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1 Introduction

The fuzzy differential equations have many real applications, and were studied extensively

during the last decades [12, 15, 16, 22]. The fuzzy differential equations with discontinu-

ous right-hand side and the optimal control of fuzzy differential equations require fuzzy

differential inclusions [3, 18, 20]. The theory of the fuzzy differential equations and in-

clusions is presented in [9, 14, 17]. Among others we notice [1], where fuzzy differential

equations with state constrains are studied with connection to set differential equations.

We study the following fuzzy differential inclusion

ẋ(t) ∈ F (t, x(t)), x(0) = x0, t ∈ [0, 1]. (1)

Here F : [0, 1]× E ⇒ E, where E is the space of fuzzy numbers.

Our target is to investigate the main properties of the solution set of (1) under com-

pactness type assumptions. We first prove the variant of Kneser’s theorem.

We refer to [2, 8, 10] for theory of ordinary and evolution differential inclusions with

and without state constrains.

Let E = {x : Rn → [0, 1]; x satisfies 1) – 4) } be the space of fuzzy numbers. Here:

1) x is normal, i.e. there exists y0 ∈ Rn such that x(y0) = 1.

2) x is fuzzy convex, i.e. x(λy + (1− λ)z) ≥ min{x(y), x(z)} whenever y, z ∈ Rn and

λ ∈ [0, 1].

3) x is upper semicontinuous, i.e. for any y0 ∈ Rn and ε > 0 there exists δ(y0, ε) > 0

such that x(y) < x(y0) + ε whenever |y − y0| < δ, y ∈ Rn.

4) The closure of the set {y ∈ Rn; x(y) > 0} is compact.

The set [x]α = {y ∈ Rn; x(y) ≥ α} is called α-level set of x.

It follows from 1) – 4) that the α-level sets [x]α are convex compact subsets of Rn for

all α ∈ (0, 1]. The fuzzy zero is defined by 0̂(y) =

{
0 if y 6= 0,

1 if y = 0.

The metric in E is defined by D(x, y) = sup
α∈(0,1]

DH([x]
α, [y]α), where DH(A,B) =

max{max
a∈A

min
b∈B

|a− b|,max
b∈B

min
a∈A

|a− b|} is the Hausdorff distance between the convex com-

pact subsets of Rn.

The distance from a ∈ E to the closed bounded set B ⊂ E is defined by dist(a, B) =

inf
b∈B

d(a, b) and the Hausdorff distance between the closed and bounded subsets of E is

defined by dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

The map f : I → E is said to be strongly measurable if there exists a sequence
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{fm}
∞
m=1 of step functions fm : I → E such that lim

m→∞
D(fm(t), f(t)) = 0 for a.a t ∈ I.

It is easy to see that if f(·) is strongly measurable then [f ]α(·) are measurable for

every α ∈ (0, 1]. The converse does not necessarily holds (cf. [12]).

It is well known that every strongly measurable function is almost separably valued i.e

there exists a null set N ⊂ I such that f(I \N) is contained in a separable metric space.

Due to Lusin’s Theorem f : I → En is strongly measurable if and only if for all ε > 0

there exists Iε ⊂ I with meas(I\Iε) ≤ ε such that f(·) is continuous on Iε. If f : I → E is

strongly measurable and D(f(t), 0̂) ≤ λ(t), where λ(·) is Lebesgue integrable real valued

function then f is Bochner integrable and

t∫

0

f(s)ds = lim
m→∞

t∫

0

fm(s)ds.

where fm(·) are step functions with fm(t) → f(t) for a.a. t. We refer the reader to [21]

for the theory of vector valued (Bochner) integrals.

In the fuzzy set literature starting from [19] the integral of fuzzy functions is defined

level-wise, i.e. there exists g(t) ∈ E such that [g]α(t) =

t∫

0

[f ]α(s)ds. As it is shown in

[12] there are level-wise integrable functions which are not almost everywhere separably

valued, i.e. not Bochner integrable.

The function g : I → E is called absolutely continuous (AC) if there exists a strongly

measurable and continuous function f : I → E such that g(t) =

t∫

0

f(s)ds.

