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1 Introduction

When a real world problem is transferred into a deterministic initial value problem of

ordinary differential equations (ODE), namely

ẋ = f(t, x), x(t0) = x0,

we cannot usually be sure that the model is perfect. If the underlying structure of the

model depends upon subjective choices, one way to incorporate these into the model, is

to utilize the aspect of fuzziness, which leads to the consideration of fuzzy differential

equations (FDE). The intricacies involved in incorporating fuzziness into the theory of

ODE pose a certain disadvantage and other possibilities are being explored to address this

problem. One of the approaches is to connect FDE to multivalued differential equations

and examine the interconnection between them ([9, 16, 17, 24], etc). The other approach

is to transform FDE into differential inclusion with the fuzzy right-hand sides so as to

employ the existing theory of differential inclusions ([1, 3, 4, 7, 8, 13, 14], etc).

In this paper the second approach is used.

2 Main Definitions

Let conv(Rn) be the family of all nonempty compact convex subsets of R
n with the

Hausdorff metric

h(F,G) = inf{r ≥ 0 : F ⊂ G + Sr(0), G ⊂ F + Sr(0)},

where Sr(0) = {x ∈ R
n : ||x|| ≤ r}, ‖ · ‖ denotes the Euclidean norm in R

n.

Let En be the family of mappings x : Rn → [0, 1] satisfying the following conditions:

1) x is normal, i.e. there exists an y0 ∈ R
n such that x(y0) = 1;

2) x is fuzzy convex, i.e. x(λy + (1− λ)z) ≥ min{x(y), x(z)} whenever y, z ∈ R
n and

λ ∈ [0, 1];

3) x is upper semicontinuous, i.e. for any y0 ∈ R
n and ε > 0 there exists δ(y0, ε) > 0

such that x(y) < x(y0) + ε whenever ||y − y0|| < δ, y ∈ R
n;

4) the closure of the set {y ∈ R
n : x(y) > 0 } is compact.
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Let 0̂ be the fuzzy mapping defined by

0̂(y) =

{

1, y = 0,

0, y ∈ R
n\0.

Definition 1.1. The set {y ∈ R
n : x(y) ≥ α} is called the α – level [x]α of a mapping

x ∈ E
n for α ∈ (0, 1]. The closure of the set {y ∈ R

n : x(y) > 0} is called the 0 - level [x]0

of a mapping x ∈ E
n.

Theorem 1.1 [16]. If x ∈ E
n then

1) [x]α ∈ conv(Rn) for all α ∈ [0, 1];

2) [x]α2 ⊂ [x]α1 for all 0 ≤ α1 ≤ α2 ≤ 1;

3) if {αk} ⊂ [0, 1] is a nondecreasing sequence converging to α > 0, then [x]α =
⋂

k≥1

[x]αk .

Conversely, if {Aα : α ∈ [0, 1]} is the family of subsets of Rn satisfying conditions 1)

- 3) then there exists x ∈ E
n such that [x]α = Aα for α ∈ (0, 1] and [x]0 =

⋃

α∈(0,1]

Aα ⊂ A0.

Define the metric D : En × E
n → [0,+∞) by the equation

D(x, y) = sup
α∈[0,1]

h([x]α, [y]α).

Let I be an interval in R.

Definition 1.2. A mapping F : I → E
n is called continuous on I if for any α ∈ [0, 1]

the multivalued mapping [F (t)]α is continuous.

Definition 1.3 [16]. An element G ∈ E
n is called an integral of F : I → E

n over I if

[G]α =
∫

I

[F (t)]αdt for any α ∈ (0, 1], where (A)
∫

I

[F (t)]αdt is the Aumann integral [2].

Theorem 1.2 [16]. If the mapping F : I → E
n is continuous then it is integrable over

I.

Definition 1.4 [16]. The mapping F : R × R
n → E

n is said to satisfy the Lipshitz

condition in x if there exists such constant λ ≥ 0 that

h([F (t, x)]α, [F (t, x̄)]α)) ≤ λ||x− x̄||

for all α ∈ [0, 1].

Definition 1.5. The fuzzy mapping F : R× R
n → E

n is said to be concave in x if

β[F (t, x)]α + (1− β)[F (t, y)]α ⊂ [F (t, βx+ (1− β)y)]α
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for any β ∈ [0, 1] and α ∈ [0, 1].

