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Abstract - This research work study the motion of a 

projectile without air resistance using vector-valued 

function. In this work, we combined the factors that 

affect the path of a trajectory to determine how a pilot 

can jump off from an aircraft into a river which is 

located at a known distance without falling on the 

ground in case there is a failure in the parachute. Based 

on our study of the problem statement, we established a 

theorem which states that at every maximum point 

(time) of a projectile (ignoring air resistance), the 

tangential component of acceleration is equal to zero 

and the normal component of acceleration is equal to 

gravity. 
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Tangential and Normal component of acceleration 
 

INTRODUCTION 

In the Western world prior to the Sixteenth Century, 

it was generally assumed that the acceleration of a 

falling body would be proportional to its mass - that is, 

a 10 kg object was expected to accelerate ten times 

faster than a 1 kg object. It was an immensely popular 

work among academicians and over the centuries it had 

acquired a certain devotion verging on the religious. 

During the Renaissance, the focus, especially in the 

arts, was on representing as accurately as possible the 

real world whether on a 2 dimensional surface or a solid 

such as marble or granite. This required two things. The 

first was new methods for drawing or painting, e.g. 

perspective. The second, relevant to this topic, was 

careful observation. With the spread of cannon in 

warfare, the study of projectile motion had taken on 

greater importance, and now, with more careful 

observation and more accurate representation, came the 

realization that the path of a projectile did not consist of 

two consecutive straight line components but was 

instead a smooth curve. It wasn't until the Italian 

scientist Galileo Galilei came along that anyone put 

Aristotle's theories to the test. Unlike everyone else up 

to that point, Galileo actually tried to verify his own 

theories through experimentation and careful 

observation. He then combined the results of these 

experiments with mathematical analysis in a method 

that was totally new at the time, but is now generally 

recognized as the way science gets done. For the 

invention of this method, Galileo is generally regarded 

as the world's first scientist. In a tale that may be 

apocryphal, Galileo (or an assistant, more likely) 

dropped two objects of unequal mass from the Leaning 

Tower of Pisa. Quite contrary to the teachings of 

Aristotle, the two objects struck the ground 

simultaneously (or very nearly so). Given the speed at 

which such a fall would occur, it is doubtful that Galileo 

could have extracted much information from this 

experiment.  

Most of his observations of falling bodies were 

really of bodies rolling down ramps. This slowed things 

down enough to the point where he was able to measure 

the time intervals with water clocks and his own pulse 

(stopwatches and photo gates having not yet been 

invented). This he repeated "a full hundred times" until 

he had achieved "an accuracy such that the deviation 

between two observations never exceeded one-tenth of 

a pulse beat."This discovery led Galileo to an 

outstanding conclusion about Projectile Motion. He 

figured out that a projectile has two motions, instead of 

just one. He also said that "the motion that acts 

vertically is the force of gravity", which pulls the object 

back down to earth at 32 feet per second per second, 

and that "while gravity was pulling the object down to 

Earth, the projectile was also moving horizontally at the 

same time". 
 

PROBLEM STATEMENT  

Suppose an Air force jet is flying at a known 

altitude above sea level encounters a fault in the air and 

is about to crash and the pilot decides to jump off from 

the emergency exit with a known velocity and at a 

specified angle above the horizontal. (Assuming there is 

failure in the parachute and no air resistance). The 

problem therefore is how the pilot can jump into a river 

which is located at a known distance from where he 

jumped. Figure 1.1 illustrates the motion of the pilot 

from the aircraft. 
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where, 
𝑣0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 
𝑣0𝑥 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑒 𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛 

𝑣0𝑦 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛 

 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑖𝑔𝑡 𝑜𝑓 𝑡𝑒 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 
𝐻 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑖𝑔𝑡 𝑟𝑒𝑎𝑐𝑒𝑑 𝑏𝑦 𝑡𝑒 𝑝𝑖𝑙𝑜𝑡 
𝑅 = 𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑣𝑓 = 𝑓𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  

𝑣𝑓𝑥 = 𝑓𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑒 𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛 

𝑣𝑓𝑦 = 𝑓𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛 

𝜃 = 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 

 
General objectives: The main aim of this paper is to 

investigates the projectile motion of the pilot in the 

problem statement. The objectives are therefore how we 

are going to use vector-valued function application in 

projectile motion to determine: 

 

a) How long the pilot will be airborne (i.e. the pilot 

time of flight)? 

b) Whether the pilot lands on the island or falls into 

the river which was located at an assume distance 

of 5 000 feet. (i.e. the horizontal distance travelled 

by the pilot).  

c) The pilot final velocity at impact? 

d)  The vertical distance travelled (maximum height) 

by the pilot and the tangential and normal 

component of acceleration acting on the pilot at the 

time he reaches his maximum height. 

