
 International Journal of Computer Techniques – Volume 2 Issue 4, July – Aug 2015

ISSN :2394-2231 http://www.ijctjournal.org Page 67

Filling the database with application of protocol buffers
Bulat Umurzakov*, Naila Maksutkaliyeva**

*(Department of Computer Systems, Software engineering and Telecommunications, International
Information Technology University, Almaty , Kazakhstan)

** (Department of Computer Systems, Software engineering and Telecommunications, International
Information Technology University, Almaty , Kazakhstan)

--************************----------------------------------

Abstract:
 The results of research, submitted in the report, are the approaches for data delivery to
databases using XML and protocol buffers. Comparisons of two methods and their advantages and
shortcomings are given. It is shown that data exchange between various DBMSs goes much quicker
when using protocol buffers.

Keywords — Protocol Buffers, serializing, parsing, database;

--************************----------------------------------

Introduction :

In this paper we would like to
present an application with a relatively
unknown format pioneered by Google,
called Protocol Buffers[1]. Nowdays a
number of data formats for submission of
network messages between servers are
used. This is mentioned on
ru.wikipedia.org/wiki/XML [2]. Data
formats can be structured. If there is an
exchange of large volumes of data, how
can we increase the speed of such
processes? As it is noted on
ru.wikipedia.org/wiki/ Protocol Buffers
[2], XML is ineffective for this purpose.

The Protocol_Buffers developed by
Google allows us to define simple
structures of data in a special language and
then brings them together to create classes
to represent these structures in the
language

The Protocol_Buffers developed by
Google allows us to define simple
structures of data in a special language and
then brings them together to create classes
to represent these structures in the
language chosen by the developer. The
optimized code is attached to these classes

to sort and transform the data into a
compact, consecutive form of the message.
In short, Protocol Buffers is a compact
way of coding data in a binary format
which allows us to define the simple
structure of data and then to compile them
to appropriate classes for representation of
these structures in the necessary language
(Java, Python or C ++). According to
statements by Google, in comparison with
XML, Protocol Buffers (“ProtoBuf”) is
much more simple and much quicker.
However, we do not want
to say that Protocol Buffers is always a
better choice than XML. For example,
Protocol Buffers cannot do a good job of
simulating a text-based document, HTML
for example.

In this work, transfer of ProtoBuf
format data to the database is carried
out. The same trans-
formation was carried out from XML
format to the database . Postgresql
and MySQL DBMSs were used on
servers. Generally the C++ and Java
languages were applied. The results
include a comparison of the two
approaches and their advantages and
shortcomings are considered.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques – Volume 2 Issue 4, July – Aug 2015

ISSN :2394-2231 http://www.ijctjournal.org Page 68

II. Application of C++ ProtoBuf
classes

 At the beginning we will apply the
C++ programming language. We will
consider library.proto file displaying
structure of one table “member’ of a
database of library “library”:

 message Member {
 required string Fname = 1;
 required int32 id = 2;
 optional string email = 3;
 }

 After defining our messages, we
can run the protocol buffer compiler for
the application's language on

library.proto file to generate data access
classes. These classes provide accessors
for each field as well as methods to
serialize and parse the structure. The
command for compiling is :

 protoc -I=$SRC_DIR --
cpp_out=$DST_DIR
$SRC_DIR/library.proto

where $SRC_DIR is a source directory
for the application's source code ,
$DST_DIR is a destination directory for
the generated code.
 Each chosen language, running the
compiler on the above example, will
generate a class called Member. Then this
class can be used for the application to
populate, serialize, and retrieve Member
protocol buffer messages. Then the
writing code can look like this:

 Member member;
 member.set_Fname("Tom Jakson");
 member.set_id(125);

member.set_email("tom@example.com");
 fstream output("dbdata", ios::out |
ios::binary);
 member.SerializeToOstream(&output);
 At the next step, the code reads the
file created by the previous application:

 fstream input("dbdata", ios::in |
ios::binary);
Member member;
member.ParseFromIstream(&input);
int id= member.id();
string Fname = member.Fname();
string email = member.email();
EXEC SQL CONNECT library
IDENTIFIED BY password;
EXEC SQL SET TRANSACTION;.
EXEC SQL INSERT INTO member
(mem_id, memname, mem_email)
 VALUES (‘id’, ‘Fname’, ‘email’);
EXEC SQL COMMIT;
EXEC SQL DISCONNECT;

III. Application of Java ProtoBuf
classes

At application of the Java language
library.proto file is:

 package lbrary;
 option java_package =
"com.libproj.library";
 option java_outer_classname =
"LibraryProtos";
 message Member {
 required string Fname = 1;
 required int32 id = 2;
 optional string email = 3;
 }

Compiler for this case is:

 protoc -I=$SRC_DIR --
java_out=$DST_DIR
$SRC_DIR/library.proto

Because we use Java classes ,

the java_out option will be provided,
similar to the other supported languages.
This generates

com/libproj/library/LibraryProtos.

java

International Journal of Computer Techniques – Volume 2 Issue 4, July – Aug 2015

ISSN :2394-2231 http://www.ijctjournal.org Page 69

in a specified destination directory.

