EFFECT OF STARTER CULTURE ON DEVELOPMENT OF CURD (DAHI) AND THEIR ANTAGONISTIC PROPERTY AGAINST SOME ENTERIC PATHOGEN

Animesh Samanta¹, Shrabani Pradhan², Arpita Mandal³, Arpita Patra⁴, Suchismita Roy⁵, Shreya Mandal⁶, Sanjay Kar⁷, Banadeb Sinha⁸, Dilip Kumar Nandi^{9,*}

1,2,3,4,5,6,9Department of Microbiology, Nutrition, and Human Physiology, Raja N L Khan Women's College, Midnapore, Pin-721102, West Bengal, India.
⁷Department of Botany, Midnapur College, Midnapore, Pin-721102, West Bengal, India.
⁸Department of Biochemistry, Midnapore Medical College & Hospital, West Bengal, India.

> ***Correspondence author:** E-mail: dilipnandi2004@yahoo.co.in

ABSTRACT

Background: Curd is an important fermented food which is generally consumed by the community people in large scale and becomes a functional upon incorporating probiotics-live microorganisms due to a great variety of positive health effects.

Methods: In this study, pure cultures of Lactobacillus casei (MTCC1408), L fermentum (MTCC 903), L rhamnosus (MTCC1462), L ingluviei ADK10 (GenBank Accession No-JQ395039), Enterococcus faecium ADK18 (KF032592.1), E durans ADK14 (KF032593.1) and Streptococcus thermophillus (MTCC 1938) were inoculated to pasteurized Amul Milk separately to produce curd. Different physiochemical and antimicrobial characteristic of curd against some pathogen were analyzed to assay the quality of curd.

Results: The results of the study revealed that the moisture content of the curd samples ranged between 86.36%- 88.71% and the pH values of the samples ranged between 3.96-5.43, which were reasonably suitable for curd processing industries in tropical countries. Titratable acidity (0.81-1.71), protein (range 1.4g-9.6g) and fat (2.2g-6.8 g) content also varied with respect to different lactic acid bacterial strains. All seven lactic acid bacteria (LAB) strains showed their antagonistic activity (zone of inhibition 5-10 mm) against four enteropathogenic bacterial strains (Escherichia coli ATCC 25922, Klebsiella pneumonia ATCC 15380, Streptococcus mutans ATCC 25175, Bacillus subtilis ATCC 6633). L ingluviei ADK10 and L. rhamnosus strains showed wide inhibitory spectrum against all the tested strains.

Conclusions: It can be conclude that the physiochemical parameters were varies according to their starter culture with antimicrobial activity against some entero-pathogens and has been fruitful starter culture for the preparation of curd having better health promoting effects.

Key words: Curd, Physiochemial evaluation, antagonistic activity.

INTRODUCTION

Curd is well known dairy Lactic Acid productobtained bv fermentation of milk. It is generally consumed in its original form as an accompanied to the meal or it may be turned into raita by mixing it with grated cucumber, diced boiled potato, fried bits of gram flour batter, or pulsed based vadas. Curd or Dahi may be consumed as a sweet or savory lassi drink or as a dessert containing sugar and fresh diced banana, orange slices, mango bits and other seasonal fruits. In India system of medicine (Ayurveda), curd has been strongly recommended for curing ailments like dyspepsia, dysentery and other gastrointestinal disorders. This product is

also believed to improve appetite and vitality. Some of the beneficial effects of curd are attributed to the antibacterial components during formed the fermentation and the low pH that prevents the growth of putrefactive and other undesirable organisms including potential pathogens and possesses an increased digestibility (1). Further it balanced the fecal enzymes and intestinal micro flora, prevention of cancer, treatment of traveling diarrhoea, antibiotic therapy, and control of ulcer and reduction of serum cholesterol (2).

In recent years, it has been reported that lactic culture increases the vitamins and free amino acid contents of curd. Certain microbes are capable of colonizing the lower intestine, improving gastrointestinal health and consequently enhancing immune function (3). The addition of specific lactic acid bacteria to milk used in the production of curd enhances the digestibility and nutrient value of milk. It is also known as probiotic or functional food as it possesses live lactic acid bacteria. Lactic acid is generated by bacteria as a result of the breakdown of carbohvdrates. This process effectively lowers the pH of the food product to the point where the proliferation of pathogenic microorganisms reduced due to certain antibacterial substances were produced by starter cultures. resulting in the inactivation of undesirable microorganisms in cultured dairy products.