 

EMPIRICAL LITERATURE REVIEW 

The usual way of studying projectile motion is by using 

kinematics equations in physics. The following 

paragraphs will overview the various research works on 

the study of projectile motion.   

Warburton and Wang
 
(2004) provided an overview on 

calculating the range of a projectile experiencing air 

resistance in the asymptotic region of large velocities by 

introducing the Lambert function. From their exact 

solution for the range in terms of the Lambert function, 

they derive an approximation for the maximum range in 

the limit of large velocities. Analysis of the result 

confirmed an independent numerical result observed in 

an introductory physics class that the angle at which the 

maximum range occurs, goes rapidly to zero for 

increasing initial firing speeds.  

Kantrowitz and Neumann, 2011, studied the motion of a 

projectile that was launched from the top of a tower and 

lands on a given surface in space. Their goal was to 

determine explicit and manageable formulas for the 

direction of launch in space that allows the projectile to 

travel as far as possible. They developed a deferent 

general approach that led to remarkably simple 

equations and solution formulas.  

 

 

 

𝜃 

𝑣0 = 𝑣0𝑥  

𝑣𝑓  

𝑣𝑓𝑥  
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  Figure 1.1 (the trajectory of the pilot from the aircraft) 

𝑅 
𝑥 

𝐻 

𝑦 
𝑣0 = 0 

http://scitation.aip.org/content/contributor/AU0025339;jsessionid=xi9fuxp12whh.x-aip-live-06
http://scitation.aip.org/content/contributor/AU0025340;jsessionid=xi9fuxp12whh.x-aip-live-06
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   Acceleration of projectile 

Robinson and Robinson, 2013, developed 

differential equations which govern the motion of a 

spherical projectile rotating about an arbitrary axis in 

the presence of an arbitrary ‘wind’. Three forces were 

assumed to act on the projectile: (i) gravity, (ii) a drag 

force proportional to the square of the projectile’s 

velocity and in the opposite direction to this velocity 

and (iii) a lift or ‘Magnus’ force also assumed to be 

proportional to the square of the projectile’s velocity 

and in a direction perpendicular to both this velocity 

and the angular velocity vector of the projectile. The 

problem was coded in Matlab and some illustrative 

model trajectories were presented for ‘ball-games’, 

specifically golf and cricket, although the equations 

could equally well be applied to other ball-games such 

as tennis, soccer or baseball. They found that the 

trajectories obtained were broadly in accord with those 

observed in practice.  

Chudinov (2011) reviewed the classic problem of the 

motion of a point mass (projectile) thrown at an angle to 

the horizon. The air drag force was taken into account 

in the form of a quadratic function of velocity with the 

coefficient of resistance assumed to be constant. 

Analytical methods for the investigation were mainly 

used. With the help of simple approximate analytical 

formulas a full investigation of the problem was carried 

out. This study includes the determining of eight basic 

parameters of projectile motion (flight range, time of 

flight, maximum ascent height and others). The study 

also included the construction of the basic functional 

dependences of the motion, the determination of the 

optimum angle of throwing, providing the greatest 

range; constructing of the envelope of a family of 

trajectories of the projectile and finding the vertical 

asymptote of projectile motion. The motion of a 

baseball was presented as examples. 

Warburton et al, (2010) studied the projectile 

motion with air resistance quadratic in speed. They 

considered three regimes of approximation: low-angle 

trajectory where the horizontal velocity; high-angle 

trajectory; and split-angle trajectory. The approximation 

was simple and accurate for low angle ballistics 

problems when compared to measured data. They also 

discovered that the range in this approximation is 

symmetric about, although the trajectories were 

asymmetric. They also gave simple and practical 

formulas for accurate evaluations of the Lambert W 

function. 

Morales (2011) studied the motion of a projectile 

with linear drag shot from a nonzero height on an 

inclined plane that makes an angle  ∅  with the 

horizontal, and obtain analytical expressions for the 

range, the time of flight, and the angle between the 

initial and final velocities as functions of the firing 

angle in terms of the Lambert W function. He observed 

that for  ∅ = 0, analytical expressions are also obtained 

for the maximum range, the optimum angle, and the 

optimum time of flight in terms of the Lambert 

W function. In the general case, he proved that when the 

projectile travels along the path of maximum range, the 

initial and final velocities are perpendicular. 

