
International Journal of Computer TechniQues - Volume1

Page 1 of 5
http://ijctjournal.org

Raise The Temporal Database From Architecture
Lalit Kumar Saini1, Vishal Shrivastava2

M.Tech1 Research Scholar, Professor2

Department of Computer Science and Engineering,

Arya College of Engineering. & Information Technology,

Jaipur, India

Abstract:

 A wide range of database applications are

manage the time-varying data. In existing database

technology gives the little support for managing

such a time-varying data. The research area for

temporary databases aims to change the state of

affairs by characterizing the of temporal data and

providing large and effective ways to model, store,

and query the temporal data. This paper provides

a brief introduction to temporal database

research system. It concisely introduces

fundamental temporal database concepts, surveys

state-of-the-art solutions to challenging aspects of

temporal data management, and also offers a

look into the future of temporal database

research.

1 Introduction

Most applications of database technology are

temporal in nature. Examples in- clude financial

applications such as portfolio management,

accounting, and bank- ing; record-keeping

applications such as personnel, medical-record,

and inven- tory management; scheduling

applications such as airline, train, and hotel reser-

vations and project management; and scientific

applications such as weather moni- toring.

Applications such as these rely on temporal

databases, which record time- referenced data.

Temporal database management is a vibrant field

of research, with an active community of several

hundred researchers who have produced some

2000 papers over the last two decades.

Temporal Data Semantics:

Before we proceed to consider temporal data

models and query languages, we ex- amine, in

data model-independent terms, the association of

times and facts, which is at the core of temporal

data management. Initially, a brief description of

terminology is in order. A database models and

records information about a part of reality,

termed either the modeled reality or the mini-

world. Aspects of the mini-world are represented

in the database by a variety of structures that we

will simply term database entities. We will

employ the term “fact” for any (logical) statement

that can meaningfully be assigned a truth

value.either true or false. In general, times are

associated with database entities.

 Temporal Data Models and Query Languages

Temporal data management can be very difficult

using conventional(non-temporal) data models

and query languages [54]. Accommodating the

time-varying nature of the enterprise is largely left

to the developers of database applications,

leading to ineffective and inefficient ad-hoc

International Journal of Computer TechniQues - Volume1

Page 2 of 5
http://ijctjournal.org

solutions that must be reinvented each time a new

application is developed. The result is that data

management is currently an excessively involved

and error-prone activity.

Temporal Data Models:

The first step in providing support for temporal

data management is to extend the database

structures of the data models supported by a

conventionalDBMS. Assum- ing a relational data

model, mechanisms must be provided for

capturing the valid and transaction times of the

facts recorded by the relations, leading to

temporal relations. Adding time to the relational

model has been a daunting task, and more than

two dozen extended relational data models have

been proposed Most of these models support

valid time only; some also support transaction

time. We will con- sider three of these latter

models and related design issues. As a simple

example, consider a video store where customers,

identified by a CustomerID attribute, rent video

tapes, identified by a TapeNum attribute. We

consider a few rentals during May 1997. On the

2nd of May, customer rents tape for three days.

The tape is subsequently returned on the 5th.

Also on the 5th, customer rents tape with an

open-ended return date. The tape is eventually

returned on the 8th. On the 9th, customer rents

tape to be returned on the 12th. On the 10th,

the rental period is extended to include the 13th,

but this tape is not returned until the 16th. The

video store keeps a record of these rentals in a

relation termed. This data modeltimestamps

tuples, corresponding to facts, with values that are

sets of (transaction time, valid time) pairs,

captured using attribute figure. provides a

graphical illustration of the three timestamp

values, which are termed bitemporal elements. In

the general case of infinite and continuous time

domains, these are finite unions of rectangles in

the two-dimensional space spanned by

transaction and valid time.

Adding Time to Query Languages:

Given the prevalence of applications that

currently manage time-varying data, one might

ask, why is a temporal query language even

needed? Is the existence of all this SQL code of

ostensibly temporal applications not proof that

SQL is sufficient for writing such applications?

The reality is that in conventional query

languages like SQL, temporal queries can be

expressed, but with great difficulty.

Designing Temporal Databases:

The design of appropriate database schemas is

critical to the effective use of data- base

technology and the construction of effective

information systems that exploit this technology.

Database schemas capturing time-referenced data

are often partic- ularly complex and thus difficult

to design. The first of the two traditional contexts

of database design is the data model of the

DBMS to be used for managing the data. This

data model, generally a variant of the relational

model, is assumed to conform to the

ANSI/X3/SPARC three-level architecture.

In the second context, a database is modeled

using a high-level, conceptual design model,

typically the Entity-Relationship model. This

model is independent of the particular

implemen- tation data model that is eventually to

International Journal of Computer TechniQues - Volume1

Page 3 of 5
http://ijctjournal.org

be used for managing the database, and it is

designed specifically with data modeling as its

purpose, rather than implementation or data

manipulation, making it more attractive for data

modeling than the variants of the relational

model. Mappings are assumed available that

bring a conceptual design into a schema that

conforms to the specific implementation data

model of the DBMS to be used. We proceed to

consider in turn logical and conceptual design of

temporal databases.