In the present study we were selected some pure cultures of lactic acid bacteria (L. casei, L fermentum, L rhamnosus, L ingluviei ADK10, E. faecium ADK18, *E* durans ADK14 and S. thermophillus) and wereinoculated to pasteurized Amul milk separately to produce curd. All the said culture were nonpathogenic and experiment was done model(4, 5, 6, 7).rat Different on physiochemical and antimicrobial characteristic curd against of some pathogen were analyzed to assay the quality of curd.

MATERIALS AND METHODS

Selection of Strain:

Bacterial strain of Lactobacillus casei MTCC1408, L fermentum MTCC 903, L rhamnosus MTCC1462, Streptococcus thermophillus MTCC 1938 were obtain from microbial type culture collection (MTCC) and the pure culture of L ingluviei ADK10(GenBank Accession No-JQ395039), Enterococcus faecium ADK18(KF032592.1), E durans ADK14 (KF032593.1) were obtained from the Department of Microbiology, Raja N.L. khan Women's College. These cultures were selected for the development of curd in the present study. For showed the comparative cell and colony character of all selected strain (phenotypic characteristics i.e. colony characteristics, gram staining, cell shape and catalase production) were plated onto de Man-Rogosa-Sharpe (MRS) agar [composition (w/v) 1.0% peptone, 0.8%

$M \% = W1 - W2 / W \times 100$

Where, M = Moisture, W1 = Weight of plate& curd, W2 = Weight of plate & curd after drying.

Total solids:

The weight of the residue obtained moisture content analysis from was expressed as percentage total solids using the formula below (11).

meat extract, 0.4% yeast extract, 2.0% glucose, 0.5% sodium acetate trihydrate, 0.1% polysorbate 80 (also known as Tween 0.2% dipotassium 80), hvdrogen phosphate, 0.2% triammonium citrate, 0.02% magnesium sulfate heptahydrate 0.005% manganese and sulphate tetrahydrate, pH 6.5] and incubated at 37°C under anaerobic condition for 24-48 h

Preparation of curd:

Seven conical flask, each containing 100 ml of Standardized amul milk was heated to 85°C for 30 minutes, cooled to 40°C. The milk samples were inoculated individually at 1% level with a specific species of Lactobacillus casei, L fermentum, L rhamnosus. L ingluviei ADK10. Enterococcus faecium ADK18, E durans ADK14 and Streptococcus thermophillus under the laminar air flow chamber to avoid contamination. All samples were incubated at 37°C for 48hours for activation of culture to set the curd (8).

Sensory Evaluation:

colour flavor Body, and was evaluated by the method describe by Stephanie et.al (9).

Moisture content determination:

The moisture content of the curd products was determined according to the Association of Official Analytical Chemists method (AOAC, 1995). Each curd product (10 g) was placed in an oven at 105°C for 3 h. Reading was taken at a constant weight. The moisture content was then expressed as the percentage (%) of the dry weight of sample (10).

Total solid (%) = weight of dish + Dry curd /weight of sample × 100

Physiochemical test:

All the curds were analyzed for body, color, flavour and texture, chemical Fat%, Protein%, qualitypН, carbohydrate% and titratable acidity% of curd. pH was measured by pH meter at different time interval, titratable acidity was measured with NAOH and phenolpthalin according to AOAC procedure (12) fat by Gerber's Method, Protein was determined by the Kjeldahl method as per International Diary Federation (IDF) (13), carbohydrate by Nelson-Somogi's method and others vitamins and mineral contents measured as described by Aneja et.al. (14).

Detection of antimicrobial activity:

After incubation, cell free solutions of bacterial cultures were obtained by centrifugation (10 min \times 15000g at 4°C) followed by filtration of the supernatant by 0.22 µm cellulose acetate filter. Supernatant of curds and pure curd

samples was taken for the antimicrobial test. Overnight broth culture of target strains (Escherichia coli,Klebsiella pneumonia, Streptococcus mutans, Bacillus subtilis) were inoculated (0.1 ml) on solid Mueller-Hinton agar medium by spreading. After 10 minutes of contact, the plates were dried for 20 minutes. Six wells were made and filled with 100 µl of previously prepared cell free solutions. Target strain inoculated plate with un-inoculated MRS broth served as control. Plates were incubated at 37°C for 24 hours and diameter of inhibition zones were measured with calipers. The antimicrobial tests were done in duplicate and the mean values were recorded (10,15,16).