 

METHODOLOGY 

 

The path of a Projectile 

We assume that gravity is the only force acting on the projectile after 

it is launched. So, the motion occurs in a vertical plane, which can be 

represented by the 𝑥𝑦-coordinate system with the origin as a point on 

Earth’s surface, as shown in Figure 1.2.  

 

For a projectile of mass  𝑚, the force due to gravity is 

                   𝐅 =  − 𝑚𝑔𝒋 
 

where the acceleration due to gravity is 𝑔 =  32 feet per second per 

second, or 9.81 meters per second per second.  

 

By Newton’s Second Law of Motion, this same force produces an acceleration  𝐚 =  𝐚(𝑡),  and satisfies the 

equation   𝐅 =  𝑚𝐚. Consequently, the acceleration of the projectile is given by  𝑚𝐚 = –  𝑚𝑔𝒋, which implies that 

 

                   𝐚 =  −𝑔𝒋. 
 

Figure 1.2 

Force due to gravity 
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We start by finding a position vector as a function of time 𝑡 . Beginning with the acceleration vector  𝐚 =  −𝑔𝒋  
and integrating twice. 

𝐯 𝑡 =  𝐚 𝑡 𝑑𝑡 =  −𝑔𝒋𝑑𝑡 = − 𝑔𝑡𝒋 + 𝑪1 

𝐫 𝑡 =  𝐯 𝑡 𝑑𝑡 =   −𝑔𝑡𝒋 + 𝑪𝟏 𝑑𝑡 = −
1

2
𝑔𝑡2𝒋 + 𝑪1𝑡 + 𝑪2 

 

Solving for the constant vectors 𝑪1 and 𝑪2, we use the fact that 𝐯(0) = 𝐯0 and 𝐫(0) = 𝐫0. Doing this produces 

𝑪1 = 𝐯0 and 𝑪2 = 𝐫0. Therefore, the position vector is 

 
 
 

 

In many projectile problems, the constant vectors  𝐫0 and 𝐯0 are not 

given explicitly. Often we are given the initial height , the initial 

speed 𝑣0 and the angle 𝜃 at which the projectile is launched, as shown 

in Figure 1.3. 

 
From the given height, we can deduce that  𝐫0 = 𝒋. Because the speed 

gives the magnitude of the initial velocity, it follows that 𝑣0 =  𝐯0  

and we can write 

𝐯0 = 𝑥𝒊 + 𝑦𝒋                                                
=   𝐯0 cos 𝜃 𝒊 +   𝐯0 sin 𝜃 𝒋 

= 𝑣0cos 𝜃𝒊 + 𝑣0 sin 𝜃𝒋                   
 

So, the position vector can be written in the form 

 
  
 
 

   = −
1

2
𝑔𝑡2𝒋 + 𝑡𝑣0 cos 𝜃𝒊 + 𝑡𝑣0 sin 𝜃𝒋 + 𝒋 

             =  𝑣0 cos 𝜃 𝑡𝒊 +   +  𝑣0 sin 𝜃 𝑡 −
1

2
𝑔𝑡2 𝒋. 

Theorem 1.1 

  
 
 
 
 

 

 

 

The Normal and Binomial Vectors : At a given point on a smooth space curve 𝐫(𝑡), there are many vectors that are 

orthogonal to the unit tangent vector  𝐓 𝑡 . We single out one by observing that, because  𝐓 𝑡  = 1 for all 𝑡, we 

have 𝐓 𝑡 ∙ 𝐓′(𝑡) = 0, so 𝐓′(𝑡) is orthogonal to 𝐓 𝑡 . Note that 𝐓′(𝑡) is itself not a unit vector. But if 𝐫′ is also 

smooth, we can define the principal unit normal vector  𝐍 𝑡  (or simply unit normal) as  
 
 
 

 

position vector 

𝐫 𝑡 = −
1

2
𝑔𝑡2𝒋 + 𝑡𝒗𝟎 + 𝐫0 Position vector 

𝐫 𝑡 =  𝑣0 cos 𝜃 𝑡𝒊 +   +  𝑣0 sin 𝜃 𝑡 −
1

2
𝑔𝑡2 𝒋 

   
Neglecting air resistance, the path of a projectile launched from an initial height  

with initial speed 𝑣0 and angle of elevation 𝜃 is described by the vector function 

where 𝑔 is the acceleration due to gravity. 