Denote by Fn, the space of all compact and convex fuzzy sets of E. If u ∈ F1, then

u is called a fuzzy interval and the α-level set [u]α is a non empty compact and convex

set for all α ∈ [0, 1]. The operations of sum and scalar multiplication on F are defined as

(u⊕ v)(x) = sup
y∈Rn

{u(y) ∧ v(x− y)} and

(λ · u)(x) =

{
u
(
x
λ

)
, λ 6= 0

χ{0}(x), λ = 0

where χ{0} is characteristic function of {0}. The following properties are true [u⊕ v]α =

[u]α + [v]α and [λ · u]α = λ[u]α, for all α ∈ [0, 1].

Let u, v ∈ Fn. If there exists w ∈ Fn such that u = v ⊕ w, then w is called the

H−difference of u and v, and it is denoted by u⊖ v.
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Let F : T → Fn and t0 ∈ T . we say that F is )generalized) differentiable at t0 if (H)

or (B) (seee.g. [4, 5]), where

(H) there is an element F ′(t0) ∈ Fn such that for all h > 0 sufficiently near to 0, there

are F (t0 + h)⊖ F (t0), F (t0)⊖ F (t0 − h) and limits

lim
h→0+

F (t0 + h)⊖ F (t0)

h
and lim

h→0+

F (t0)⊖ F (t0 − h)

h

are equal.

(B) there is an element F ′(t0) ∈ Fn such that for all h < 0 sufficiently nearby 0, there

are F (t0 + h)⊖ F (t0), F (t0)⊖ F (t0 − h) and limits

lim
h→0−

F (t0 + h)⊖ F (t0)

h
and lim

h→0−

F (t0)⊖ F (t0 − h)

h

which are equal.

Note that if F is (H) differentiable, then it is not (B) differentiable and vice versa.

Theorem 1. Let F : I → F be a function. Then:

(1) If F is (H) differentiable, then fα and gα are differentiable functions and

[F ′(t)]α = [f ′
α, g

′
α]. (2)

(2) If F is (B) differentiable, then fα and gα are differentiable functions and

[F ′(t)]α = [g′α, f
′
α]. (3)

Theorem 2. Let F : T → F be a continuous function.

(1) Let F be (H) differentiable. If F ′ is integrable then for all t ∈ T,

F (t) = F (a)⊕

∫ t

a

F ′(s)ds. (4)

(2) Let F be (B) differentiable. If F ′ is integrable then for all t ∈ T,

F (t) = F (a)⊖ (−1)

∫ t

a

F ′(s)ds. (5)
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Theorem 3. The mapping x : T → E is a solution of (1) w.r.t. (H) iff

x(t) = x0 ⊕

∫ t

a

f(s)ds, where f(s) ∈ F (s, x(s)) is strongly measurable. (6)

The mapping x : T → E is a solution of (1) w.r.t. (B) iff

x(t) = x0 ⊖

∫ t

a

f(s)ds, where f(s) ∈ F (s, x(s)) is strongly measurable. (7)

Example 1. Let C be fuzzy and not crisp and let x0 be crisp. Consider the fuzzy differ-

ential equation:

ẋ = C, x(0) = x0. (8)

There exists a solution of (8) w.r.t. (H) On the other hand there is no solution of (8)

w.r.t. (B).

In general, because

∫ t

a

f(s)ds ⊀ χ{0} for f(t) 6= χ{0}, the fundamental fuzzy differen-

tial equation {
x′(t) = f(t)

x(0) = χ{0},

}
(9)

does not have solution w.r.t. (B).

Recall that the map F : I×E ⇒ E is said to be upper semicontinuous (USC) at (s, y)

if for every ε > 0 there exists δ such that F

(
I
⋂[

s−
δ

2
, s+

δ

2

]
, y + δB

)
⊂ F (s, y)+εB.

Here B = {x ∈ E : D(0, x) ≤ 1} is the unit ball. It is said to be continuous at (s, y)

when for every ε > 0 there exists δ such that dH(F (s, y), F (t, x)) < ε for every t ∈ I and

x ∈ E such that |t− s|+D(x, y) < δ. If δ does not depend on (s, y) then F (·, ·) is called

uniformly continuous.

