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Abstract. We proposed a joint algorithm of calculat-
ing of transient and steady-state parametric sensitivity of
the three-phase induction motor. Differential equations of
device are presented in normal Cauchy’s form. Transient
process is obtained for given initial conditions, steady-state
- for those that exclude the transient reaction. The results
of simulations are given.
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Introduction.

Calculation of the parametric sensitivity of electrical
devices is the final stage of problem analysis, which is
building a bridge to the task of synthesis. Stages of calcula-
tion of transient and steady-state processes and determine
the static stability derived steady-state processes precede
this stage. We propose a common algorithm that is based
on the general theory of nonlinear differential equations to
solve the complete problem of analysis. Two-point bound-
ary value problem is solved for ordinary differential equa-
tions of the electromechanical state.

To solve this problem it was necessary to first: con-
struct a mathematical model of the device, as well as auxil-
iary model of parametric sensitivity [1]. This was the basis
construction of monodromy matrix of, and on its basis
simulation transient and steady-state process, but at the
same time steady-state parametric sensitivity.

Mathematical model.
We write the equations of the electromagnetic state
of motor as [1]
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Here i,=(ix4,ixs), k=S, R are columns of phase cur-
rents of the stator winding and transformed currents of
rotor winding; u;=(uy4,Uxs), k=S, R are columns of phase
voltages of the stator winding; Ag, Asg, Ars, Az are matrices

Ag =ag(1-a3G); Ag = A = —0150, G,
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Here 1, p are inverse static and differential induc-
tance, we find them by characteristic of magnetization of
machine (no-operation state) as:
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where i, is the module of spatial vector currents magnetiza-
tion

I =200 +iiy+ip)/3; i, =iy, +ip; iy =igy +igg. (7)

In the absence of saturation characteristics of mag-
netization degenerates into a straight line #,, =a,,\,,, where
a,, is inverse main inductance, and the matrix (4) according
to (6) — in diagonal
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which greatly simplifies equation (1). In this case, we get
the simplest of all known mathematical model of asynchro-
nous motor; Rg, Rz — matrix of resistances
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Moreover ag, oz are inverse inductance of dissipation of
stator winding and rotor; ry is resistance of stator phases; 7z
is given resistance of rotor winding; Q is matrix of angular
velocity ®.

Components column of complete linkages of stator
windings and rotor we found so:

W, =L 4y )b—i,,, j=AB k=S,R  (10)
o o,
Elements of columns voltage stator and rotor

ug = (U, sin(o,1), U, sin(o,f—120%)),; u, =0, (11)

where U,,, ®, are amplitude and circular frequency of volt-
age.
The equation of mechanical condition has the form
do_py
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where M(®) is mechanical moment; p, is number of pairs
of magnetic poles; J is moment of inertia of the rotor; Mg is
electromagnetic moment.

The system of differential equations (1), (12) is a
mathematical model of the A-asynchronous motor. It is
intended for the analysis of transient and steady-state proc-
esses. For practical use it is necessary to know the follow-
ing input data: resistance and inverse inductance of dissipa-
tion of stator windings and rotor; characterization in no-
operation state, while neglecting the saturation of the main
magnetic circuit — the inverse of the primary inductance of
the machine, the number of pairs of magnetic poles and the
moment of inertia of the rotor. Input signals are: phase of
supply voltage and mechanical moment on the shaft.

The solution of Cauchy’s problem.
The system of ordinary differential equations (1),
(12) we write in the general form

dx

— = f(x,1), x=(i,0),. 13
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Integration of differential equations (13) for given

initial conditions x(t)‘,:w =x(0) constitutes the Cauchy's

problem for a given system of differential equations, which
presents a problem of calculating the transient electrome-
chanical processes of motor. We must first find the matrix
of monodromy to solve two-point boundary value problem.

The matrix of monodromy.

