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Abstract

The recognition of bounded convex bodies D by means of random k-flats (k-dimensional
planes) intersecting D is one of the interesting problems of Stochastic Geometry. In particular, the
problem of recognition of bounded convex domains D by chord length distribution function is of
much interest. One can consider the case when the orientation and the length of the chords are
observed. We refer this case as the orientation-dependent chord length distribution. All these
problems are the problems of geometric tomography, since orientation-dependent chord length
distribution function at point y is the probability that parallel X-ray in a fixed direction is less than
or equal to y. Investigation of convex bodies by orientation-dependent chord length distribution is
equivalent to the investigation of their covariograms. The present note considers some problems
and recent results related to covariograms, and their applications to various problems of
tomography.
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Introduction

The main purpose of the stereology is to obtain information about the geometric properties of
n-dimensional structures, if there is information on the forms of smaller dimensions as through the
k-plane sections (0 <k <n), and with the help of projections on infinitesimal layers. The most
popular application is the tomography (see [1] - [3]). Reconstruction of a body over its cross
sections is one of the main tasks of geometric tomography, a term introduced by R. Gardner in [3].
If D = R® (R" is n-dimensional Euclidean space) compact convex body, it is possible to intersect it
by a random k-plane (1<k<n-1). If the body D is intersected by k-plane, then arises a k-dimensional
section that contains some information on D. A natural question arises whether it is possible to
reconstruct D, if we have a subclass of k-dimensional cross-sections. Tomography is mainly
engaged in the description of the subclasses for which the calculation of the geometrical
characteristics is often a difficult task.

Discussion

Reconstruction of convex bodies using random sections makes it possible to simplify the
calculation, since the estimates of probability characteristics can be obtained using the methods of
mathematical statistics. Quantities characterizing random sections of the body D carry some
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information on D and if there is a connection between the geometrical characteristics of D and
probabilistic characteristics of random cross-sections, then by a sample of results of experiments
we can estimate the geometric characteristics of the body D (see [4] - [6]).

Let IIr,.D be the orthogonal projection of D onto the hyperplane u* (u* - hyperplane
passing through the origin with normal vector u). Random line parallel to the direction u and
intersecting D has an intersecting point (denoted by y) with IIr,+D. We can identify points Ir,.D
with lines that intersect D and parallel to the direction u. Assuming that the intersection point y
uniformly distributed in the convex body Ilr,+D we arrive at the following definition. Function

vn—i{}rE HI",_,J-D : vi(g(uiy} n D} = _'X.'}

Fpiux) =
bp(u)

Is called orientation dependent chord length distribution function of D in the direction u,
where g (u, y) is a line parallel to the u and intersecting Ir,1D at point y, bp{u) = V,_;(TIr1D),
and V, (-} is n-dimensional Lebesgue measure.

Let L(w) be a random segment with length 1> o intersecting D and parallel to a fixed direction
u. Consider the random variable |L{w)| = V;(L{w) N D), w e Q(u), which is defined as follows:

Q (u) = {segments of length 1, parallel to u and intersecting D}.

A random segment L (), which lies on the line g (u, y), can be set by the coordinates (g (u, y),
z), where z is the one-dimensional coordinate of the center of the segment L (w) on the line

g(u, y). The origin in the line g (u, y) is one of the intersection points g (u, y) with D. Using
the above notation we can identify Q (u) with the following set:

0(u) = {(v,z), yellr 1D, ze [—%J ¥lu,y) + %]}
where x(u, v) = V;(g(u,¥) N D). Further, we denote
Bp™={(y,z) e(u) : |L|(y,z) < x}, xeR?
It is clear that Q (u) and B;™ are measurable subsets of R®. The function
Vn(BET) 1
Fl L| (UJ X} = vnlzﬂ':nl.'l:') = v:ﬂ:ﬂ‘:u:‘

is called the orientation dependent distribution of the length of the part of random segment
which lies within the body. Can we reconstruct a bounded convex body if we know F,(u,x) by
changing the value of the length 1, and how to reconstruct the geometric characteristics of the body
D by means of F|;(u,x). Equation (1) establishes a relationship between the distribution functions
Fp(u,x) and F|; (%) in the interval [o, 1]:
Flo(ux) = % 2% + Fp(u,x)( —x) — [ Fp(uz)dz]. (1)

It is obvious that the distribution function Fj{u,x) equals 0 when x<0 and equals 1 if x=1.
Consequently, having Fy(u,x) we can reconstruct Fj,(u,x). There is a problem of inverting the
equation (1), that is to find out whether it is possible by the values of the function Fy(u,x)
reconstruct Fp(u,x) distribution function.

Compact convex bodies from n-dimensional Euclidean space can be intersected by k-
dimensional planes and we can consider distribution functions of the characteristics of cross-
sections (for example, 3-dimensional space a body can be intersected by lines and by planes, and in
the last case we can investigate distributions of areas and perimeters).

Let G, be the space of all lines in R™. The line geG, can be specified by direction ue5*~* and
the point of intersection y with the hyperplane u*. Density du* is the volume element du of the unit
sphere 5771), and dy - the volume element u' at the point y. Let p (-) is a locally finite measure on
G, invariant under the group of Euclidean motions of R®. It is known that an element of this
measure up to a constant factor has the following form (see [1]) pu(dg) = dg = dudy. We denote
0,_1 =V,_1(5™ 1) the Lebesgue measure of the unit sphere in R®. For each bounded convex body
D, the set of lines intersecting D we denote by [D] = {geG,,, g N D = @}. We have

([D]} _ Gn—EVn—liaD}
B =" m -0

Random line in [D] is the line with distribution proportional to the restriction of p to [D].