The multimap F (·, ·) is said to be almost USC (continuous, uniformly continuous)

when for every δ > 0 there exists a compact Iδ ⊂ I with Lebesgue measuremeas(I\Iδ) < δ

such that F (·, ·) is USC (continuous, uniformly continuous) on Iδ × E. The latter is

equivalent to say that there exists a sequence {Im}
∞
m=1 of pairwise disjoint compact sets

with meas(Im) > 0 and meas

(
∞⋃

m=1

Im

)
= meas(I) such that F (·, ·) is continuous on

Im × E for every m.

The set E is a complete semilinear metric space with respect to metric D(·, ·). This

space is not locally compact and nonseparable. From Theorem 2.1 of [12] we know that
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E can be embedded as a closed convex cone in a Banach space X. The embedding map

j : E → X is isometry and isomorphism and hence f : I → E is continuous iff j(f)(·)

is continuous. Furthermore, j(·) preserves differentiation and integration. Namely if

ḟ(t) exists then
d

dt
j(f)(t) also exists and j

(
ḟ
)
(t) =

d

dt
j(f)(t), where

d

dt
is the usual

differential operator.

Now if g(·) : I → E is strongly measurable and integrable then j(g)(·) is strongly

measurable and Bochner integrable and

j




t∫

0

g(s)ds



 =

t∫

0

j (g) (s)ds for all t ∈ I. (10)

Consider the fuzzy differential equation:

ẋ(t) = f(t, x(t)), x(0) = x0, t ∈ [0, T ]. (11)

Theorem 4. Let there exists an integrable function η(·) such that D(f(t, x), 0̂) ≤

η(t)(1 + |x|). Assume that f(·, x) is strongly measurable, while f(t, ·) is locally Lips-

chitz, i.e. for every x ∈ E there exists a neighborhood Ux ∈ x and a Lebesgue integrable

function lx(·) such that D(f(t, y), f(t, z)) ≤ lx(t)D(y, z) for every y, z ∈ Ux. Then the

differential equation (11) admits an unique solution w.r.t. (H) on the interval I which

depends continuously on x0.

Proof. Suppose j : E → X is an embedding map defined by j(x) = y, Also we denote

g(t, y) = j (f(t, x)). Then g(·, y) is strongly measurable, while g(t, ·) is locally Lipschitz

and |g(t, y)| ≤ η(t)(1 + |y|). It is well known that the problem

ẏ(t) = g(t, y); y(0) = y0

has a unique solution y(·), which depends continuously on y0. Thus x(t) = j−1 (y(t)) is a

unique solution of (11).

In the next section we recall the main properties of the measures of noncompactness

used in this paper. In the third section the differential inclusion (1) is studied.
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2 Measure of non compactness and some of its prop-

erties

Let A be a bounded subset of complete metric space Y with metric ̺Y (·, ·). The Hausdorff

measure of noncompactness β : A → R+ is defined as

β(A) := inf{d > 0;A can be covered by finite many balls with radius ≤ d},

and ”Kuratowski measure” of noncompactness ν : A → R+ is defined by

ν(A) := inf{d > 0 : A can be covered by finite many sets with diameter ≤ d},

where for any bounded set A ⊂ Y we denote diam(A) = sup
a,b∈A

̺Y (a, b), and ̺Y (·, ·) is the

distance in Y . It is easy to see that for any ε > 0 there exists a ball Br with radius

r ≤ diam(A) + ε such that A ⊂ Br.

Further in this section γ(·) is either ν(·) or β(·). Some properties of γ(·) are listed

below:

(i) γ(A) = 0, iff Ā is compact and γ(A) = γ(co A).

(ii) γ(aA + bB) ≤ |a|γ(A) + |b|γ(B).

(iii) If A ⊂ B then γ(A) ≤ γ(B).

(iv) γ(A
⋃
B) = max(γ(A), γ(B)).

(v) γ(·) is continuous with respect to the Hausdorff distance.

The following property of β is proved in [10] and [13].

Theorem 5. Let Y be separable Banach space and let {gn(·)}
∞
n=1 be an integrally bounded

sequence of measurable functions from [0, T ] into Y. Then:

β

(∫ t+h

t

{
∞⋃

i=1

gi(s)

}
ds

)
≤

∫ t+h

t

β

{
∞⋃

i=1

gi(s)

}
ds,

where t, t+ h ∈ [0, T ].

Now we prove another property of j(·).

Theorem 6. If A ⊂ E then β(j(A)) ≤ β(A) ≤ 2β(j(A)).