In 1990 J. P. Aubin [1] and V. A. Baidosov [3, 4] entered into consideration the

differential inclusions with fuzzy right-hand side. Their approach is based on transforming

FDE into ordinary differential inclusions.

Consider the differential inclusion with fuzzy right-hand side

ẋ ∈ F (t, x), x(t0) = x0, (1)

where t ∈ I ⊂ R is time, F : I × R
n → E

n is a fuzzy mapping.

Definition 1.6 [7]. The absolutely continuous function x : I → R
n, x(t0) = x0 is

called the α− solution of inclusion (1) if it satisfies the inclusion ˙x(t) ∈ [F (t, x(t))]α almost

everywhere on I.

Denote by Xα(t) the set of all α− solutions of inclusion (1) at moment t. In case the

family {Xα(t), α ∈ [0, 1]} satisfies conditions of Theorem 1.1, it defines a fuzzy set X(t)

that is called a set of solutions of inclusion (1) at moment t.

The questions of existence of the set X(t) and its properties were considered in [6, 7,

14, 15], etc.

Many processes in biology, management theory, electronics are described by means of

impulse differential inclusions with the fuzzy right-hand side [5]:

ẋ ∈ F (t, x), t 6= τi, x(0) = x0, (2)

∆x|t=τi ∈ Ii(x),

where t ∈ I ⊂ R is time, moments of impulse τi ∈ I, F : I × R
n → E

n, Ii : R
n → E

n are

fuzzy mappings.

Definition 1.7 The function x : I → R
n, x(t0) = x0 is called the α− solution of

inclusion (2) if it is the α− solution of inclusion ẋ ∈ F (t, x) on the intervals between

moments of impulse, left - continuous at the moments of impulse and

x(τi + 0)− x(τi) ∈ [Ii(x(τi))]
α

for all i.

Denote by Xα(t) the set of all α− solutions of inclusion (2) at moment t. In case the

family {Xα(t), α ∈ [0, 1]} satisfies conditions of Theorem 1.1, it defines a fuzzy set X(t)

that is called a set of solutions of inclusion (2) at moment t.
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The questions of existence of the set X(t) were considered in [5].

Many important problems of analytical dynamics are described by nonlinear differen-

tial or integro - differential equations. The absence of exact universal research methods

for nonlinear systems caused the development of numerous approximate analytic and

numerically - analytic methods that can be realized in effective computer algorithms.

All those methods are based on an iterative principle, i.e. either consecutive approxi-

mations of phase variables or functional series with members decreasing on size are used.

It means that after the initial approximation is chosen then the additives of various order

are found using iterations to approach the true solution. This approach is especially ef-

fective in investigation of the mathematical models described by nonlinear equations with

small parameters. Also there exist various methods of the initial approximation choice:

solving of some linear problem (the linearization method) or solving of some nonlinear

but significantly easier system (often the averaging method).

Recently, the averaging methods combined with the asymptotic representations (in

Poincare sense) began to be applied as the basic constructive tool for solving the compli-

cated problems of analytical dynamics described by the differential equations. It became

possible due to the works of N. M. Krylov, N. N. Bogolyubov, Yu. A. Mitropolskij, A.

M. Samojlenko, V. M. Volosov, E. A. Grebennikov, M. A. Krasnoselskiy, S.G. Krein, A.

N. Filatov, etc. The application of the averaging method to optimal control problems

was considered in the works of N. N. Moiseev, V. N. Lebedev, F. L. Chernousko, L. D.

Akulenko, V. A. Plotnikov, etc.

Later in [10, 18, 25] the averaging schemes for differential equations with the set-valued

and discontinuous right-hand side, quasidifferential equations, differential equations and

inclusions with Hukuhara derivative were considered.

In [11, 19, 20, 21, 22, 23] the possibility of application of averaging method on a final

interval for differential inclusions with the fuzzy right-hand side with a small parameter

is proved. In [26] the scheme of full averaging for impulsive case is considered.

In this paper we will consider the justification of step scheme of averaging method on

a final interval for impulse differential inclusions with the fuzzy right-hand side with a

small parameter.

13



N. Skripnik, CMMPG, vol. 1, No. 1 (2015), 9-26

3 Main results

Consider the impulsive differential inclusion with fuzzy right-hand side

ẋ ∈ εF (t, x), t 6= τi, x(0) = x0, (3)

∆x|t=τi ∈ εIi(x).