RESULTS AND DISCUSSION

Phenotypic Characteristics:

Cell and colony character of all selected strain were determined and tabulated (Table- 1).All the bacteria were gram positive, round in shape and catalase negative.

Table 1: Comparative cell and colony character of all lactic acid bacteria isolates and collected strains and primary screening profile.

conceted strains and primary screening prome.								
Bacterial	Cell character		Colony ch	Catalase				
strain	Shape	Gram staining	Shape	Color	activity			
Lactic acid bact	teria isolates		-					
L. ingluviei ADK10	Plumped rod	Positive	Round	Grayish white	Negative			
<i>E. durans</i> ADK14	Coccus	Positive	Round	Grayish white	Negative			
E. faecium ADK18	Oval	Positive	Round	Grayish white	Negative			
Strain from MT	CC							
Lactobacillus casei	Oval	Positive	Round	Grayish white	Negative			
Lactobacillus fermentum	Plumped rod	Positive	Round	Gray	Negative			
Lactobacillus Rhamnosus	Plumped rod	Positive	Round	Milky white	Negative			
Streptococcus thermophilus	Coccus	Positive	Round	Grayish white	Negative			

Sensory Evaluation:

Body of the curd means the adhesion of particles of curd with each other and water released. LAB contributes to the aroma and flavour of fermented products. They acidify the food, resulting in a tangy lactic acid taste, frequently exert proteolytic and lipolytic activities, and produce aromatic compounds. Wild strain starter cultures play an important role in flavour formation because they have a high biosynthetic capacity and produce aromatic compounds. The addition of as adjunct cultures for curd manufacturing increases the level of free amino acids, peptides, and free fatty acids, leading to flavour intensity and accelerated cheese ripening. In our study, it was showed that *L rhamnosus*, *L ingluviei* ADK10 was good result with compared to standard Amul dahi (Table 3).

Table 2: Growth temperatures and acid production moisture (%) &Total solid (%) by
different starter culture for making curd with compared to Amul dahi*.

Starter Culture used for making curd	Growth temperature ^o C			Total solid (%)	
L. casei	25-30	1.0-1.13	88.01±1.08ª	20.54 ± 1.31^{a}	
L. fermentum	_	Small	87.36±1.38 ^b	23.39 ± 1.21 ^b	
L. rhamnosus	_	1.41-2.0	87.56±0.68 ^b	22.59 ± 1.25^{b}	
L. ingluviei ADK10	_	0.91-1.0	84.53±0.49°	21.27 ± 1.46^{b}	
E. faecium ADK18	35-40	0.83-1.0	87.59±0.84 ^b	18.47±1.74°	
E. durans ADK14	_	Small	88.33±1.13ª	16.72 ± 2.23^{d}	
S. thermophillus		1.08-2.0	88.93±1.23ª	16.97±2.11 ^d	
*Amul Dahi		0.88-1.0	85.37± 0.71°	21.83±0.88 ^b	

*Letters (a, b, c, d) in a column are significantly different at p<0.05

Table 3—Characteristic of cu	rd prej	pared by	selected	starter	culture

Starter culture	Body	color	flavour
Lactobacillus casei	Tough	White	Slight acidic
Lactobacillus fermentum	Firm	White	Fair
Lactobacillus rhamnosus	Tough	Cream	Good
Lactobacillus ingluviei ADK10	Tough	White	Very good
Enterococcus faecium ADK18	Tough	Cream	Fair
Enterococcus durans ADK14	Loose	Cream	Mild
Streptococcus thermophillus	Tough	White	Fair

Acidification Properties:

Rapid acidification is a main concern for development of starter cultures suitable for dahi production. It was revealed that the enzyme activity of starter bacteria used in bio-yoghurt production resulted in significant decrease in P^H as well as acidity (17, 18, 19).during storage Mean acidification data measured for the seven strains selected for the development of starter cultures are shown by species in Table 2. Strains within a species generally exhibited similar acidification activities in milk; this is seen by the low standard deviations of p^H. *L. fermentum* displayed the fastest acidification rate with a pH of

4.73±0.2 after 8 hours and the lowest pH of 3.96 after 48 hours (Fig. 1). Good acidification properties were also detected for L. ingluviei ADK10, L. rhamnosus and L. casei with pH 4.86, 4.64, 4.37 after 48 hours. Which ware nearly similar to the standard Amul milk. Strains (curd) of the other species did not decreased pH below 5.0 within 48 hours. The P^{H} values of the samples were reasonably justified - and suitable for curd marketed in tropical areas because of the expected effect of bad storage conditions such as high temperatures encountering in some zones in India which can affect the acidity of curd.

