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I. INTRODUCTION 

Group analysis of differential equations is widely used in the study of equations of mathematical physics. This paper 

is of a synthetic nature, being a result of combining Riemann’s method [1] for integrating second-order linear 

hyperbolic equations with Lie’s classification [2] of such equations. One can find in [3] a detailed description of 

known methods of constructing Riemann’s function (called in [3] the Riemann–Green function) for particular types 

of equations. Specifically, six methods are described there. For example, one method has been proposed Hadamard. 

He showed that the function of the Riemann coincides with a coefficient of the logarithmic term in the elementary 

solution of the equation [4]. The group-theoretical approach presented below provides the seventh method. Using 

the results for the group classification of homogeneous hyperbolic equation of the second order, it was suggested to 

find a function of Riemann using the symmetries of the equation.  

II. PRELIMINARIES 

Let’s consider the following hyperbolic equation of the second order: 

04 323  uyxuyuxLu yyxx                      (1) 

in an open domain D , which is bounded by curves of AC ( xy 2 ), CB ( 1yx ) and with the section 

AB ( 1y ). 

Let’s pose the problem of Cauchy: Find in the domain D  function ),( yxu , satisfying the conditions 
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where )(x , )(x − given sufficiently smooth functions. 

With the help of the change of variables xy , 
x

y
  equation (1) leads to the canonical form: 
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To solve the problem we use the method of Riemann, which is based on the following identity: 

 )2()2()(2 * buvuvvuauvuvvuvuLvLu                  (6) 

where 

),(),(),(),(   fucubuauLu  , 

),(),(),(),(   fucubuauLu                  (7) 

cvbvavvvL   )()(*
 − adjoint with Lu  differential operator; G  − domain of integration 

with piecewise-smooth contour  . 

Integrating both sides of (6) in the domain of G and, using the formula of Ostrogradskii, obtain 
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Riemann’s method reduces the problem of integrating the equation (1) to construct an auxiliary Riemann’s function 

),;,( 00 Rv  , that satisfies the homogeneous adjoint equation (the variables  , ): 
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and the following conditions on the characteristics of: 
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The Riemann’s formula in general is for the solution of equation (7) has the form  
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where the double integral is taken over the domain bounded by the characteristics 0   , 0   and the curve 

γ (PQ). The solution of the Goursat problem (8) is unique. 

III. MAIN RESULTS 

In our case, the equation adjoint equation (5) has the form 
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the function of Riemann ),;,( 00 Rv  . Let’s note that in our case the desired function of Riemann 

satisfies the following conditions on the characteristics: 
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The symmetry operator of the homogeneous equation (10) has the form [4]: 
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Thus, as follows from [5], must be done the following relations: 
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Substituting in this case 0a , 
2

1
b , c , we’ll obtain the following relations 
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where 4321 ,,, CCCC − arbitrary constants. Thus, equation (5) in this case allows operators four parameter 

group: 
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Let’s construct a linear combination of these operators 

44332211 XXXXX   , 

where 4321 ,,,  − arbitrary constants. 

Following [6], we require invariance characteristics 0   and 0   regarding construction of the operators: 

)( 0 X =0, 0)( 0 X . 

If we choose 13  , we’ll get 
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  , 02   . Then the resulting operator takes the form 
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Invariants of this operator have the form   2
0

2
01  I , 
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u
I , therefore we’ll seek the 

solution of equation (5) as a function of )()( rgzfR  , where   2
0

2
0  z , 0 r . 

As a result of substitution of R in equation (10), it splits into two ordinary differential equations 
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0)()(2)(2  zfzfzfz , 

0)()()(2 0  rgrgr  . 

The solutions of the obtained equations are functions 
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where  0J  − Besel’s function of the first kind of order zero, C  − an arbitrary constant. 

Then satisfied with the decision )()( rgzfR   of the conditions (6), we obtain the Riemann’s function  
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Substituting in the formula (9) 0a , 
2

1
b , 0f  and, taking into account, that  

)()( 0Pu , 










0

1
)(


Qu , 1,;

1
,)( 00

0
0 








 


RPR , 

00000
0

,;,
1

)( 










 RQR , 

we’ll get 
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Returning to the old variables x and y, we’ll get the solution of the Cauchy’s problem 
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Theorem. If the functions 
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)( 2Cx , then the Cauchy’s problem for equation (1) 

has a unique solution, which is defined by (12). 
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