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Abstract 
A formula for calculation of the density function of the distance between two 

independent points randomly and uniformly chosen in a bounded convex domain D is given. The 
obtained formula permits to find an explicit form of the density function for the domains D 

with known chord length distributions. In particular, an application of the formula gives explicit 
expressions for in the cases of a disc, a regular triangle, a rectangle and a regular pentagon.  
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Introduction 
Let D be a bounded, convex domain in the Euclidean plane, with the area ||D|| and the 

perimeter . Let  and  be two points chosen at random, independently and with uniform 
distribution in D. We are going to find the probability that the distance  between  and  
is equal to or less than , that is we would like to find the distribution function  of  .   

By definition, 

       (1.1) 

where ,  is the Lebesgue measure in the plane . 

From the expression of the area element in polar coordinates we have 

                                                 (1.2) 

where  is the angle between the line through the points  and the reference direction in the 

plane. If we leave fixed, then  is the kinematic density for the segment  of length  

Using (1.2) we can rewrite (1.1) in the form: 
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                                          (1.3) 

where   is the kinematic measure of all oriented segments of length  that lie inside D. 

Therefore, using (1.3) we obtain a relationship between the density function   of 

 and the kinematic measure : 

.                                                          (1.4) 

Note that we can calculate the kinematic measure of all unoriented segments that lie inside 

D and then the result multiplied by 2. 

The main formula for kinematic measure.Let S be a segment of length . As it is well-known 

[1]-[3], the solution of the problem on finding the kinematic measure  of segments with 

constant length , contained in D, is not simple and essentially depends on the form of D. Explicit 

expressions for  are known only in two cases [1],  [2]. In the first case, D is the disc  , and 

obviously  when , and  

 when                        (2.1) 

In the second case, D is a rectangle  with sides , and , if  is not less 

than the length  of the diagonal of  [1], [2], and if , then  

.                                            (2.2) 

Note that these formulae are for unoriented segments. Therefore, for oriented segments we 

have to multiply the formulae by 2.  

In the paper [4], a formula for the kinematic measure  of sets of segments with 

constant length  entirely contained in D is obtained. The obtained formula in [4] permits to 

calculate the mentioned kinematic measure  by means of the chord length distribution 

function of D. The formula permits to find an explicit expression for the kinematic measure  

of domains D with known chord length distributions. In particular, using the obtained formula 

some explicit expressions for  for a disc, a regular triangle, a rectangle and a regular 

pentagon are derived. 

Let  be the image of segment S under an Euclidean motion where  is the 

group of all Euclidean motions in the plane. For the locally compact group , there is a locally 

finite Haar measure, i.e. a locally finite, non identically zero Borel measure invariant both from the 

left and from the right. Segment can be defined by means of the two coordinates , where 

 (  is the space of all straight lines in the plane ) contains segment , and  is the one-

dimensional coordinate of the center of the interval  on the line . On the space , we define 

a measure  by its element, in the following way:  

, 
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where  is a locally finite measure in the space G, which is invariant with respect to the group M 

and  is the one-dimensional Lebesgue measure on . The measure   is said to be a kinematic 

measure on the group M [1], [3]. 

This section gives a main formula for calculating the kinematic measure   in the 

terms of distribution function of the chord length of the domain D. Obviously, 

, if , where  is the diameter of  D, i.e.  

 

where  is the distance between the points  and . Therefore, only the case 

 is considered throughout the paper. It is evident that in the mentioned case  

 

where  is the set of straight lines crossing the domain D, 

 is a chord in D, while 

 

Consequently, 

     (2.3) 

where 

 

and  is the chord length distribution function of the domain D, defined as 

 

 We transform (2.3) for the measure   to a more suitable for applications form. To 

this end, we prove the following formula: 

                                            (2.4) 

where  is the chord length density function for the domain D, i.e.  is the first 

derivative of the distribution function (see [11]). Further, for calculating the derivative of the 

function  we observe that 

(2.5) 

Then, assuming that the distribution function  possesses the density , we let 

 in (2.5) and get 

 

which implies 
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since . 

Now, we transform formula (2.4) by means of integration by parts: 

 

 

Consequently, 

                     (2.6) 

At last, substituting (2.6) into formula (2.3) for   we come to the main formula of this 

section: 

                                (2.7) 

Thus, if the explicit form of the function   for  is given, then one can derive 

an explicit expression for    by means of (2.7). The formula (2.7) have been obtained for 

unoriented segments. For oriented segments this formula should be multiplied by 2. 

Substituting (2.7) into (1.3) (and multiply by 2) we obtain the main formula of the present 

paper: 

                (2.8) 

where   is the chord length distribution function for the domain D. 

The case of a disk. In the case of the disc  with diameter of the length , the chord length 

distribution function is of the form [9]  

                              (3.1) 

Consequently, substituting (3.1) into (2.7) we get  

                                 (3.2) 

Since 

 ,                        (3.3) 

substituting (3.3) into (3.2) we get the kinematic measure for , i.e. formula (2.1). 
Substitution this result in (1.3) or (2.8) we obtain the density function of the distance between two 
points chosen in the disk of diameter  

 

Remark. Above, the exact values of the density function  are calculated for a disc of 

diameter . Note that if we know the explicit form of the chord length distribution function for a 
domain, using (2.8) we can calculate density function   of the distance between two random 
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points in D. In [10] the explicit form of the chord length distribution function is given for any 
regular polygon, and particularly the corresponding result for the regular hexagon can be seen in 
[8]. Consequently, density  can be calculated for any regular polygon by applying the result 

of [10]. 
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