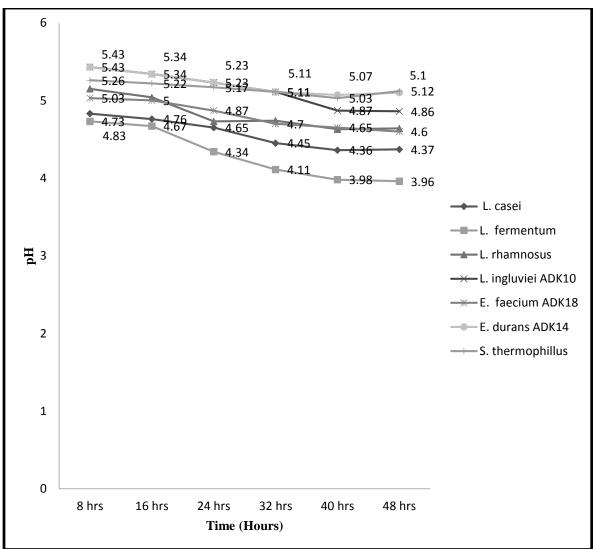


Fig. 1. Changes of pH at different Time Duration

Physico-Chemical Properties of the Experimental Curd:

Curd is one of the most important products in the family of fermented milks. The total quantity of milk converted into milk products, about 15% is used for Dahi making. Dahi is reported to have better nutritive value than milk. Though there was no increased in carbohydrate, protein and fat (Fig. 2,3,4) content of milk during fermentation (2). The chemical composition of Amul milk used for the production of Dahi fell within the following averages: titratable acidity 0.21, carbohydrate 35.9 %, fat 9 % and protein 6.23%. The changes of some physico-chemical properties of the seven curd samples are presented table 2 & 4. Result showed that changes of vitamins and minerals of milk during curd formation were varied according to bacterial strain used. But it was not changed significantly in *L. rhamnosus & L. ingluviei* ADK10 curd with respect Amul milk content (Table 4) (Per 100 ml of milk content: Calcium-144mg, Phosphorous- 92mg, Vitamin A-106 I.U, Thiamine- 53 ug, Riboflavin- 157 ug, Nicotinic acid- 94 ug, Biotin- 31 ug, Folic acid-151 ug, Vitamin B12- 0.16 ug, Ascorbic acid – 1.3 mg.) whereas mineral and vitamin content decreased significantly compared with that of milk content.

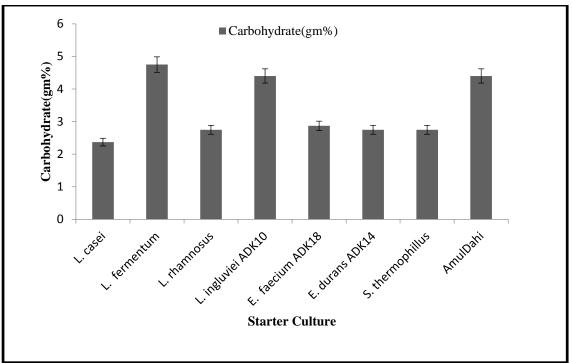


Fig. 2. Carbohydrate (gm%) of different type of curd sample.

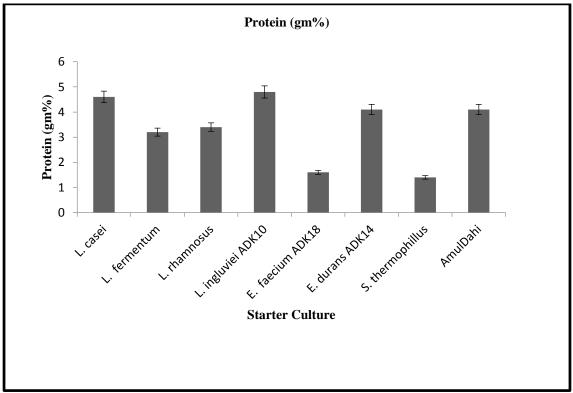


Fig. 3. Protein (gm%) of different type of curd sample.