Proof. Let A ⊂ E and let A ⊂
m⋃

k=1

Bk, where Bk are balls in E. Then j(A) ⊂
m⋃

k=1

j(Bk),
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i.e. β(A) ≥ β(j(A)), because j(·) preserves the diameters of Bk. Furthermore, if

j(A) ⊂

p⋃

i=1

Uk, where Uk are balls in X with Uk

⋂
j(A) 6= ∅, then A ⊂

p⋃

i=1

j−1(Uk

⋂
j(A)).

Furthermore, the diameter diam(Uk

⋂
j(A)) ≤ diam(Uk) and 2β(j(A)) ≥ β(A).

Remark 1. Since β(A) < 2β(A), one has that β(A) ≤ β(j(A)) ≤ 2β(A) due to Theorem

6.

Theorem 7. Let {fn(·)}
∞
n=1 be a (integrally bounded) sequence of strongly measurable

fuzzy functions defined from I into E. Then t → β{fm(t), m ≥ 1} is measurable and

β

(∫ t+h

t

{
∞⋃

m=1

fm(s)

}
ds

)
≤ 2

∫ t+h

t

β

{
∞⋃

m=1

fm(s)

}
ds,

Proof. Since fm are strongly measurable, one has that j(fm)(·) are also strongly measur-

able and hence almost everywhere separably valued.

Thus there exists a separable Banach space Y ⊂ Y such that j(fm)(I \N) ⊂ Y, where

N ⊂ I is a null set.

Furthermore without loss of generality we assume that j(fm) : I → Y and from

Theorem 5 we have

β




t+h∫

t

∞⋃

m=1

j(fm(s))ds


 ≤

∫ t+h

t

β

(
∞⋃

m=1

j(fm(s))

)
ds.

By (10), one has that

β

(
j

(∫ t+h

t

∞⋃

m=1

fm(s)ds

))
≤

∫ t+h

t

β

(
j

(
∞⋃

m=1

fm(s)

))
ds.

Consequently, using Theorem 6 and Remark 1

β

(∫ t+h

t

∞⋃

m=1

fm(s)ds

)
≤ 2

∫ t+h

t

β

(
∞⋃

m=1

fm(s)

)
ds.

The multifunction G : I×E ⇒ E is said to satisfy compactness type condition (CTC)

if there exists a Perron function v(·, ·) λ : I → R+ such that β (G(t, A)) ≤
1

2
v(t, β(A)) for

any bounded set A ⊂ E.
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Recall that the Caratheodory function v : I ×R+ → R+ is said to be Perron function

if it is integrally bounded on the bounded sets, v(t, 0) ≡ 0 and the unique solution of

ṙ(t) = v(t, r(t)), r(0) = 0 is 0.

Remark 2. The factor 2 does not allow to use usual compactness type condition, i.e.

β (F (t, A)) ≤ v (t, β(A))

3 Structure of the solution set of fuzzy differential

inclusions

In this section we will study the properties of the solution set of the fuzzy differential

inclusion (1) w.r.t. (H).

Assume that

max
v∈F (t,x)

D(v, 0̂) ≤ w(t, D(x, 0̂)). (12)

Here w : R+ × R+ → R+ is almost continuous, integrally bounded on the bounded sets

and nondecreasing on the second argument such that the maximal solution r̂(·) of

ṙ(t) = w(t, r(t)), r(0) = D(x0, 0̂)

exists on [0, 1].

A particular case of the following lemma is proved in [10].

Lemma 1. Under the condition stated above the problem (1) can be transformed in an

equivalent system

ẋ(t) ∈ F̃ (t, x), x(0) = x0 (13)

such that max
v∈F̃ (t,x)

D(v, 0̂) ≤ 1, where the properties continuity and measurability of the

right-hand side are preserved.

Proof. Notice that r̂(·) is increasing, i.e. max
t∈I

r̂(t) = r̂(1). Suppose r̂(1) = M and define

the multimap:

F̂ (t, x) =






F (t, x), for D(x, 0̂) ≤ M + 1;

F

(
t,

Mx

D(x, 0̂)

)
, otherwise.
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Evidently F̂ (·, ·) admits the same measurability and continuity properties as F (·, ·) and

replacement of F with F̂ in the right-hand side of (1) does not change the solution set.

