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Abstract 
In this paper, we will discuss a newly constructed subclass of analytic starlike functions by 

which we will be obtaining sharp upper bounds of the functional  for the analytic 
function  belonging to this subclasses. 
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1. Introduction: Let  denote the class of functions of the form 

                                                 (1.1) 

which are analytic in the unit disc . Let  be the class of functions of the form 

(1.1), which are analytic univalent in . 

In 1916, Bieber Bach ( [7], [8] ) proved that  for the functions . In 1923, Löwner 

[5] proved that  for the functions .. 

With the known estimates  and , it was natural to seek some relation between  

and  for the class , Fekete and Szegö[9] used Löwner’s method to prove the following  well 

known result for the class . 

Let , then 

                                                           (1.2) 

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for 

some sub classes  (See Chhichra[1], Babalola[6]). 

Let us define some subclasses of . 

We denote by S*, the class of univalent starlike functions
 

and 

satisfying the condition
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                                     (1.3) 

We denote by , the class of univalent convex functions and 

satisfying the condition 

                                     (1.4) 

A function  is said to be close to convex if there exists  such that 

                                    (1.5) 

The class of close to convex functions is denoted by C and was introduced by Kaplan [3] and it was 

shown by him that all close to convex functions are univalent. 

                                          (1.6) 

                                       (1.7) 

It is obvious that  is a subclass of  and  is a subclass of . 

We introduce a new subclass as  and we will 

denote this class as  

Symbol  stands for subordination, which we define as follows: 

 

Principle of Subordination: Let  and  be two functions analytic in . Then  is called 

subordinate to F(z) in  if there exists a function  analytic in  satisfying the conditions 

and  such that  and we write  

By , we denote the class of analytic bounded functions of the form  

                                                              (1.8) 

It is known that                                                       (1.9) 

2. PRELIMINARY LEMMAS:         For , we write   so that 

                                          

(2.1) 

3. MAIN RESULTS 

THEOREM 3.1: Let then 

 

The results are sharp. 

Proof: By definition of , we have 
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                                                           (3.4) 

Expanding the series (3.4), we get 

                                       (3.5) 

Identifying terms in (3.5), we get 

                                                                                                                              (3.6) 

                                                                   (3.7) 

From (3.6) and (3.7), we obtain 

                                                     (3.8) 

Taking absolute value, (3.8) can be rewritten as 

                                                (3.9) 

Using (1.11) in (3.9), we get 

                 (3.10) 

Case I: . (3.10) can be rewritten as 

                                        (3.11) 

Subcase I (a):  Using (1.11), (3.11) becomes 

                                                         (3.12) 

Subcase I (b):  We obtain from (3.11) 

                                                                                                             (3.13) 

Case II:  

Preceding as in case I, we get 

                                         (3.14) 
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Subcase II (a):  

(3.14) takes the form                                                                                     (3.15) 

                                                    (3.16) 

Subcase II (b):  

Preceding as in subcase I (a), we get 

                                                                                                 (3.17) 

Combining (3.12), (3.16) and (3.17), the theorem is proved. 

Extremal function for (3.1) and (3.3) is defined by 

 

Where  

And  

Extremal function for (3.2) is defined by   

Corollary 3.2:  Putting  in the theorem, we get 

 
These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent 

convex functions. 

Corollary 3.3:  Putting  in the theorem, we get 

 
These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent 

starlike functions. 
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