Along with differential inclusion (3) we will consider the following differential inclusion

with fuzzy right-hand side:

ẏ ∈ εF̄ (t, y), y(0) = x0, (4)

where the fuzzy mapping

F̄ (t, x) =
1

ω

∫ (j+1)ω

jω

F (t, x)dt+
1

ω

∑

jω≤τi<(j+1)ω

Ii(x), t ∈ (jω, (j + 1)ω], j = 0, 1, . . . , (5)

ω > 0 is the step.

Theorem 2.1. Let in the domain Q = {t ≥ 0, x ∈ G ⊂ R
n}, where G is convex, the

following conditions fulfill:

1) fuzzy mappings F : Q → E
n, Ii : G → E

n are continuous, uniformly bounded by

constant M , satisfy Lipshitz condition in x with constant λ and are concave in x;

2) the quantity of moments τi on the interval (t, t+τ ] does not exceed ντ , where ν < ∞;

3) for all x0 ∈ G′ ⊂ G and t ≥ 0 the α- solutions of inclusion (4) together with a ρ-

neighborhood belong to the domain G for all α ∈ [0, 1].

Then for all L > 0 there exist ε0(L) > 0 and C(L) such that for all ε ∈ (0, ε0] and

t ∈ [0, Lε−1] the inequality holds:

D(X(t), Y (t)) < Cε, (6)

where X(t) is the set of solutions of inclusion (3), Y (t) is the set of solutions of inclusion

(4).

Proof. From conditions 1), 2) it follows that the fuzzy mapping F̄ : Q → E
n is

uniformly bounded by constant M1 = M(1 + ν) and satisfies Lipshitz condition in x with

constant λ1 = λ(1 + ν).
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Really, for t ∈ (jω, (j + 1)ω], j = 0, 1, . . . we have

D(F̄ (t, x), {0̂}) = D





1

ω

∫ (j+1)ω

jω

F (t, x)dt+
1

ω

∑

jω≤τi<(j+1)ω

Ii(x), {0̂}



 ≤

≤
1

ω

∫ (j+1)ω

jω

D(F (s, x), {0̂})ds+
1

ω

∑

jω≤τi<(j+1)ω

D(Ii(x), {0̂}) ≤

≤ M + νM = M(1 + ν) = M1;

D(F̄ (t, x1), F̄ (t, x2)) =

= D

(

1

ω

∫ (j+1)ω

jω

F (s, x1)ds+
1

ω

∑

jω≤τi<(j+1)ω

Ii(x1),
1

ω

∫ (j+1)ω

jω

F (s, x2)ds+

+
1

ω

∑

jω≤τi<(j+1)ω

Ii(x2)

)

≤

≤
1

ω

∫ (j+1)ω

jω

D(F (s, x1), F (s, x2))ds+
1

ω

∑

jω≤τi<(j+1)ω

D(Ii(x1), Ii(x2)) ≤

≤ λ||x1 − x2||+ λν||x1 − x2|| = λ(1 + ν)||x1 − x2|| = λ1||x1 − x2||.

Besides the fuzzy mapping F̄ (t, x) is concave in x. Choose any α ∈ [0, 1] and β ∈ [0, 1],

x, y ∈ G. Then

β[F̄ (t, x)]α + (1− β)[F̄ (t, y)]α =

= β





1

ω

∫ (j+1)ω

jω

F (s, x)ds+
1

ω

∑

jω≤τi<(j+1)ω

Ii(x)





α

+

+(1− β)





1

ω

∫ (j+1)ω

jω

F (s, y)ds+
1

ω

∑

jω≤τi<(j+1)ω

Ii(y)





α

=

=
1

ω

∫ (j+1)ω

jω

(β[F (s, x)]α + (1− β)[F (s, y)]α)ds+

+
1

T

∑

jω≤τi<(j+1)ω

(β[Ii(x)]
α + (1− β)[Ii(y)]

α) ⊂

15
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⊂
1

ω

∫ (j+1)ω

jω

[F (s, βx+ (1− β)y)]αds+
1

ω

∑

jω≤τi<(j+1)ω

[Ii(βx+ (1− β)y)]α =

= [F̄ (t, βx+ (1− β)y)]α.