Denote λ(t) = w(t,M) + 1, where λ(·) is positive Lebesgue integrable function. It is

easy to see that D(F̂ (t, x), 0̂) ≤ λ(t), because w(t, ·) is nondecreasing. Define

µ(t) =

t∫

0

λ(s)ds, where t ∈ [0, 1].

Thus µ(·) is AC strictly increasing and hence invertible with inverse function µ−1(·).

If we let y(t) = x(µ−1(t)), then the multifunction F̃ (t, y) =
1

λ(t)
F̂ (µ−1(t), y) satisfies

max
v∈F̃ (t,y)

D(v, 0̂) ≤ 1 and preserves measurability and continuity properties of F . Further-

more, for every solution y(·) of (13) the AC function x(t) = y(µ(t)) is a solution of (1)

and vise versa. Since λ(t) ≥ 1 one has that the function w(t, r) =
1

λ(t)
v(µ−1(t), r) is also

Kamke function.

Notice that F̃ : [0, T ]× E ⇒ E, where T = µ(1).

Due to Lemma 1 and studying (1) on [0, T ] one can assume that max
v∈F (t,y)

D(v, 0̂) ≤ 1.

Further in the paper we study the differential inclusion (1) on the interval I = [0, T ].

The following topological definitions are used in the next Theorem 8:

Definition 1. Let X be a complete metric space. The set Y ⊂ X is said to be retract of

X if there exists a continuous function r : X → Y such that r(x) = x for all x ∈ Y . The

function r is called a retraction.

a) The set Y ⊂ X is called a deformation retract of X if there exists a retract r : X → Y

and a homotopy H : X × [0, 1] → X such that H(x, 0) = x and H(x, 1) = r(x) for all

x ∈ X.

b) The set Y is contractible (contractible to a point) if and only if there exists a point

a ∈ Y such that a is a deformation retract of Y .

c) The set A is said to be Rδ if it is an intersection of decreasing sequence of compact

contractible sets.

Notice that every Rδ set is connected and acyclic. It is well known (see Lemma 5 of [6])

that A is Rδ set iff there exists a sequence Bk+1 ⊂ Bk of closed sets with lim
k→∞

β(Bk) = 0

such that A =

∞⋂

k=1

Bk.
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Theorem 8. Let G(·, ·) be almost USC satisfying CTC and (12) then (1) (with right-hand

side G) admist a nonempty Rδ solution set.

Proof. Define G̃(t, x) = j(F (t, x). We have that G̃ : I×X ⇒ X is almost USC and hence

there exists a sequence of pairwise disjoint sets {Ik}
∞
k=1 with meas

(
∞⋃

k=1

Ik

)
= T and G̃

is USC on Ik ×X for each k.

Consider the locally Lipschitz approximations

G̃k(t, j(x)) =
∑

λ∈Λ

ϕλ(j(x))Cλ(t) with Cλ(t) = co G̃(t, B3rk(j(xλ))). (14)

Recall that (ϕλ)λ∈Λ is a locally Lipschitz partition of unity subordinate to some locally

finite refinement (Uλ)λ∈Λ of {j(x) + rkBj : j(x) ∈ X} with rk = 3−k and j(xλ) is such

that Uλ ⊂ j(xλ) + rkBj as shown in 2.4 [10].

We pick a measurable selection fλ of Gk(·, xλ) and define gkλ : I ×X → B by

gkλ(t, x) =
∑

λ

ϕλ(x)fλ(t) ∈ Gk(t, x). (15)

Since (Uλ)λ∈Λ is locally finite, one has that gkλ(·, x) is strongly measurable and gkλ(t, ·) is

locally Lipschitz. Thus the fuzzy equation (11) with f replaced by gkλ admits a unique

solution xk(·).

Therefore we have

G̃(t, j(x)) ⊂ G̃k+1(t, j(x)) ⊂ G̃k(t, j(x)) ⊂ co G̃(t, j(xλ) + 2rkBj) on I ×X. (16)

Denote M(t) =

∞⋃

m=1

{xm(t)}. Thus j(M(t)) := {j ({xm(t)})}∞m=1, and j (ẋm(t)) ∈

co G̃m (t, j (xm(t))), and due to Theorem 6

β (j (M(t + h)))− β (j (M(t))) ≤

∫ t+h

t

β
(
G̃ (s, j (M(s)) + εkBj)

)
ds

≤

t+h∫

t

v (s, β (j (M(s))) + εk) ds.