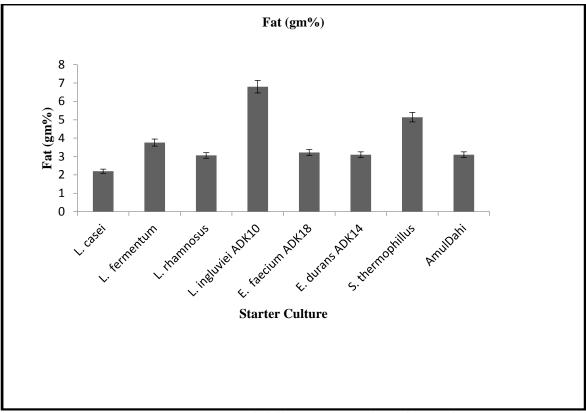


Fig. 4. Fat (gm%) of different type of curd sample.

Constituent	*Milk	L casei	L	L rhamnosus	L ingluviei ADK10	E. faecium ADK 18	E. durans ADK14	S. thermophillus
Calcium (mg)	144±0.57ª	143±0.88ª	fermentum 142.33±0.88°	142.66±0.66°	143.33±0.66ª	142±0.86	143±1.0ª	142.6±0.66°
Phosphorou s (mg)	92±0.28ª	85±0.57⁰	85.33±0.3°	86.33±1.20°	88.33±0.66°	86.6±1.85°	85±0.57⁰	80.6±0.80⁴
Vitamin A (I.U.)	105.6±0.80ª	85.3±0.88°	81±0.57°	90.6±1.4⁴	90±1.15⁴	80±0.57¢	83.6±0.30°	79.6±0.80=
Thiamine (ug)	53±1.15ª	41±0.57⊳	38.6±0.88⊧	45.6±0.80⁴	46.5±0.50⁴	35±1.52•	41.6±1.20⊳	34±0.57•
Riboflavin (ug)	157.3±1.45ª	141±1.15°	139±0.80°	146±1.45⁴	141±1.76⊳	125±1.33°	131.3±0.88 ^f	134±0.57≋
Nicotinic acid (ug)	93±0.57ª	80.3±1.45°	78±0.57°	83±0.57⁰	83.3±0.88⊧	82.3±1.45	79±1.0⊳	75±1.14⁴
Biotin (ug)	31±1.15ª	-	1.3±0.05°	4.9±0.11¢	3.06±0.13⁴	1.3±0.20 ^b	1.93±0.32»	-
Folic acid (ug)	150±2.64ª	153±0.57»	153.6±1.3°	170±2.08¢	167±1.524	163.3±1.2•	153.3±0.88°	156.3±1.20•
Vitamin B12(ug)	0.16±0.01	-	-		-	-	-	-
Ascorbic acid (mg)	1.3±0.08ª	0.7±0.11⊳	0.73±0.12⁰	1.2±0.17°	1.1±0.1¢	1.06±0.03⊧	0.53±0.08⁴	0.76±0.17∘
*Values give	n per 100 gm	of product	•	•				

Table 4: Chemical Composition	of Amul Milk & Dahi
--------------------------------------	---------------------

Data with different superscripts (a, b, c, d, e, f, g) in a specific row differ from each other significantly (p<0.05).

Antimicrobial Activity:

Antimicrobial activity of the seven curd were detected against samples four enteropathogenic bacterial strains: Escherichia coli,Klebsiella pneumonia, Streptococcus mutans, Bacillus subtilis. Lactic acid bacteria are reported to produce some antimicrobial substances that are inhibitory for spoilage and pathogenic bacterial strains. Low molecular mass substances like lactic acid (also lower the medium pH), H₂O₂, CO₂, ethanol, diacetvl (also a flavouring agent) and high molecular mass compounds like bacteriocins are reported to be produced by LAB present in milk or fermented milk products (20,21). In the present study both the cell free solution (supernatant) and Pure curd of the seven

strains were tested to know if the antimicrobial metabolites were extracellular and released into the growth medium (15). All the bacteria showed inhibition against tested strains to varying degrees (Table 5). The inhibitory products are extracellular and diffusible. All curd sample were active against more than one tested strains (range from 5-10 mm). For example, we have used 7 LAB strains CFS and experimental Dahi inoculated with them as their Starter culture in respect to control. L rhamnosus (MTCC1462), L ingluviei ADK10 two of them showed inhibition against both gram positive and gram negative pathogenic strain and most promising result as CFS and crude curd in respect to control (Fig. 5).

