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Abstract: There are enormous occasions when the methods for finding solutions of integral and integro-

differential equations lead to failure because of difficulty in inverting Laplace transform by standard technique. 

Numerically inverting Laplace transform is cost effective in comparison to rather complicated technique of com-

plex analysis. In the process of numerical inversion, an odd cosine series which is ultimately based on Chebyshev 

polynomial has been used. The adequacy of method is illustrated through numerical examples of convolution type 

linear Volterra integral equations of second kind which include weakly singular Abel's integral equation and Vol-

terra integro-differential equation. 
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I. INTRODUCTION 

Linear Volterra Integral and Integro-Differential equations are extensively used in the various specialties of science 

and engineering. These include mathematical physics, chemical kinetic, heat conduction, seismology, fluid dynam-

ics, biological models, population dynamics, metallurgy and semi-conductors [11, 12 &13].  

The Volterra Integral equation with a convolution kernel is defined by   
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x
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while Volterra Integro-Differential equation by 
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There have been many extant methods for solving Volterra Integral and Integro-Differential equations with convolu-

tion kernels. Wazwaz[12] and Al-Hayani[18] discussed the Adomian polynomial based Laplace Transform methods 

to solve these equations.  Yang[13] proposed a method by which solution is expressed in power series and to im-

prove the convergence rate applied the Pade approximant.  Babolian-Shamloo[7], Aznam-Hussin[17] and Mishra et 

al.[9] used operational matrices of piecewise constant   orthogonal function or Haar wavelet to solve these equations. 

Homotopy perturbation method with finite difference technique was used  by  Raftari[10]  to  solve    Volterra  Inte-

gro-Differential equations. Zarebnia[14] solved these equations using Sinc function. A modified Taylor series 

method has been applied to approximate the solution of linear Integro-Differential equations in [11]. 

1.1  Numerical Inverse Laplace Transform 

The Laplace transform of function is defined by  
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                                                                                                        (3) 
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As usual, the equations are first converted into algebraic equations using Laplace transform. The inverse Laplace 

transform is then applied and the numerical solution is finally expressed in terms of Chebyshev series. 

Applying Laplace transforms on both sides of above equations and then using convolution property in (1) & (2), 

reduce the equations in the form 

  ).()( sFxfL   

The inversion leads to 

)()( 1 sFLxf  . 

Comprehensive literature consists of a number of methods for numerically inverting Laplace transform suited for 
problems in particular situations. For a detailed survey of various    methods for Laplace transform inversion numer-

ically refers to Cohen[2], Davies-Martin[5] and Mishra[16].  Bellman et al. (1966)[1] have outlined a method which 

they derive from the consideration of Gauss-Legendre's quadrature rule. Substituting 0,   tex in [1 & 2], 

)(sF  is transformed from the interval  ,0  to  1,0  as        
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)(sF  can be numerically inverted using Legendre series of 

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0
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k

kk xPxg   by considering )(xg being 

even function in ]1,1[ . This method has slow convergence as the coefficients k decrease slowly due to the sin-

gularity of )(xg at 0x  [1 & 2]. Erdelyi (1943), Papoulis (1956) and Lanczos (1957) have proposed Legendre's 

function to find the approximate value of function )(tf [2, 5, 6, & 8]. In [3] Dubner and Abate (1968) have     ex-

pressed the )(tf  in terms Fourier cosine transforms. Durbin (1974) [4] has proposed the trapezoidal rule by result-

ing approximation.  

1.2  Chebyshev Series based Inversion      

Chebyshev polynomial is due to Panfnuty Chebyshev (b. 1821), a Russian. It is basically a class of orthogonal poly-

nomials. In sixties remarkable development to the theory lead to  computation of function approximations, integrals 

and solution of differential equations using  Chebyshev polynomials, termed as Chebyshev series expansion of a 

function. The range of problems covered includes singular problem and network synthesis [15]. 