Since

lim
k→∞

∫ t+h

t

v (s, β (j (M(s))) + εk)ds =

∫ t+h

t

v (s, β (j (M(s))))ds
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one has that

β (j (M(t + h)))− β (j (M(t))) ≤

∫ t+h

t

v (s, β (j (M(s))))ds.

If β (j(M(t))) = g(t) then g(·) is AC, and moreover,

ġ(t) ≤ v (t, g(t)) , g(0) = 0, i.e. g(t) ≡ 0.

Thus β

(
∞⋃

k=1

{
j
(
xk(t)

)}
)

= 0.

However, j(·) preserves the measure of non-compactness and hence β

(
∞⋃

k=1

{
xk(t)

}
)

= 0.

Since
{
xk(·)

}
is bounded, and since

{
ẋk(·)

}
is integrally bounded, one has that

{
xk(·)

}

is equicontinuous.

Due to Arzela’s theorem passing to subsequences we have xk(t) → x(t). Furthermore,

j(ẋk(·)) → j(ẋ(·)) in L1(I,X) in weak sense. It is standard to prove that x(·) is a solution

of (1).

If Sk is the solution set of (1) with G̃k instead of G then Sk+1 ⊂ Sk. Moreover the set

S =

∞⋂

k=1

Sk 6= ∅.

To see that Sk is contractible we consider the initial value problem ż = gkλ(t, z) a.e.

on I with z(x) = y. It has a unique solution zk(·; s, y) which depends continuously on

(s, y) ∈ I ×X . Define the map

h(τ, u)(t) =




u(t) on [0, τT ],

z(t; τa, u(t)) on [τT, T ].

The continuous function h : [0, 1] × Sk → Sk with h(0, u) = z(·; 0, x0) and h(1, u) = u is

the contraction. Due to CTC we have DH (Sk, S) → 0 as k → ∞. Since lim
k→∞

β (Sk) = 0

one has that S is Rδ set.

Now we will prove a version of Filippov–Pliss lemma which has many applications in

optimal control and different variants of it are studied by many authors. We refer to [11]

for some recent results in that topic.

Definition 2. The almost continuous function g : I × R+ → R+ which is is said to

be modulus of the multifunction F : I × E ⇒ E integrally bounded on the bounded sets,
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g(t, 0) ≡ 0 and dH(F (t, x), F (t, y)) ≤ g(t, D(x, y)) for every x, y ∈ E.

Theorem 9. (Lemma or Filippov–Pliss) Let F (·, ·) be almost continuous with nonempty

closed convex values, satisfying CTC and (12). Assume that y(·) is AC function such that

dist (ẏ(t), F (t, y(t))) ≤ λ(t), where λ(·) is integrable (on [0, T ]) function. If there exists

modulus g(·, ·) of F (·, ·), then for every ε > 0 there exists a solution xε(·) of (1) such that

D(xε(t), y(t)) ≤ r(t), where r(·) is the maximal solution of

ṙ(t) = g(t, r(t)) + λ(t), r(0) = 0.

Proof. Define the multimap

G(t, u) = {v ∈ F (t, u) : D(v, ẏ(t)) ≤ g(t, D(u, y(t))) + λ(t)}.

Since dist(ẏ(t), F (t, u)) ≤ dist(ẏ(t), F (t, y(t))+dH(F (t, u), F (t, y(t))) ≤ g(t, D(u, y(t)))+

λ(t), one has that Hε(·, ·) is with nonempty values. Consequently G(·, ·) has nonempty

closed values. Obviously it satisfies CTC and (12). Since D(a, λb+(1−λ)c) ≤ λD(a, b)+

(1− λ)D(a, c), one has that G(·.·), and also convex values.

We claim that G(·, ·) is almost USC. For our next purpose fix δ > 0. Let ẏ(·) and

λ(·) be continuous on Iδ, and g(·, ·) and F (·, ·) be continuous on Iδ × E, where Iδ ⊂ I is

compact with meas(I \ Iδ) < δ. Let tm → t ∈ Iδ, um → u and let vm ∈ G(tm, um). If

vm → v, then v ∈ F (t, u) and D(v, ẏ(t)) = lim
m→∞

D(vm, ẏ(tm)). Thus v ∈ G(t, u), i.e. the

graph of G(·, ·) restricted on Iδ × E is closed. The latter together with CTC implies that

G(·, ·) is almost USC.