We will use column of unknown x (13). But for
building auxiliary model of sensitivity, we will form col-
umn of unknown y

y=(,0),. (14)

Appropriate (14) the differential equation (1) has the
form

Y _ow-r, (15)
dt

The matrix of monodromy we write in the form [1]

D =(Az,w),, (16)
where
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Variation equations for calculating submatrix (17)
we obtain by differentiation by x(0) equations of electro-
mechanical state (12), (15).

Differentiating (15), we obtain
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Differentiating by x(0) (12), we obtain
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Derivatives 0¥, /0x(0), 0¥ gz / 0x(0), Oigy / 0x(0),
Oigg /0x(0) are elements of matrices z, Az, so they are

known.

Therefore, the construction of matrix of monodromy
asynchronous motor requires integrating the equations of
first variation (18), (19).

The solution of two-point boundary value problem.

There are some initial conditions x(0), which in the
integration (13) on the interval from 0 to 7 enable enter
directly into the periodic solution, bypassing the transient
response. These initial conditions we consider as an argu-
ment equation of periodicity

£(x(0)=x(0)x(x(0).7) =0,

where T — period.
The solution of nonlinear transcendental equation
(20) we will implement by the Newton’s iteration method

(20)
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x(0)" =x(0)" = 1 (x(0)") " £ (x(0)").

Jacobi's matrix we get by differentiation by x(0) the
objective function (20)

f(x(0) = E-(T),
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where
(23)

Matrix (23) is the desired monodromy matrix of (16)
at time 7=7. Her multipliers give a complete answer about
static stability found periodic state.

At the s-th iteration Newton's formulas (21) linear
variational equation (18), (19) are subject compatible inte-
gration with the non-linear (1), (12) in the time interval
[0,7]. As a result, we find the objective function (20) and
the desired Jacobi's matrix (22), (23), which fully defines
right part of iterative formulas (21) and then - and its de-
sired left side x(0)®". The process of Iteration ends when
it reaches a given accuracy entering in periodic solution.

The matrix of monodromy @ (23) is, in fact, a matrix
of sensitivity to initial conditions. Each of the line can be
considered as a gradient of certain variable in the space of
initial conditions, and each column describes the sensitivity
of the whole set of variables to the same initial conditions.
Therefore, the differential equation (18), (19) can be re-
garded as the model sensitivity to initial conditions.

The model of parametric sensitivity.

The problem of calculating the of parametric sensi-
tivity the easiest to solve variational methods as a simple
addition to the algorithm accelerated search of periodic
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solutions of nonlinear differential equations based on New-
ton's iteration (21).
We denote vector of constant parameters as

A=A 000, (24)

Elements of column A are any constants parameters
which in turn may be functions of other structural constant
parameters. Calculation of parametric sensitivity on these
parameters is performed similarly, but derivatives by A
should be taken according to the rules of differentiation of
complex functions.

Matrix of parametric sensitivities determined as the
derivative

Oox

§==
an.

(25)

Argument x, we find from equation (13) we write the
more general form:

dxldi = f,(x, 1), (26)

Differentiating (26) by A we obtain linear parametric
equation

as _ o, (x,1,1) . o, (x,1,1)
dt ox o
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In steady-state condition x(0)=x(7), so equation (27)
is also S(7) a periodic solution.

Taking partial derivatives by x and ¢ in the right part
(1), (12) is quite a difficult task, but it is also not feasible.
Therefore, we introduce the matrix of auxiliary parametric
sensitivities y elative to some other vector y (14):

dy

= (28)

x

The equation of state of the investigated object in re-
lation to the vector y, we write also in the general form:

dyldt = fz(y,k,t),

f>1s T—periodic by 7.
Differentiating (29) by A and taking into account
(25), (28), we obtain

dr _%(h1) | % (h)
dt dy o

(29)

(30)

Equation (14) also has a periodic solution x(t)

Function y(f), besides performed supporting roles, consti-
tutes often independent interest.