Owing to conditions of the theorem the solutions of inclusions (3) and (4) exist [5].

Choose any α ∈ [0, 1]. First prove the inclusion

[Y (t)]α ⊂ [X(t)]α + SCε(0). (7)

Let y(t) be a solution of inclusion

ẏ(t) ∈ ε[F̄ (t, y(t))]α, y(0) = x0. (8)

Divide the interval [0, Lε−1] with the step ω by the points tj = jω, j = 0, m, where

m : mω ≤ Lε−1 < (m+ 1)ω. Denote by tm+1 = Lε−1 for convenience. Then there exists

a measurable selector v(t) of the set-valued mapping [F̄ (t, y(t))]α such that

y(t) = y(tj) + ε

∫ t

tj

v(s)ds, t ∈ [tj , tj+1], j = 0, m, y(0) = x0. (9)

Consider the function

y1(t) = y1(tj) + ε

∫ t

tj

vj(s)ds, t ∈ [tj , tj+1], j = 0, m, y1(0) = x0, (10)

where vj(t) is a measurable selector of the set-valued mapping [F (t, y1(tj))]
α such that

||vj(t)− v(t)|| = min
v∈[F̄ (t,y1(tj ))]α

||v − v(t)||. (11)

It is obvious that vj(t) exists because the function being minimized is continuous in v

and the set [F̄ (t, y1(tj))]
α is compact.

Denote by δj = ||y(tj)− y1(tj)||. For t ∈ [tj , tj+1] using (9) and (10) we get

||y(t)− y(tj)|| ≤ M1ωε, ||y1(t)− y1(tj)|| ≤ M1ωε. (12)
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Hence for t ∈ (tj, tj+1] the following inequalities hold:

||y(t)− y1(tj)|| ≤ ||y(tj)− y1(tj)||+ ||y(t)− y(tj)|| ≤ δj + εM1(t− tj) ≤

≤ δj +M1ωε,

h([F̄ (t, y(t))]α, [F̄ (t, y1(tj))]
α) ≤ λ1||y(t)− y1(tj)|| ≤ λ1(δj +M1ωε). (13)

From (11) and (13) it follows that

∣

∣

∣

∣

∣

∣

∫ tj+1

tj
(v(s)− vj(s))ds

∣

∣

∣

∣

∣

∣
≤

∫ tj+1

tj
h([F̄ (s, y(s))]α, [F̄ (s, y1(tj))]

α)ds ≤

≤ λ1(δj +M1ωε)ω.
(14)

Taking into account (9) and (10) we get

δj+1 ≤ δj + ελ1(δj + εM1ω)ω = (1 + λ1ωε)δj + λ1M1ω
2ε2. (15)

So using inequalities (15) and taking into account that δ0 = 0 we get

δ1 ≤ λ1M1ω
2ε2,

δ2 ≤ (1 + λ1ωε)δ1 + λ1M1ω
2ε2 ≤ λ1M1ω

2ε2((1 + λ1ωε) + 1).

Proceeding by induction we get

δj+1 ≤ λ1M1ω
2ε2((1 + λ1ωε)

i + (1 + λ1ωε)
i−1 + · · ·+ 1) =

= M1ωε
(

(1 + λ1ωε)
i+1 − 1

)

≤ M1ωε
(

(1 + λ1ωε)
L
ωε − 1

)

≤ M1ωε(e
λ1L − 1). (16)

From (12) and (16) we have:

||y(t)− y1(t)|| ≤ ||y(t)− y(tj)||+ ||y(tj)− y1(tj)||+ ||y1(tj)− y1(t)|| ≤

≤ 2M1ωε+M1ωε(e
λ1L − 1) ≤ M1ωε(e

λ1L + 1). (17)
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Using (5) we get

[F̄ (t, y1(tj))]
α =

1

ω

∫ tj+1

tj

[F (s, y1(tj))]
αds+

1

ω

∑

tj≤τi<tj+1

[Ii(y
1(tj))]

α. (18)

Therefore there exist vectors pij ∈ [Ii(y
1(tj))]

α and a measurable selector

uj(t) ∈ [F (t, y1(tj))]
α such that

∫ tj+1

tj

vj(s)ds =

∫ tj+1

tj

uj(s)ds+
∑

tj≤τi<tj+1

pij. (19)