From Theorem 8 we know that there exists a solution x(·) of

ẋ(t) ∈ G(t, x(t)), x(0) = x0.

Thus D(ẋ(t), ẏ(t)) ≤ g(t, D(x(t), y(t))) + λ(t), and hence D(x(t), y(t)) ≤ r(t), where r(·)

is the maximal solution of ṙ(t) = g(t, r(t)) + λ(t), r(0) = D(x0, y0).

3.1 Fuzzy differential equations w.r.t. (B)

The derivative (H) has many bad properties. For example the diameter of A+B is com-

monly greater than the maximal diameter of any one of the two A and B. Consequently

it is almost impossible to study asymptotic stability of fuzzy differential equations w.r.t.

(H). The advantage is that for every locally Lipschitz differential equation (inclusion) the
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solution w.r.t. (H) always exists. From Example 1 the differential equation in general

does not have solutions w.r.t. (B) even in very simple cases.

There is a connection between both derivatives.

If (11) admits a solution w.r.t. (H) say x(t) on [0, T ] then x(T − t) is a backward

solution of (11) w.r.t. (B). Namely define new variable τ = T − t and

ẏg(τ) = f(τ, y), y(0) = x(T ),

then y(·) exists on [0, T ] and y(t) = x(T − t) and vise versa.

Let K ⊂ I × E be domain such that for any (t, x) ∈ K there exist τ = τ(t, x) > 0,

and f(t, x) ∈ F (t, x) with x(t)⊖

∫ t+h

t

f(τ, x)dτ ∈ E for any 0 < h < τ .

Theorem 10. If (t0, x0) ∈ int(K), then under CTC there exists δ > 0 such that the

differential inclusion (1) has a solution on [t0, t0 + a) w.r.t. (B).

Proof. The proof can be accomplished using for this purpose the classical Euler Cauchy

approach. Almost all details are standard. We will sketch the proof for the reader

convenience.

Fix ε > 0, t0 = 0, and let f0(t) ∈ F (t0, t) be strongly measurable. Define x0(t) =

x0 ⊖

∫ t

t0

f(τ)dτ . Clearly there exists t1 > t0 = 0 such that (t, x0(t)) ∈
∫
K and f0(t) ∈

F (t, x0 + εB. Now we can define x0(t) on ]t1, t2] with x0(t) = x(t1)⊖

∫ t

t1

f0(τ)dτ .

Clearly there exists T ∈ (0, 1] such that x0(·) can be extended on [0, T ]. Now we con-

sider a sequence {εk}
∞
k=1 and the corresponding sequence of absolute continuous

{
xk(·)

}

such that (t, xk(t)) ∈ K for every k and every t ∈ [0, T ]. Moreover, xk(t) = x0⊖

∫ t

0

fk(τ)dτ

with fk(t) ∈ F )t, xk(t) + εkB).

Now using obvious modifications of the proof of Theorem 8 one can show that passing

to subsequences xk(t) → x(t) uniformly on [0, T ]. Clearly x(·) is a solution of (1) on the

interval [0, T ] w.r.t. (B).

We point out that the existence of solution of (11) w.r.t. (B) in the case of Lipscjitz

f(t, ·) can not be proved by the classical Pickar successive approximations, because in

general x0 ⊖

∫ t

0

f(τ, xk(τ))dτ /∈ E.

Notice that if CTC holds true and (t0, x0) ∈ int(K), then due to Theorem 10 there

exists w.r.t. (H) and at least one w.r.t. (B) stating from (t0, x0). Consequently even for
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Lipschitz single valued differential equation the solution w,r,t, generalized derivative is

not unique. Also it is almost impossible to prove good properties of the solution set.

Notice that it is impossible to prove that the solution set of (1) is Rδ w.r.t. (B), because

the locally Lipschitz selections gk(t, x) ∈ G̃k(·, ·) do not satisfy x⊖

∫ h

0

fk(τ, x)dτ ∈ E.
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