Table 5: Antimicrobial effect of curd produce by different starter culture

Curd Sample	Name of pathogens and spoliage bacteria							
	S. muto	ın	n B. subtili		lis E.coli		K. pneumonia	
	Super-	Curd	Super-	Curd	Super-	Curd	Super-	Curd
	natant		natant		natant		natant	
L. casei	+++	-	+	-	++	++	++	++
L. fermentum	-	+	-	+	-	-	-	-
L. rhamnosus	+++	+++	+	+++	+	+++	-	+
L. ingluviei	++++	+++	++++	+++	+++	+++	+++	++
ADK10								
E. faecium	-	-	-	+	+	+	++	+
ADK18								
E. durans	-	++	-	+	-	+++	-	++
ADK14								
S. thermophillus	-	+	-	-	-	-	-	-
Amul dahi	+++	-	++	+	++	+	++++	++

*Inhibition Zone $\geq 15 \text{ mm}$ (++++), Zone $\geq 10 \text{ mm}$ (+++), Zone $\geq 5 \text{ mm}$ (++) , Zone $\leq 5 \text{ mm}$ (+), Negative (-) .

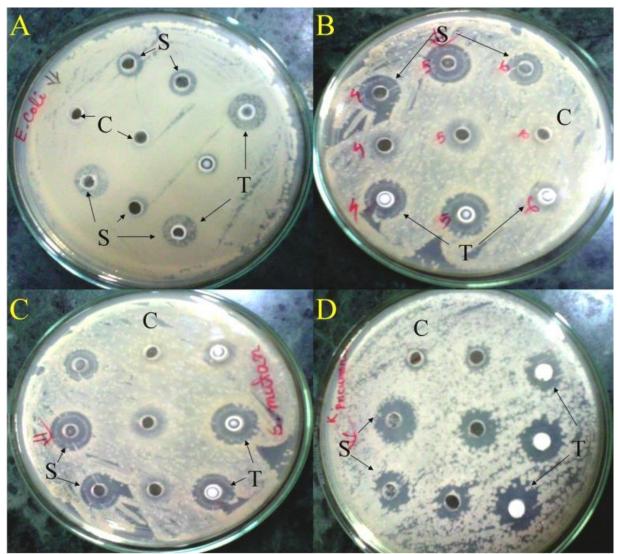


Fig. 5. Antagonistic activity against four Enteropathogenic bacterial Strains – (A) E. coli, (B) B. subtilis, (C)K. pneumonia (D) S. mutan.
C: Control: T: crude curd: S: Cell free supernatant.

CONCLUSION

Novel insights into the metabolism of LAB propose perspectives for the application of a new generation novel starter cultures. Functional LAB starters may offer several health, marketing, and technological advantages. However. fundamental and applied research is still required to optimally execute functional starter cultures in the existing production technology and to obtain quantitative data. Mathematical analysis of the kinetics of functional starter cultures may give up valuable information about the relationship between the food environment and bacterial

functionality, and may contribute to optimal strain selection and process design. This may result in better process control, enhanced food safety and quality, and reduction of economic losses.

ACKNOWLEDGEMENT

We are thankful to the hon'ble Director of Defence Institute of Physiology & Allied Sciences (DIPAS) under Defence Research & Development Organisation (DRDO), Government of India, New Delhi, for their financial support to carry out this project work [TC/366/TASK-187(DRN)/DIPAS/ 2012 Date-6/7/2012.