Here we propose a technique parallel to Papoulis[6] by making the substitution                 

.0,sin     xe                                                                                                                         (4) 

The interval (0, ∞) transformed into  
2

,0 
 and )(xf  becomes  
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Now eq. (3) takes the form  
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By setting ,)12(  ks   k = 0, 1, 2…, we have 
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Here we assume that   0)0(
2

 fg  . In case this does not hold then arrange it by subtracting a suitable function 

from )(g . The function )(g  can be expanded in  
2

,0   as the odd cosine series  
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and is valid in the interval  .,
22
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Now we have to determine the coefficients k  
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Making substitution
iex  , we find that 
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Substitution of (8) & (9) and using the result of the orthogonality 
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which is the linear system in 0 , 1 , 2 ….. k …. It can be conveniently put in the matrix form  

,ABC                                                                                                                                                                     (12) 

where the matrix C  and the coefficient matrix A can be obtained by putting the values of ,2,1,0k  in LHS 

and RHS of (11) respectively. 
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Thus k can be obtained by solving CAB 1 and hence )(g can be obtained from eq. (7). 

In general, we compute first )1( N terms of eq.(8), that is, the finite series   
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is the Chebyshev polynomial of second kind of degree k
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1.3  Numerical Examples 

Example1 

Consider the weakly singular Volterra integral equation of second kind [12&13] 
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Taking Laplace transform on both sides of eq. (15) and using convolution theorem, we obtain 
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The necessary condition for compliance of inverse )(xu of eq.(16) is that 0)0( u . Following initial value theo-

rem, 
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Therefore, the solution )(xu can be obtained and k can be computed using relation (12). 

Table1.1. Coefficients in the Expansion of )(xu  

k k  

0 0.81399311 

1 -0.0446193 

2 0.03972445 

3 0.00011582 

4 0.01165101 

5 0.00230399 

6 0.00569674 

7 0.00212046 

8 0.00350064 

9 0.00166594 

10 0.00164977 
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Table1.2. Computed Pade approximant [4/4] and Approximation Solution for Example1 

X Pade approximant [4/4] method Present method Absolute Error 

0 0 5.14E-17 5.13800E-17 

0.1 0.41411018 0.4141034 6.78000E-06 

0.2 0.50848304 0.5087519 2.68860E-04 

0.3 0.56452274 0.5637984 7.24340E-04 

0.4 0.60364034 0.6033569 2.83440E-04 

0.5 0.63323515 0.6338924 6.57250E-04 

0.6 0.65675942 0.655994 7.65420E-04 

0.7 0.67610075 0.6740862 2.01455E-03 

0.8 0.69240064 0.6911992 1.20144E-03 

0.9 0.70639982 0.7070156 6.15780E-04 

1 0.71860476 0.7202293 1.62454E-03 

Example2. Consider the integral equation 

.sin)()(
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Laplace transform on both sides of eq. (17) gives 
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The condition 0)0( u  is not satisfied   
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As per provision of condition a possible function need to be subtracted from )(xu is 1. A function which takes the 

value 1 at 0x  is
xe

. Therefore, 
xexuxU  )()( as 0)0( U . Since

1

1
)()(


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s
sFsF . Thereby, the 

solution )(xu can be obtained by computing the coefficients k the relation (12).                                  

Table2.1. Coefficients in the Expansion of )(xu  

k k   

0 0.26369654 

1 -0.0735987 

2 -0.1482495 

3 -0.0985091 

4 -0.0769397 

5 -0.0547004 

6 -0.042268 

7 -0.0310263 

8 -0.0239681 

9 -0.0176349 

10 -0.0133825 

11 -0.0095073 

12 -0.0067188 

13 -0.003956 

14 -0.001397 
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Table2.2. Computed Exact and Approximation Solution for Example2 

x Exact solution Present method Absolute error 

0 1 1 3.00000E-09 

0.1 0.99750157 0.99722919 2.72375E-04 

0.2 0.99002498 0.98950321 5.21765E-04 

0.3 0.97762625 0.97849647 8.70222E-04 

0.4 0.96039823 0.95925921 1.13902E-03 

0.5 0.93846981 0.93944053 9.70723E-04 

0.6 0.91200486 0.9125871 5.82237E-04 

0.7 0.88120089 0.87896932 2.23157E-03 

0.8 0.84628735 0.84616791 1.19441E-04 

0.9 0.8075238 0.81065911 3.13531E-03 

1 0.76519768 0.7670378 1.84012E-03 

 

Example3. Consider the Volterra integral with a convolution kernel given by [13] 
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As usual taking Laplace transform on both sides of eq.(19) yield                                                            
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The condition 0)0( u is satisfied as in Example 1, that is 
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Fig.2. Comparison of exact and present approximate solution
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Therefore, the solution )(xu is feasible. The coefficients k  computed (12) are shown below.  