Matrix of parametric sensitivities S in our case re-
peats (16)

S =(Ax"),» GD
where
oL O\ 8

We provide the equation (15) form (29)
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dt

where L' is inverse matrix of static inductances [1]
og(og +1) —OlgOLp
et ag(0g +1) —OLgOlg
—OlgOlp O (0g +1)
—OgOLe (0 +1)
(34)

Recall, that the T we obtain from (5).
To obtain equation (30) is sufficient according to
(28) to differentiate by A (33)

dy,
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where L is matrix of static inductances [1]
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moreover Is=1/0s [z=1/0z is inductance of dissipation of
stator windings and rotor; /;=1/t is basic static inductance

(see (6)).
Differentiating by A (12), we obtain
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Matrix of parametric sensitivity (31) we will be di-
vided into columns and write as a string

S:(SI,SZ,...,SM), (40)
where m is the number of elements of the vector of con-
stant parameters A=(A;,Ay, . . .,\,), A=const. Moreover

S =d(i,0), 0k, i=1,2,....m (1)

are vectors of parametric sensitivities elements of the vec-
tor x to some constant parameters.
The condition of periodicity S we write similarly to
(20)
F(5,(0))=5,(0)-S,(5,(0),T)=0, i=12,...,n. (42)
Equation (42), we also solve the iteration Newton's
method, but since (35) and (38) are linear equations then



solution we get per one iteration. In the zero approximation
(21) will

: -1
$,(0)" =F(5,(0)") S/(T)", i=lom. (43)

Jacobi's matrix is expressed through a known matrix
(16), obtained from the calculation of periodic solution

x(1)=x(t+T):

F(8,(0)")=E-o(T). (44)

In a single iteration of formula (43) compatible inte-
gration on the interval [0,7] are differential equations (1),
(12) with the initial conditions, excluding transient reac-
tion, and (35), (38) with zero initial conditions. Moving in
advance according to (31) from S (0) to x(0) we get the
periodic solution: x(7)+x(t+7)=0,n(¢)+n(r+7T)=0.
Sensitivity S we find from (31).

Periodic solutions are not always easy to use. There-
fore, we can move to their root-mean-square values

(45)

Recall that integral of matrix taken as matrix of inte-
grals of its individual elements.

Time discretization given differential equations and
differential equations of sensitivity (to initial conditions
and parametric) performed by explicit or implicit methods.
Especially harmoniously combined them compatible solu-
tion in the case of implicit methods, because Jacobi's ma-
trices the main equation and equation of objectives match.

The results of simulations.
On Fig. 1 — Fig. 4 are shown the results of the simu-
lation.
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Fig. 1. Steady-state parametric sensitivity of the stator current to the
resistance of rotor winding
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Fig. 2. Steady-state parametric sensitivity of the stator current to the
amplitude of voltage
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Fig. 3. Steady-state parametric sensitivity of the electromagnetic moment
to moment of inertia of the rotor
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Fig. 4. Steady-state parametric sensitivity of the angular velocity to the
inductance dissipation of rotor winding

Below there is a table of full root-mean-square sensi-
tivities (45) of stator current, angular velocity and electro-
magnetic moment to the corresponding constant parameters

rs | Tg U, J Ip Ig
ise | 49 o9 | T T 01 | 3786
o | 12|22 1'(?;:' 3'5)5' 592 | 469
Me | 3750103 ol 18‘5' 2085.6 | 2117.5
Conclusion.

If the calculation of steady-state processes of electri-
cal machines reduced to two-point boundary value problem
for ordinary differential equations of the electromechanical
state, then built on this basis algorithms allow to count
transient and steady-state processes, static stability and
parametric sensitivity on a common mathematical basis of
the general theory of non-linear ordinary differential equa-
tions. The proposed algorithm is effective method of analy-
sis of transient and steady-state processes in problems of
electromechanics. It makes it possible to obtain desired re-
sults with predetermined accuracy. That will not provide
the methods of timeless space.
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