REFERENCE:

- 1. Conly J M & Johnston L B, Coming Full Circle: From Antibiotics to Probiotics and Prebiotics, *The Canadian Journal of Infectious Disease and Medical Micro-biology*, 15 (2004) 161-163.
- 2. Gandhi D N, Potential application of lactic acid bacteria for the development of fermented milk products and in bio-processing of whey, *Indian Dairyman*, 54 (2002) 64-67.
- 3. Mensah P, Fermentation-The Key to Food Safety As-surance in Africa, Food Control, 8 (1997) 271-278.
- 4. Mandal A, Paul T, Roy S, Mandal S, Pradhan S *et al*, Therapeutic potential of Lactobacillus ingluviei ADK10, a newly established probiotic organism against acetaminophen induced uremic rats, *Biologia*, 68 (2013) 1072-1078.
- 5. Mandal A, Roy S, Das K, Mandal S, Pradhan S *et al*, Assessment of antiuremic and antioxidative efficacy of newly established probiotic strain, *e-SPEN Journal*, 8 (2013) 155-163.
- 6. Patra A, Mandal A, Roy S, Mandal S, Mandal K C *et al*, Protective effect of selected urease positive lactobacillus strain on acetaminophen induced uremia in rats, *Biomedicine and preventive nutrition*, 4 (2014) 271-276.
- 7. Patra A, Mandal A, Samanta A, Das M T, Mandal S *et al*, Therapeutic effect of Streptococcus thermophillus (MTCC 1938) on acetaminophen induced uremia in experimental rats, *Indian Journal of Biotechnology*, 13 (2014) 318-323.
- 8. Adak A, Mondal P S, Maity C, Ghosh K, Haldar K S *et al*, Potentialities of newly isolated *Bacillus subtilis* and *Lactobacillussp* for curd preparation and a comparative study of its physiochemical parameters with other marketed curd, *Indian journal of experimental biology*, 51 (2013) 910-918.
- 9. Irvine L S & Hekmat S, Evaluation of Sensory Properties of Probiotic Yogurt Containing Food Products with Prebiotic Fibres in Mwanza, Tanzania, *Food and Nutrition Sciences*, 2 (2011) 434-439.
- 10. Alvarado C, Garcia Almendarez B E, Martin S E & Regalado C, Food-associated lactic acid bacteria with anti) microbial potential from traditional Mexican foods. *Rev Latinoam Microbiol*, 48 (2006) 260-268.
- 11. Munzur M M, Islam M N, Akhter S & Islam M R, Effect of different levels of vegetable oil for the manufacture of dahi from skim milk, *Asian Aust J Anim Sci*, 17(2004) 1019-1025.
- 12. Association Of Official Analytical Chemist (AOAC): Official method of analysis 16th Edn. Washington DC, USA (1995).
- 13. International Diary Federation: Determination of nitrogen content and calculation of protein content. Provisonal international IDF standard 20 A. Brussels (1986)
- 14. Aneja R P, Mathur B N, Chandan R C & Benerjee A K, Technology of Indian milk products; *Dairy India Publication*, New Delhi (2002).
- 15. Patra A, Sil1 J & Das B K, Isolation and characterization of dominant lactic acid bacteria from Dahi at Medinipur and evaluation of their antibacterial activity, *Internet Journal of Food Safety*, 13 (2011) 157-163.
- 16. Mandal S, Patra A, Samanta A, Roy S, Mandal A *et al*, Analysis of phytochemical profile of *Terminalia arjuna* bark extract with antioxidative and antimicrobial properties, *Asian Pacific Journal of Tropical Biomedicine*, 3 (2013) 960-966.
- 17. Ranathunga M T N & Rathnayaka R, Comparison of Physico-chemical and Sensory Properties of Probiotic and Natural Yoghurt, *Journal of Biological and Food Science Research*, 2 (2013) 1-6.
- 18. Singh G, Kapoor I P S & Singh P, Effect of volatile oil and oleoresin of anise on the shelf life of yoghurt, *J Food Process Preserv*, 35 (2011) 778–783.
- 19. Ozer B, Kirmaci A, Oztekin S, Hayaloglu A A & Atamer M, Incorporation of microbial transglutaminase into non fat yoghurt production, *International Dairy Journal*, 17 (2007) 199–207.
- 20. Rattanachaikunsopon P & Phumkhachorn P, Lactic acid bacteria: their antimicrobial compounds and their uses in food production, *Annals of Biological Research*, 1 (2010) 218-228.
- 21. Ammor S, Tauveron G, Dufour E & Chevallier I, Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility 1—Screening and characterization of the antibacterial compounds, *Food Control*, 17 (2006) 454–461.

How to cite this article: Samanta A., Pradhan S., Mandal A., Patra A., Roy S., Mandal S., Kar S., Nandi D. K. Effect of Starter Culture on Development of Curd (Dahi) and Their Antagonistic Property Against Some Enteric Pathogen. Indian J Microbiol Res 2015;2(1):30-39.