 In order to show classes we present
the part of LibraryProtos.java:

// Generated by the protobuf compiler.
Source: library.proto
package com.libproj.book;
public final class LibraryProtos {
 private LibraryProtos() {}
 public static void registerAllExtensions(

com.google.protobuf.ExtensionRegistry
registry) {
 }
 public interface MemberOrBuilder
 extends
com.google.protobuf.MessageOrBuilder {

 // required string name = 1;
 /**
 * <code>required string name =
1;</code>
 */
 boolean hasName();
 /**
 * <code>required string name =
1;</code>
 */
 java.lang.String getName();
 /**
 * <code>required string name =
1;</code>
 */
 com.google.protobuf.ByteString
 getNameBytes();

 // required int32 id = 2;
 /**
 * <code>required int32 id = 2;</code>
 */
 boolean hasId();
 /**
 * <code>required int32 id = 2;</code>
 */
 int getId();

 // optional string email = 3;
 /**

 * <code>optional string email =
3;</code>
 */
 boolean hasEmail();
 /**
 * <code>optional string email =
3;</code>
 */
 java.lang.String getEmail();
 /**
 * <code>optional string email =
3;</code>
 */
 com.google.protobuf.ByteString
 getEmailBytes();
 } …….

 Next the application will use these
classes to populate, serialize and retrieve
Member protocol buffer messages.
 For writing a message it is
necessary to use these packages:

 import
com.libproj.book.LibraryProtos.Library;
import
com.libproj.book.LibraryProtos.Member;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.PrintStream;

 Then the application contains code
for input variables id , name and email
and serialization. At the next step
another application reads the file
created by the above example and saves
all the information to the database.
 So, connection was successfully established.
Further, the task of getting data from
stream and sending it to the database in
the program code was decided.Java class
that implements getting of connection with
database and sending data to it called
“ConnectDB”. ConnectDB had taken as
child class of AddPerson class,that realizes
serialization of data. In the main method

International Journal of Computer Techniques – Volume 2 Issue 4, July – Aug 2015

ISSN :2394-2231 http://www.ijctjournal.org Page 70

constructor for AddPerson class was
created. In try-catch statement we call
forName() method that establishes
PostgreSQL driver for JAVA.
 Then , connection called myConnection
was created. To send database, information
from fields of messages new variables
were created for each field and equate it
with values taken from getter methods. With
help of statement.executeQuery() sql-
requests were written and sent to the
database. A continuance of database
connection code was created:

import
com.libproj.book.LibraryProtos.Library;
import
com.libproj.book.LibraryProtos.Member;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
class ListMember {
 // Iterates though all people in the Library and

presents info about them.
 static void Print(Library library) {
 for (Member member:
library.getMemberList()) {
 Int
id=AddPerson.PromptForAddress(null,nul
l).member.getId();
 String name=
AddPerson.PromptForAddress(null,null).
member.getName();
 if (member.hasEmail()) {
 String email=
AddPerson.PromptForAddress(null,null).
member.getEmail();
 }
 }
 }
 public static void main(String[] args) throws
Exception {
 if (args.length != 1) {
 System.err.println("Usage: ListPeople
LIBRARY_FILE");
 System.exit(-1);
 }
 Library library =

 Library.parseFrom(new
FileInputStream(args[0]));
 Print(library);
 try
 {
 String URL =
"jdbc:postgresql://ipaddress:5433/library";

Class.forName("org.postgresql.Driver");
 Connection conn =
DriverManager.getConnection("URL",
"username", "password");
 Statement stmt =
conn.createStatement();
 int nrows =
stmt.executeUpdate("INSERT INTO
member VALUES ('id', 'name','email'");
// TODO code application logic here
 }
 catch(Exception e)
 {
 System.err.println(e.toString());
 }
 }
}
 Applying XML to the same databases
showed that the processes of converting
XML data to a database was several times
slower. Thus it is possible to draw the
conclusion use of the protobuf protocol is
considerably more efficient for data
interchange between various DBMSs.

 ACKNOWLEDGMENT

We express our sincere gratitude to the
management of International Information
Technology University, for providing us
opportunities and their whole hearted
support for such activities.

REFERENCES
[1] The Google website. [Online]. Available:

https://developers.google.com/protocol-
buffers/docs/downloads http://www.ieee.org/

[2] [Online]. Available: ru.wikipedia.org/wiki http

[3] The Google website. [Online]. Available:
https://developers.google.com/protocol-buffers/docs/
cpptutorial

[4] The Google website. [Online]. Available:
https://developers.google.com/protocol-buffers/docs/
javatutorial