Consider the function

x1(t) = x1(tj) + ε

∫ t

tj

uj(s)ds+ ε
∑

tj≤τi<t

pij , t ∈ (tj , tj+1], j = 0, m, x1(0) = x0. (20)

As x1(0) = y1(0), then from (10), (20), (19) and (12) it follows that for j = 0, m,

t ∈ (tj, tj+1]

x1(tj) = y1(tj), ||x1(t)− x1(tj)|| ≤ M1ωε, ||x1(t)− y1(t)|| ≤ 2M1ωε. (21)

Let us show that there exists a solution x(t) of inclusion

ẋ(t) ∈ ε[F (t, x(t))]α, t 6= τi, x(0) = x0, (22)

∆x|t=τi ∈ ε[Ii(x)]
α

close enough to x1(t).

Let θ1, . . . , θp be the moments of impulses τi, that get in the interval (tj , tj+1]. For

convenience denote by θ0 = tj , θp+1 = tj+1. Let µ+
k = ||x1(θk + 0) − x(θk + 0)||, µ−

k =

||x1(θk)− x(θk)||, k = 0, p+ 1.

Let ρ(x,A) = min
a∈A

||x−a|| be the distance from point x ∈ R
n to the set A ⊂ R

n. Using

Lipschitz condition we get

ρ
(

x1′(t), ε[F (t, x1(t))]α
)

≤ h
(

ε[F (t, y1(tj))]
α, ε[F (t, x1(t))]α

)

≤

≤ ελ||x1(t)− y1(tj)|| ≤ λM1ωε
2 = η∗,

ρ
(

∆x1|t=θk , ε[Ii(x
1(θk))]

α
)

≤ h
(

ε[Ii(y
1(tj))]

α, ε[Ii(x
1(θk))]

α
)

≤

18
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≤ ελ||y1(tj)− x1(θk)|| ≤ λM1ωε
2 = η∗.

From A. F. Filippov’s theorem it follows that there exists a solution x(t) of inclusion

(22) such that for t ∈ (θk, θk+1] the inequality holds

||x(t)− x1(t)|| ≤ µ+
k e

ελ(t−θk) +

∫ t

θk

eελ(t−s)η∗ds.

Denote by γk = θk+1 − θk ≤ ω, γ0 + · · ·+ γp = ω. Then

µ−
k+1 ≤ µ+

k e
ελγk +

η∗

λε

(

eλωε − 1
)

. (23)

When getting over the impulse point we have

µ+
k+1 ≤ µ−

k+1 + εh
(

[Ii(y
1(tj))]

α, [Ii(x(θk+1))]
α
)

≤

≤ µ−
k+1 + εh

(

[Ii(x
1(θk+1))]

α, [Ii(x(θk+1))]
α
)

+ εh
(

[Ii(x
1(tj))]

α, [Ii(y
1(θk+1))]

α
)

≤

≤ µ−
k+1 + ελµ−

k+1 + εh
(

[Ii(x
1(tj))]

α, [Ii(x
1(θk+1))]

α
)

≤

≤ (1 + λε)µ−
k+1 + η∗. (24)

From (23) and (24) it follows that

µ+
k+1 ≤ (1 + λε)eελγkµ+

k + β, β =
η∗

λε
(1 + λε)

(

eλωε − 1
)

+ η∗.

Therefore

µ+
1 ≤ (1 + λε)eλεγ0µ+

0 + β ≤ (1 + λε)eλωεµ+
0 + β,

µ+
2 ≤ (1 + λε)eελγ1µ+

1 + β ≤ (1 + λε)2eελ(γ0+γ1)µ+
0 +

+β(1 + λε)eελγ1 + β ≤ (1 + λε)2eλωεµ+
0 + β

(

(1 + λε)eλωε + 1
)

, etc.,

µ+
k+1 ≤ (1 + λε)k+1eλωεµ+

0 + β
(

eλωε((1 + λε)k + . . .+ (1 + λε)) + 1
)

=

= (1 + λε)k+1eλωεµ+
0 + β

(

eλωε
(1 + λε)k − 1

λε
(1 + λε) + 1

)

≤

≤ eλ(1+ν)ωεµ+
0 + η∗

(

1 + λε

λε
(eλωε − 1) + 1

)(

eλωε
eλνωε − 1

λε
(1 + λε) + 1

)

=

= κµ+
0 + β1,

19
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where

κ = eλ(1+ν)ωε,

β1 = M1ωε

(

1 + λε

λε
(eλωε − 1) + 1

)(

eλωε
(

eλνωε − 1

)

(1 + λε) + λε

)

.

