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Abstract 
The recognition of bounded convex bodies D by means of random k-flats (k-dimensional 

planes) intersecting D is one of the interesting problems of Stochastic Geometry. In particular, the 
problem of recognition of bounded convex domains D by chord length distribution function is of 
much interest. One can consider the case when the orientation and the length of the chords are 
observed. We refer this case as the orientation-dependent chord length distribution. All these 
problems are the problems of geometric tomography, since orientation-dependent chord length 
distribution function at point y is the probability that parallel X-ray in a fixed direction is less than 
or equal to y. Investigation of convex bodies by orientation-dependent chord length distribution is 
equivalent to the investigation of their covariograms. The present note considers some problems 
and recent results related to covariograms, and their applications to various problems of 
tomography. 
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Introduction 
The main purpose of the stereology is to obtain information about the geometric properties of 

n-dimensional structures, if there is information on the forms of smaller dimensions as through the 
k-plane sections (0 <k <n), and with the help of projections on infinitesimal layers. The most 
popular application is the tomography (see [1] - [3]). Reconstruction of a body over its cross 
sections is one of the main tasks of geometric tomography, a term introduced by R. Gardner in [3]. 
If  (  is n-dimensional Euclidean space) compact convex body, it is possible to intersect it 
by a random k-plane (1≤k≤n-1). If the body D is intersected by k-plane, then arises a k-dimensional 
section that contains some information on D. A natural question arises whether it is possible to 
reconstruct D, if we have a subclass of k-dimensional cross-sections. Tomography is mainly 
engaged in the description of the subclasses for which the calculation of the geometrical 
characteristics is often a difficult task. 

 
Discussion 
Reconstruction of convex bodies using random sections makes it possible to simplify the 

calculation, since the estimates of probability characteristics can be obtained using the methods of 
mathematical statistics. Quantities characterizing random sections of the body D  carry some 

 

 

http://www.ejournal30.com/


Russian Journal of Mathematical Research. Series A, 2015, Vol.(2), Is. 2 

41 

 

information on D and if there is a connection between the geometrical characteristics of D and 
probabilistic characteristics of random cross-sections, then by a sample of results of experiments 
we can estimate the geometric characteristics of the body D (see [4] - [6]).  

Let    be the orthogonal projection of D onto the hyperplane  (  - hyperplane 

passing through the origin with normal vector u). Random line parallel to the direction u and 
intersecting D has an intersecting point (denoted by y) . We can identify points   

with lines that intersect D and parallel to the direction u. Assuming that the  intersection point y 
uniformly distributed in the convex body  we arrive at the following definition. Function 

 
Is called orientation dependent chord length distribution function of  D in the direction u, 

where g (u, y) is a line parallel to the u and intersecting   at point y, , 

and  is n-dimensional Lebesgue measure.  
Let L(ω) be a random segment with length l> 0 intersecting D and parallel to a fixed direction 

u. Consider the random variable ,  , which is defined as follows:  
                  Ω (u) = {segments of length l, parallel to u and intersecting D}.  
A random segment L (ω), which lies on the line g (u, y), can be set by the coordinates (g (u, y), 

z), where z is the one-dimensional coordinate of the center of the segment L (ω) on the line  
g(u, y). The origin in the line g (u, y) is one of the intersection points g (u, y) with D. Using 

the above notation we can identify Ω (u) with the following set: 

 = { , , }. 

where . Further, we denote 
                        

It is clear that Ω (u) and  are measurable subsets of . The function  

                                       ,    

is called the orientation dependent distribution of the length of the part of random segment 
which lies within the body. Can we reconstruct a bounded convex body if we know  by 

changing the value of the length l, and how to reconstruct the geometric characteristics of the body 
D by means of . Equation (1) establishes a relationship between the distribution functions 

and  in the interval [0, l]:  

                            (1)  

It is obvious that the distribution function   equals 0 when x≤0 and equals 1 if x≥l. 

Consequently, having  we can reconstruct . There is a problem of inverting  the 

equation (1), that is to find out whether it is possible by the values of the function  

reconstruct  distribution function.  
Compact convex bodies from n-dimensional Euclidean space can be intersected by k-

dimensional  planes  and we can consider distribution functions of the characteristics of cross-
sections (for example, 3-dimensional space a body can be intersected by lines and by planes, and in 
the last case we can investigate distributions of areas and perimeters). 