Logical Design:

A central goal of conventional relational database

design is to produce a database schema consisting

of a set of relation schemas. In normalization

theory, normal forms constitute attempts at

characterizing “good” relation schemas, and a

wide variety of normal forms has been proposed,

the most prominent being third normal form and

Boyce-Codd normal form. An extensive theory

has been developed to provide a solid formal

footing for relational database design, and most

database textbooks expose their readers to the

core of this theory. In temporal databases, there

is an even greater need for database design guide-

lines. However, the conventional normalization

concepts are not applicable to tem- poral

relational data models because these models

employ relational structures dif- ferent from

conventional relations. New temporal normal

forms and underlying concepts that may serve as

guidelines during temporal database design are

needed.

Conceptual Design:

By far, most research on the conceptual design of

temporal databases has been in the context of the

Entity-Relationship (ER) model. This model, in

its varying forms, is enjoying a remarkable, and

increasing, popularityin industry. Conventional

ER diagram rentals.

Conceptual Design daigram

The research on temporal ER modeling is well

motivated. It is widely known that the temporal

aspects of the mini-world are very important in a

broad range of applications, but are also difficult

to capture using the ER model. Put simply, dia-

grams that would be intuitive and easy to

comprehend without the temporal aspects

become obscure and cluttered when an attempt is

made to capture the temporal aspects. As a result,

some industrial users simply choose to ignore all

temporal aspects in their ER diagrams and

supplement the diagrams with textual phrases to

indicatethat a temporal dimension to data exists,

e.g., “full temporal support.” The result is that

the mapping of ER diagrams to relations must be

performed by hand; and the ER diagrams do not

document fully the temporally extended

relational database schemas used by the

application programmers. The research

community’s response to this predicament has

been to develop temporally enhanced ER

models. Indeed, about a dozen such models have

been reported in the research literature

Temporal DBMS Implementation:

There has been a vast amount of work in storage

structures and access methods for temporal data,

and a dozen-odd temporal DBMS prototypes

have been reported [7]. Two basic approaches

may be discerned. Traditionally, an integrated

approach has been assumed, in which the

International Journal of Computer TechniQues - Volume1

Page 4 of 5
http://ijctjournal.org

internal modules of a DBMS are modified or

extended to support time-varying data. More

recently, a layered approach has also received

attention [59]. Here, a software layer interposed

between the user-applications and a conventional

DBMS effectively serves as an advanced

application that converts temporal query language

statements into conventional statements that are

subse- quently executed by the underlying

DBMS, which is itself not altered.

Query Processing:

A query formulated in some high-level, user-

oriented query language is typically translated into

an equivalentquery, formulated in a DBMS-

internal, algebraic query language. The DBMS

then optimizes this algebraic expression by

transforming it into an equivalent expression that

is expected to be more efficient to process, the

result being better query processing performance.

Optimization of temporal queries offers new

challenges over optimization of conventional

queries. At the core of the matter, temporal

database queries are often large and complex.

Implementing Algebraic Operators:

As explained earlier, a user-specified query is

translated into an internal, algebraic form, which

is then optimized using equivalence-preserving

transformations. The DBMS has available a

library of algorithms that implement the

operations that oc- cur in the resulting algebraic

formulation of the query. As the next step,

algorithms are chosen from the library for each

operation, upon which the query is ready for

execution. Good performance is dependent on

the availability of good implementa- tions of the

operations. Focus has been on a number of

temporal algebraic operators, including se-

lection, joins, aggregates, and duplicate

elimination. Conventional approaches to

computing these operators typically have poor

performance, and new opportunities exist for

efficiently implementing these operators

Indexing Temporal Data:

A variety of conventionalindexes have long been

used to reduce the need to scan an entire relation

to access a subset of its tuples, to support the

conventional selection algebraic operator and

temporal joins. Similarly, a number of temporal

indexing strategies are available. Many of the

indexes are based on B+-trees, which index on

values of a single key; most of the remainder are

based on R-trees, which index on ranges

(intervals) of multiple keys. The worst-case

performance for most proposals has been

evaluated in terms of total space required,

updates per change, and several important types

of queries. Most of this work is in the context of

the selection operator.

Summary:

This chapter has briefly introduced the reader to

temporal data management ,empha- sizing central

concepts, surveying important results, and

describing the challenges faced. This section

briefly summarizes the current state-of-the-art,

and Section 7 discusses challenges that remain. A

great amount of research has been conducted on

temporal data models and query languages, which

has shown itself to be an extraordinarily complex

challenge with subtle issues.

References:

S. Abiteboul, R. Hull, and V. Vianu. Foundations

of Databases. Addison- Wesley 1995.

 T. Abraham and J. F. Roddick. Survey of Spatio-

Temporal Databases. GeoInformatica, 3(1):61–

99, March 1999.

 J. F. Allen. Maintaining Knowledge about

Temporal Intervals. Communications of the

ACM, 26(11):832–843, November 1983.

J. Bair, M. H. Böhlen, C. S. Jensen, and R. T.

Snodgrass. Notions of Up- ward Compatibility of

International Journal of Computer TechniQues - Volume1

Page 5 of 5
http://ijctjournal.org

Temporal Query Languages,39(1):25–34,

February 1997

