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Abstract

In this paper we analyze a two-dimensional laminar flow past an elliptic cylinder in
case the major axis is parallel to the flow. Attention is limited in high speed regions
under a subcritical condition, using a potential function of series type comparable
with separation as an outside boundary condition. Numerical analysis is based on
a spectral finite difference scheme to give velocity profile near the surface and drag
characteristics in comparison with traditional experimental data.
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1 Introduction

Aerodynamic drag and lift is concerned with performance characteristics of aviation and

data were accumulated broadly in Ref.[4] and [5]. In a very slow flow regime, under

a suitable situation analytical approximation of fluid flow is possible as in Ref.[6] and

[3]. For a flow past an elliptic cylinder at moderate Reynolds numbers, experimental

treatment was given in Ref.[9], and numerical one in Ref.[8]. In an intermediate regime,

application of a boundary-layer theory [10] is possible. For a subcritical flow regime over a

simple shape, Zahm [12] got experimental evaluation on pressure distribution and velocity

profiles on the body surface, whereas Freeman [2] and Schubauer [11] got experimentally

velocity profiles in the vicinity of the body surface (elliptic cylinder), and Lindsey [7] and

Delany and Sorensen [1] obtained experimental data of drag coefficients vs. a Reynolds

number for various aspect ratios of an elliptic section, covering data for a subcritical

region.

In this paper, a moderately high but subcritical speed flow over a single two-dimensional

elliptic cylinder is analyzed. Steady-state incompressible viscous laminar sublayer model

is assumed. The target cylinder is assumed to be placed normal to a uniform flow, the

direction of which is that of the major axis of the section. Outside of the surface sublayer,

the flow is assumed to be governed by a potential flow, which can be determined by the

wake configuration (i.e. sensitive to the outer barrier), resulting in any deviation but

restricted from far away field condition irrespective of possessing separation or not.

2 Analysis

2.1 Basic equations

Under a subcritical regime, fluid properties such as density and viscosity are assumed to

be constant, so that the fluid is regarded to be incompressible. Hereafter it is assumed

that length, velocity, and time are made dimensionless with respect to the semi-major

axis a (of the elliptic section), free stream velocity U∞, and a/U∞ respectively. Let (x, y)

be a Cartesian coordinate system such that the direction of the positive x-axis is that of

the uniform flow. Let (α, β) be an elliptic coordinate system (in the xy-plane) such that

α = 0 corresponds to the surface of the cylinder. Thus

z ≡ x+ iy = cosh(α0 + α + iβ)/ coshα0,

(α ≥ 0), |β| ≤ π, (1)
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where α0 ≡ tanh−1(semi-minor axis/semi-major axis). Then the equation of vorticity

transport (in a two-dimensional flow of Newtonian fluid) can be expressed as
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where ψ, ζ are dimensionless stream function, and vorticity respectively. Re : Reynolds

number ≡ aU∞/ν, ν : kinematic viscosity.

2.2 Fluid flow behaviour outside of the laminar

sublayer

Complex flow potential function F (≡ φ+iψ) over a cylinder surface (φ: potential function)

is given by

F =
eα0
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(5)

provided
∑

ǫ2n ≪ 1, ǫn : real, and for pole(s), α, of F , |α|≪\1. The latter condition for

poles is automatically satisfied if nonzero coefficients are finite. If |α| for the argument of

F is moderate,

F ∼ eα0

2 coshα0

{

2 cosh (α + iβ) +
∑

n≥2

ǫn coshn (α + iβ)

}

, (6)

2.3 Boundary conditions

At the surface of the cylinder, no-slip conditions are specified. That is,

ψ(α = 0, β) = 0, (7)
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∂ψ

∂α
(α = 0, β) = 0. (8)

At the location outside of the viscous sublayer (α = α∞(> 0))

ψ(α∞, β) = ℑ{F (α∞ + iβ)} , (9)

ζ(α∞, β) = 0. (10)

3 Numerical solution procedure

3.1 Primary variables

Since flow is assumed to be symmetric with respect to the x-axis, the stream function ψ

and vorticity ζ can be expanded into the following Fourier series of β:

ψ =

∞
∑

n=1

ψn (α, t) sinnβ, (11)

ζ =

∞
∑

n=1

ζn (α, t) sin nβ. (12)

Then, using the addition formulae of trigonometric functions, Eqs.(2) and (3) can be

separated into each Fourier component of β, which constitutes a system of of differential

equations with respect to ψn’s and ζn’s.

3.2 Numerical integration scheme

By truncating the series (11) and (12) up to a certain order the governing Eqs.(2)-(4) can

be decomposed into Fourier components, and by discretizing the system of equations in

space and time by a finite difference method incorporated with boundary conditions, the

system of equations can be integrated with respect to time by a semi-implicit method to

give a steady-state solution. Special attention should be placed on boundary conditions.

Eq.(8) is replaced by
2

h2
ψ (h, β) + Jζ (h, β) = 0, (13)

where h is the value of the coordinate α at the discretized point nearest to the cylinder

surface. Among many possibilities, ∂ζ

∂α
(α∞, β) = 0 (which is originally a necessary condi-

tion) is introduced for discretized equations, resulting in reducing one discretized point of
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application for Eq.(2) or (3). For α∞, to cover the viscous laminar sublayer fully inside

α∞ =
5 c√
2 Re

, (14)

c > 1,

where c is a suitably chosen constant.

4 Results

Velocity component parallel to the surface, u, is given by

u =
1√
J

∂ψ

∂α
. (15)

In the following analysis c for Eq.(14) = 1.4.

Figure 1 shows a velocity profile on the surface of a cylinder, the ratio of a major axis to

a minor axis is 3.01 at Re = 2.09 × 105 (experimental [11]), 2 × 105 (numerical, current

paper).

Fig. 1: Velocity profile

s : dimensionless arc length based on the minor axis from the forward stagnation point,

yn: distance (based on a) measured from the elliptic surface (α = 0) at a given s.

◦ : s = 0.251, [11]; • : s = 0.251, ǫn = 0, n ≥ 2, current (CD = 0.322); : s = 0.251,

ǫ2 = −0.05, ǫn = 0, n ≥ 3, current (CD = 0.241); : s = 2.52, [11]; : s = 2.52, ǫn = 0,

n ≥ 2, current, : ǫ2 = −0.05, ǫn = 0, n ≥ 3, current.

Drag coefficient CD (based on aρU2

∞, ρ: density) is given by

CD = ℜ
[

i

Re

{
∮

dz

d(α + iβ)
ζ dβ −

∮

z
∂ζ

∂α
dβ

}]

, (16)
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where integration is carried at α = 0. Figure 2 shows characteristics of CD in case of the

ratio of the length of the major axis to that of the minor = 2. For the current analysis

ǫn = 0, n ≥ 3.

Fig. 2: Drag coefficients

◦, △ : experimental [1], ▽ : experimental [7]; • : ǫ2 = −0.2, current; : ǫ2 = −0.1,

current; : ǫ2 = 0, current.

5 Discussion

Equation (5) has a possibility to give a separation, where at a point βs, u(α∞, βs) = 0. For

example, if ǫ2 = −0.2 and ǫ3 = −0.2, ǫn = 0, n ≥ 4, then βs ≈ 0.47, x(α∞ + iβs) ≈ 0.76.

6 Conclusions

Introducing a potential flow function in series type comparable with separation gives

reasonable velocity profiles in the viscous layer near the cylinder surface and reasonable

drag coefficients, using a spectral finite difference scheme. The assumption is just satisfied

in case of a slender elliptic cylinder, the major axis of which is parallel to the flow.
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