Consequently, for each xeR* we have

]IBE,"" dydz, ueS™1
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u({gelD] V. (gnD)<x])
Fp () = w(DD)

Fp(x) is called the chord length distribution function of D.

In the study of the distribution function Fy(u,x) an important role plays the covariogram
concept introduced by French mathematician Matheron (see [6], [7]). Let h € R®, and the
translation of D on the vector h is denoted by D + h:

D+h={x+h heR® xe D}

The function

c(D,h) =V,(DN(D+ 1)), heR®

is called covariogram of D. Covariogram C(D, h) is invariant with respect to the group of
translations and reflections.

Equation (2) establishes a connection between the covariogram and the orientation
dependent chord length distribution function. Therefore, having an explicit form of the
covariogram, you can investigate an interesting properties of the distribution function Fp(u,x) (see

(61, [7D). o
———=(1-Fp(ux)- bp(u), (2)

where xu - vector in R® having length x and direction u.

The question of the existence of a bijection between bounded convex bodies D and
distribution functions of the chord length Fp(x) was made by the famous German mathematician
Wilhelm Blaschke. This question has received a negative response. Further mathematicians
considered subclasses of bounded convex bodies for which the chord length distribution function
reconstructed non-congruent elements of the subclass. Although the function of the chord length
distribution Fp(x) does not reconstruct the compact convex body, yet it contains information
about the volume, surface area and other characteristics of the body (see [1] and [3]).

Matheron in [6] (see also [7]) formulated a hypothesis that there exists a one-to-one
correspondence between Fp(1,x) and bounded convex bodies. In the plane, a positive answer to the
Matheron’s hypothesis in the class of convex polygons received Nagel (see [11]). Matheron’s
hypothesis received a positive solution for any D in the planar case (see [8] - [10]). In the case of
finite-dimensional spaces with n>3 Matheron’s hypothesis has received a negative answer. In the
case of 3-dimensional space the problem is open. Nevertheless, for the case of bounded convex
polyhedron for n=3 Matheron’s hypothesis received a positive answer (see [4]). Note that convexity
is essential for this set of problems. The authors of [12] have given an example of two non-
congruent and non-convex polygons with the same covariogram.

Distribution function Fp(1,x) in the class of triangles and ellipses is a function that depends
on direction through the maximal chord in this direction, and we can construct a class of
parallelograms, for which such a result is not true. It is interesting to examine the cases in which
the distribution function Fp(1,x%) depends on the direction only through the maximal chord. We
can put a general problem: in any case, the maximal cross section is characterized the compact
convex body up to translations and reflections. This type of problems considered Gardner in his
book [3]. Gardner, in particular, proved that a centrally symmetric convex body in R* is uniquely
reconstructed in the class of all centrally symmetrical bodies (up to parallel translations and
reflections), if the maximal cross-sections are the same for all directions. Since orientation
dependent chord length distribution function reconstructs a compact convex body in the planar
case, and in some cases, it depends on the maximal chord in a given direction, then in the planar
case by means of Fp (1, x) we can solve tomographic problems using maximal sections, in particular,
we can prove that the maximal chords in all directions reconstruct triangle in the class of all
triangles (and a similar result holds in the case of ellipses).
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AnHOoTanuA. BoccraHoBIEHNE OTPAaHUYEHHBIX BBITYKJIBIX TeJl D ¢ moMoIibio cirydaiHbix k-
MEpPHBIX IIJIOCKOCTEH IlepeceKaronux Teso D sABjiserca OJHOM W3 WHTEPECHBIX 33714
Croxacrtuueckoil 'eomerpuu. B wacTHOCTH, 3a7jadya BOCCTAHOBJIEHUS OTPAHUYEHHBIX BBIMYKJIBIX
Te1 D mo ¢yHKIUHM pacnpenesieHUs JJIMHBI XOpAbl. MOXKHO PpaccMOTPETh CJIydail, KOrja
OpPHEHTAlM! U JJINHBI XOpJ HabiomaemMbl. B 5TOM ciyyae MBI TOBOPUM O 3aBUCAIIEH OT
OpPHEHTAllNN pACIpeJieJIeHNH JUIMHBI XOpAbl. Bce »5Tu mpobsieMbl SBJIAIOTCA 3a7jadyaMu
reoMeTpu4YecKod ToMorpauu, Tak KaK 3aBUCAILISAS OT OpHEHTAanuu (GYHKIUS paclpe/leseHus
JUIMHBI XOpABl B TOUYKE Yy COBHAZA€T C BEPOATHOCTBIO, YTO IlapajUlesibHble X-JIy4d B
(uKcupoBaHHOM HallpaBJIeHUU MeHbllle WK PaBHBI y. VI3ydyeHue BBITYKJIBIX TeJI 110 3aBUCAIIEN OT
opueHTanuu (QYHKIUN pacupeseseHus JJIMHBl XOPAbl 5KBUBAJIEHTHO W3Y4YEHUIO Tesl II0 MX
KoBapuorpamme. B 3Toll 3amMeTke paccMaTpUBAIOTCS HEKOTOpble NPOOJieMbl U HeJaBHHE
pe3yJIbTaThl Kacarolyecs KOBaApUOIpaMM U UX IPUMeHEeHU K Pa3IMYHbIM 33/ja4aM ToMorpadui.

KialoueBble cioBa: GyHKIUA paclpe/iejieHUs JJIMHBL  XOpPJbl, KOBapuorpamma,
orpaHUYeHHas BBIYKJIast 00J1acTh.
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