Therefore,

δ+j+1 = ||x(tj+1)− x1(tj+1)|| ≤ κδ+j + β1.

We obtain the sequence of inequalities

δ+0 = 0, δ+1 ≤ β1, δ+2 ≤ κβ1 + β1 = (κ+ 1)β1, . . . ,

δ+j+1 ≤ (κj + · · ·+ 1)β1 =
κj+1 − 1

κ− 1
β1 ≤

≤ M1ω
eλL(1+ν) − 1

eλ(1+ν)ωε − 1

(

(1 + λε)
eλωε − 1

λε
+ 1

)(

eλωε
(

eλνωε − 1
)

(1 + λε) + λε

)

ε.

As

lim
ε→0

(

(1 + λε)
eλωε − 1

λε
+ 1

)

= ω + 1

and

lim
ε→0

eλωε
(

eλνωε − 1
)

(1 + λε) + λε

eλ(1+ν)ωε − 1
= lim

ε→0

eλωε
eλνωε − 1

λε
(1 + λε) + 1

eλ(1+ν)ωε − 1

λε

=

=
νω + 1

(1 + ν)ω
,

then

δ+j+1 ≤ C0ε

for ε ≤ ε2.

Therefore, for t ∈ (tj, tj+1] the following inequality holds:

||x(t)− x1(t)|| ≤ ||x(t)− x(tj)||+ ||x(tj)− x1(tj)||+ ||x1(t)− x1(tj)|| ≤

≤ M(1 + ν)ωε+M1ωε+ C0ε = (2M1ω + C0)ε. (25)
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In view of the inequalities (17), (21) and (25) we get that

||x(t)− y(t)|| ≤ C1ε, (26)

where C1 = M1ω(e
λ1L + 5) + C0 and the first part of the theorem is proved.

Now let us proof that the following inclusion holds:

[X(t)]α ⊂ [Y (t)]α + SCε(0). (27)

Let x(t) be the solution of inclusion (22). Divide the interval [0, Lε−1] on the partial

intervals with the step ω by the points tj = jω, j = 0, m, where m : mω ≤ Lε−1 <

(m+1)ω. Denote by tm+1 = Lε−1 for convenience. Then there exist a measurable selector

u(t) of the set-valued mapping [F (t, x(t))]α and vectors qi ∈ [Ii(x(τi))]
α such that

x(t) = x(tj) + ε

∫ t

tj

u(s)ds+ ε
∑

tj≤τi<t

qi, t ∈ (tj , tj+1], j = 0, m, x(0) = x0. (28)

Consider the function

x1(t) = x1(tj) + ε

∫ t

tj

uj(s)ds+ ε
∑

tj≤τi<t

qij , t ∈ (tj , tj+1], j = 0, m, x1(0) = x0, (29)

where the measurable selector uj(t) of the set-valued mapping [F (t, x1(tj))]
α and vectors

qij ∈ [Ii(x
1(tj))]

α satisfy the conditions

||uj(t)− u(t)|| = min
u∈[F (t,x1(tj))]α

||u− u(t)||, ||qij − qi|| = min
q∈[Ii(x1(tj ))]α

||q − qi||. (30)

Denote by δj = ||x(tj)− x1(tj)||. For t ∈ (tj , tj+1] using (28) and (29) we get

||x(t)− x(tj)|| ≤ εM(t− tj) + εMν(t− tj) = εM1(t− tj) ≤ M1ωε,

||x1(t)− x1(tj)|| ≤ εM(t− tj) + εMν(t− tj) = εM1(t− tj) ≤ M1ωε. (31)

Therefore for t ∈ (tj, tj+1] the following inequalities hold:

||x(t)− x1(tj)|| ≤ ||x(tj)− x1(tj)||+ ||x(t)− x(tj)|| ≤ δj + εM1(t− tj),

21



N. Skripnik, CMMPG, vol. 1, No. 1 (2015), 9-26

||u(t)− uj(t)|| ≤ h
(

[F (t, x(t))]α, [F (y, x1(tj))]
α
)

≤

≤ λ||x(t)− x1(tj)|| ≤ λ(δj + εM1(t− tj)) ≤ λ(δj + ωε), (32)

||qi − qij || ≤ h
(

[Ii(x(τi))]
α, [Ii(x

1(tj))]
α
)

≤ λ||x(τi)− x1(tj)|| ≤

≤ λ(δj + εM1(τi − tj)) ≤ λ(δj + εM1(t− tj)) ≤ λ(δj + ωε).

