 100Psi while
the spike pressure after the ball had shear was
recorded at the surface as 3961Psi.

The torque, drag and over pull for the operation is
presented in (Figure 5). While the pump pressure
was calculated as 2950psi as seen in (Figure 3)

The tubular displacement volume was 0.00652 bbl
while the total weight of string and other down hole
equipments along the vertical section of the hole
was calculated as 19.5Ib (Figure 6). This analysis

is vital in order model rotary speed, torque, drag

and over pull during drilling and completion
operations.

The trip time for the completion operation was
calculated to last for a period of 8.31522hr.The
casing string displacement while lowering into the
hole was 0.00652(bbl/ft) and the capacity of the
casing string was calculated as 0.00415(bbl/ft) as
shown in (Figure 7)

The pressure surge and swab were determined as
11.8571ppg and 9.1429ppg respectively. These
pressures are relatively small and manageable and
may be easily controlled to avert any possible

danger of kick (Figure 8) .

IX. PACKERSETTING DEPTH, SPACING

OUT AND SEALS STABBING
The packer setting depth was captured in the model.

If the packer is set too low it may become stuck in
the cement. Generally the packer is set 30 - 50 ft
above the perforations. Sometimes a tail pipe is
used below the packer to ensure that only cement is
squeezed into the perforations, and there is less
chance of setting. However, Bridge plugs are often
set in the wellbore, to isolate zones which are not to
be treated . for his case study , the pup joint to be
POH was calculated as 54.8ft ( figure. 9) which is

enough to prevent leakage of pressures.

X. OPTIMIZATION MODEL

In order to optimize this base result an optimized
model was developed assuming two models. These
models are:

®* Moving Average Model
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e Linear Model

The resultant equation is thus;:

EMA = 0.25PV + 0.75EMA;_1) (See Figure 11)
Where;

EMA = Expected Moving Average ($);

PV = Present Value of money

i-1 = immediate terms before the present vale

The average error of the moving average model is

Er =0.1454.

The resultant equation is thus,
EC9(i) = 43.4624 + [99.0437]ST  (See Figure
12 — Complete Smart model)

Where;

EC = Expected cost ($);

ST = Present Value of money

i-1 = immediate terms before the present value

The average error of the moving average model is

Er = 0.0569.

From the above developed model, critical analysis
of obtained results using both moving and linear
models shows that slick line completion in that
areas will take about 374 hrs (15.58days) while
using hydro trip sub completion technique (slick
less line operation) will only take 212 hrs
(8.83days).

Also, the cost of slick line operation for the 374hrs.
(Was $45,800 while it was $16,800 for hydro trip

operation. The overall advantage of hydro trip

operation was to optimize completion processes

saving 162hrs. (6.75 days) and $ 29000.

XI. CONCLUSION

Completion optimization is a highly technical task
that requires robust energy, skill and equipment in
order to achieve desired objectives. If careful
selection of equipment is carried out, completion
optimization in ERW will be highly efficient and
effective. The performance of the Opukushi North
55ST Oil wells, was optimized by carefully
incorporating the application of the reservoir
drilling fluid with the completion installation fluids

and processed. This method reduced cost, NPT and

completion was optimized

XII.
e Reservoir drilling fluids can and should be

RECOMMENDATIONS

formulated and maintained to minimize the

potential for impairment of both the
formation and the installed completions,
especially for sand control completions.

e Specific limit should be established for the
accumulation of total insoluble solids and
clays with RDF system while drilling.

e RDF additive selection should consider both
drilling functionality and the facilitation of
filter cake removal by chemical treatment

e Performance meters established for

operational processes involve in the drilling

and completion of a reservoir interval
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should be directed toward final well
performance objective.

Ensure proper equipment selection and
QA/QC as priority.

All sub assembly to be for completion

should be pressure tested and charted.

Experience personnel should be sent on
refresher courses on well completions in
order to be fully updated. If all these key
factors are considered, the problem of
extended reach and highly deviated well
completion will be moderately reduced if

not totally eradicated
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Figure 13: Optimize hydro trip operation model
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APPENDIX A : PROCESS FLOW DIAGRAM OF
OPERATION METHODOLOGY
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APPENDIX B- PROCESS FLOW DIAGRAM FOR LOWER

COMPLETION
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APPENDIX C: PROCESS FLOW DIAGRAM OF
COMPLETE SMART SOFTWARE

Operation

Input: Ls, D

P, TVD,AnnCap, etc

,d, spm, Ev, Nc,Q,

A 4
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Output: PO, HHP, MP,
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Pw,

Output: BF, Torgeu, Drag,

Input: L, DisPipe, OD, ID,
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APPENDIX D - PROCESS FLOW DIAGRAM FOR UPPER

COMPLETION SECTION
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