Let  be the space of all lines in . The line   can be specified by direction  and 
the point of intersection y with the hyperplane . Density d  is the volume element du of the unit 
sphere ), and dy - the volume element  at the point y. Let μ (∙) is a locally finite measure on 

, invariant under the group of Euclidean motions of . It is known that an element of this 
measure up to a constant factor has the following form (see [1]) μ(dg) = dg = dudy. We denote 

  the Lebesgue measure of the unit sphere in . For each bounded convex body 
D, the set of lines intersecting D we denote by  We have  

 
Random line in [D] is the line with distribution proportional to the restriction of μ to [D]. 

Consequently, for each  we have  
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. 

is called the chord length distribution function of D.  
In the study of the distribution function  an important role plays the covariogram 

concept introduced by French mathematician Matheron (see [6], [7]). Let , and the 
translation of D on the vector h is denoted by D + h:  

                                   
The function  

 
is called covariogram of D. Covariogram C(D, h) is invariant with respect to the group of 

translations and reflections.  
Equation (2) establishes a connection between the covariogram and the orientation 

dependent chord length distribution function. Therefore, having an explicit form of  the 
covariogram, you can investigate an interesting properties of the distribution function  (see  
[6], [7]).  

                                 ,                                            (2)  

where xu - vector in  having length x and direction u.  
The question of the existence of a bijection between bounded convex bodies D and 

distribution functions of the chord length  was made by the famous German mathematician 
Wilhelm Blaschke. This question has received a negative response. Further mathematicians 
considered subclasses of bounded convex bodies for which the chord length distribution function 
reconstructed non-congruent elements of the subclass. Although the function of the chord length 
distribution  does not reconstruct the compact convex body, yet it contains information 
about the volume, surface area and other characteristics of the body (see [1] and [3]).  

Matheron in [6] (see also [7]) formulated a hypothesis that there exists a one-to-one 
correspondence between  and bounded convex bodies. In the plane, a positive answer to the 
Matheron’s hypothesis in the class of convex polygons received Nagel (see [11]). Matheron’s 
hypothesis  received a positive solution for any D in the planar case (see [8] - [10]). In the case of 
finite-dimensional spaces with n>3 Matheron’s hypothesis has received a negative answer. In the 
case of 3-dimensional space the problem is open. Nevertheless, for the case of bounded convex 
polyhedron for n=3 Matheron’s hypothesis received a positive answer (see [4]). Note that convexity 
is essential for this set of problems. The authors of [12] have given an example of two non-
congruent and non-convex polygons with the same covariogram.  

Distribution function  in the class of triangles and ellipses is a function that depends 
on direction through the maximal chord in this direction, and we can construct a class of 
parallelograms,  for which such a result is not true. It is interesting to examine the cases in which 
the distribution function  depends on the direction only through the maximal chord. We 
can put a general problem: in any case, the maximal cross section is characterized the compact 
convex body up to translations and reflections.  This type of problems considered Gardner in his 
book [3]. Gardner, in particular, proved that a centrally symmetric convex body in  is uniquely 
reconstructed in the class of all centrally symmetrical bodies (up to parallel translations and 
reflections), if the maximal cross-sections are the same for all directions. Since orientation 
dependent chord length distribution function reconstructs a compact convex body in the planar 
case, and in some cases, it depends on the maximal chord in a given direction, then in the planar 
case by means of  we can solve tomographic problems using maximal sections, in particular, 
we can prove that the maximal chords in all directions reconstruct triangle in the class of all 
triangles (and a similar result holds in the case of ellipses). 
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Аннотация. Восстановление ограниченных выпуклых тел D с помощью случайных k-
мерных плоскостей пересекающих тело D является одной из интересных задач 
Стохастической Геометрии. В частности, задача восстановления ограниченных выпуклых 
тел D по функции распределения длины хорды. Можно рассмотреть случай, когда 
ориентации и длины хорд наблюдаемы. В этом случае мы говорим о зависящей от 
ориентации распределении длины хорды. Все эти проблемы являются задачами 
геометрической томографии, так как зависящяя от ориентации функция распределения 
длины хорды в точке y совпадает с вероятностью, что параллельные X-лучи в 
фиксированном направлении меньше или равны y. Изучение выпуклых тел по зависящей от 
ориентации функции распределения длины хорды эквивалентно изучению тел по их 
ковариограмме. В этой заметке рассматриваются некоторые проблемы и недавние 
результаты касающиеся ковариограмм и их применения к различным задачам томографии. 

Ключевые слова: функция распределения длины хорды, ковариограмма, 

ограниченная выпуклая область. 