From (28), (29) and (32) we have

δj+1 ≤ δj + ελ (δj +M1ωε)ω + ελ (δj +M1ωε) νω =

= (1 + λ1ωε)δj + λ1M1ω
2ε2. (33)

As δ0 = 0 then from inequality (33) we have

δ1 ≤ λ1M1ω
2ε2,

δ2 ≤ (1 + λ1ωε)δ1 + λ1M1ω
2ε2 ≤ λ1M1ω

2ε2((1 + λ1ωε) + 1), etc.,

δj+1 ≤ λ1M1ω
2ε2((1 + λ1ωε)

i + (1 + λ1ωε)
i−1 + · · ·+ 1) =

= M1ωε
(

(1 + λ1ωε)
i+1 − 1

)

≤ M1ωε
(

(1 + λ1ωε)
L
ωε − 1

)

≤ M1ωε(e
λ1L − 1). (34)

So using inequalities (32) we get

||x(t)− x1(t))|| ≤ ||x(t)− x(tj)||+ ||x(tj)− x1(tj)||+ ||x1(tj)− x1(t)|| ≤

≤ 2M1ωε+M1ωε(e
λ1L − 1) = M1ωε(e

λ1L + 1). (35)

From (5) it follows that

[F̄ (t, x1(tj))]
α =

1

ω

∫ (j+1)ω

jω

[F (s, x1(tj))]
αds+

+
1

ω

∑

jω≤τi<(j+1)ω

[Ii(x
1(tj))]

α, t ∈ (jω, (j + 1)ω]
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therefore there exists a measurable selector vj(t) ∈ [F̄ (t, x1(tj))]
α such that

∫ tj+1

tj

vj(s)ds =

∫ tj+1

tj

uj(s)ds+
∑

tj≤τi<tj+1

qij . (36)

Consider the function

y1(t) = y1(tj) + ε

∫ t

tj

vj(s)ds, j = 0, 1, ..., y1(0) = x0. (37)

As x1(0) = y1(0), then from (29), (37) and (36)for j = 1, m we have

x1(tj) = y1(tj), ||y1(t)− y1(tj)|| ≤ εM1(t− tj) ≤ M1ωε, (38)

||y1(t)− x1(t)|| ≤ 2M1ωε.

Let us show that there exists a solution y(t) of inclusion (8) close enough to y1(t).

Using Lipschitz condition we get

ρ
(

y1
′
(t), ε[F̄ (t, y1(t))]α

)

≤ εh
(

[F̄ (t, x1(tj))]
α, [F̄ (t, y1(t))]α

)

≤

≤ ελ1||y
1(t)− x1(tj)|| ≤ λ1M1ωε

2 = η̄∗.

From A. F. Filippov’s theorem it follows that there exists a solution x(t) of inclusion

(22) such that for all t the inequality holds

||y(t)− y1(t)|| ≤ ||y(0)− y1(0)||eελ1t +

∫ t

0

eελ1(t−s)η̄∗ds =

=
η̄∗

λ1ε

(

eελ1t − 1
)

= M1ω
(

eελ1t − 1
)

ε ≤ M1ω
(

eλ1L − 1
)

ε. (39)

In view of the inequalities (35),(38) and (39) we get that

||x(t)− y(t)|| ≤ C2ε, (40)

where C1 = 2M1ω(e
λ1L + 1) and inclusion (27) is proved. Choosing C = max(C1, C2), we

get the conclusion of the theorem.
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4 Conclusion

The requirement of a concaveness of the right side of initial inclusion is rather strong

and is necessary for ensuring the convexity of α− solutions sets of initial and averaged

inclusions for any α ∈ [0, 1]. If the solution is considered in the space Σn of mappings

x : Rn → [0, 1] that satisfy conditions 1), 3) and 4) from definition of the space E
n than

the requirement of a concaveness is possible to reject, thus the statements of theorem will

still hold.
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