Table3.1.Coefficients in the Expansion of )(xu
 

k k   

0 0.42441318 

1 0.03264717 

2 -0.09372896 

3 -0.07000573 

4 -0.06126397 

5 -0.04672609 

6 -0.0391798 

7 -0.03125062 

8 -0.02649286 

9 -0.02180741 

10 -0.01875585 

11 -0.01580044 

12 -0.01381433 

13 -0.01199908 

14 -0.01103245 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

u
(x

)

Fig.3. Comaprison of Pade approximant [4/4] and present approximate solution 
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Table 3.2. Computed Pade approximant [4/4] and Approximation Solution for Example3 

X Pade approximant [4/4] Present method Absolute error 

0 0 4.12E-16 4.12297E-16 

0.1 0.095004082 0.09158784 3.41624E-03 

0.2 0.180063957 0.183098185 3.03423E-03 

0.3 0.255316973 0.256151895 8.34922E-04 

0.4 0.320980415 0.321179014 1.98599E-04 

0.5 0.377341791 0.372097134 5.24466E-03 

0.6 0.42474943 0.433955997 9.20657E-03 

0.7 0.463603433 0.461889867 1.71357E-03 

0.8 0.494347029 0.483582381 1.07646E-02 

0.9 0.517458374 0.518579699 1.12133E-03 

1 0.533442822 0.546451691 1.30089E-02 

Example4. Consider the first order linear Volterra Integro-differential equation of the form [8]  




x

x

tx dttuexuxu

0

)()()( )( , 00 )( uxu  .                                                                                     (21) 

If we choose 0 , 0 , 1 , 1 , 00 x , .10 u   

Taking Laplace transform on both sides of eq. (21) and using derivative property and convolution theorem of Lap-
lace transform, 

).(
1

1
)(

2
sF

ss

s
uL 




                                                                            (22) 

The condition 0)0( u  is not satisfied as 

.1
1

1
lim)(lim)0(

2







 ss

s
sssFu

ss
 

In this case we choose a possible function that will be subtracted from )(xu to be 1. A      function which takes the 

value 1 at 0x  is
xe

. Therefore, 
xexuxU  )()( as .0)0( U Since ,

1

1
)()(




s
sFsF  the solution 

)(xu exists. The coefficients k can be calculated using the relation (12).   

Table 4.1. Coefficients in the Expansion of )(xu  

k k  

0 0.212206589 

1 -0.08161792 

2 -0.12163703 

3 -0.06349292 

4 -0.04422927 

5 -0.02637033 

6 -0.01850358 

7 -0.01134116 

8 -0.00779918 

9 -0.00443629 

10 -0.00269506 

11 -0.00095958 
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12 -5.86E-05 

Table4.2. Computed Exact and Approximation Solution for Example4 

x Exact solution Present method Absolute error 

0 1 1 0.00E+00 

0.1 0.9951666 0.99489203 2.75E-04 

0.2 0.9813308 0.98137139 4.06E-05 

0.3 0.9594808 0.95941456 6.62E-05 

0.4 0.930587 0.93094843 3.61E-04 

0.5 0.8955945 0.89502027 5.74E-04 

0.6 0.8554164 0.85534569 7.07E-05 

0.7 0.8109282 0.81181337 8.85E-04 

0.8 0.762963 0.76330526 3.42E-04 

0.9 0.7123077 0.71129202 1.02E-03 

1 0.6597002 0.65824129 1.46E-03 

 

 

II. CONCLUSION 

In this paper we have gone through a new insight into the use of Chebyshev polynomials.   The series solutions in 

terms of Chebyshev polynomials have been used as numerically     inverting Laplace transform tool for finding solu-

tions of Volterra integral and  integro-differential equations. The outcome of four test problems have been compared 

with exact or Pade approximants and found to be numerically efficient.    
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