𝐫 𝑡 = −
1

2
𝑔𝑡2𝒋 + 𝑡𝒗𝟎 + 𝐫0 

  𝐍 𝑡 =
𝐓′(𝑡)

 𝐓′(𝑡) 
 

Figure 1.3 
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𝐍 𝑡  

𝐁 𝑡  

𝐓 𝑡  

The vector  𝐁 𝑡 = 𝐓 𝑡 × 𝐍 𝑡  is called the binomial vector. It is perpendicular to both 𝐓 and 𝐍 and is also a unit 

vector as shown in Figure 1.4   

 
 
 
 
 
 

 

 

 

 

 

 

 

Tangential and Normal Component of Acceleration   
Returning to the problem of describing the motion of an object along a curve. In the preceding section, we saw that 

for an object traveling at a constant speed, the velocity and acceleration vectors are perpendicular. This seems 

reasonable, because the speed would not be constant if any acceleration were acting in the direction of motion. We 

can verify this observation by noting that 

 𝐫″ 𝑡 ∙ 𝐫′ 𝑡 = 0 
 

     if  𝐫′(𝑡)  is a constant.  

 

However, for an object traveling at a variable speed, the velocity and acceleration vectors are not necessarily 

perpendicular. For instance, the acceleration vector for a projectile always points down, regardless of the direction 

of motion. In general, part of the acceleration (the tangential component acts in the line of motion, and part (the 

normal component) acts perpendicular to the line of motion. In order to determine these two components, we can 

use the unit vectors 𝐓 𝑡  and 𝐍 𝑡  which serve in much the same way as do 𝒊 and 𝒋 in representing vectors in the 

plane. 

The following theorem states that the acceleration vector lies in the plane determined by 𝐓 𝑡  and 𝐍 𝑡 . 

 

Theorem 1.2 

 
 
 

Proof of theorem 1.2 

To simplify the notation, we write 𝐓 for 𝐓 𝑡 , 𝐓′ for 𝐓′ 𝑡 , and so on. Because  

𝐓 = 𝐫′  𝐫′  = 𝐯  𝐯  , it follows that 

          𝐯 =  𝐯 𝐓 . 

By differentiating, we obtain 

                   𝐚 = 𝐯′ =
𝑑

𝑑𝑡
  𝐯  𝐓 +  𝐯 𝐓′ 

=
𝑑

𝑑𝑡
  𝐯  𝐓 +  𝐯 𝐓′  

 𝐓′ 

 𝐓′ 
                                             

                    =
𝑑

𝑑𝑡
  𝐯  𝐓 +  𝐯  𝐓′ 𝐍.                since     𝐍 = 𝐓′  𝐓′                

 

We can think of the normal 

vector as indicating the 

direction in which the curve 

is turning at each point 

Figure 1.4   

If 𝐫(𝑡) is the position vector for a smooth curve 𝐶 and 𝐍 𝑡  exists, then the 

acceleration vector 𝐚(𝑡) lies in the plane determined by 𝐓 𝑡  and 𝐍 𝑡  

 
Product Rule 
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Because 𝐚 is written as a linear combination of 𝐓 and 𝐍, it follows that 𝐚 lies in the plane determined by 𝐓 and 𝐍 

The coefficients of 𝐓 and 𝐍 in the proof of theorem 1.2 are called the tangential and normal components of 

acceleration and are denoted by 𝑎𝐓 =
𝑑

𝑑𝑡
  𝐯    and  𝑎𝐍 =  𝐯  𝐓′ . So, we can write  

 

                          𝐚(𝑡) = 𝑎𝐓𝐓(𝑡) + 𝑎𝐍𝐍(𝑡) 
 

The following theorem at the next page gives some convenient formulas for 𝑎𝐓 and 𝑎𝐍 

Theorem 1.3 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof of theorem 1.3 

Consider the diagram below, 

     
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑎𝐓 =
𝑑

𝑑𝑡
 𝐯 = 𝐚 ∙ 𝐓 =

𝐯 ∙ 𝐚

 𝐯 
                                          

𝑎𝐍 =  𝐯  𝐓′ = 𝐚 ∙ 𝐍 =
 𝐯 × 𝐚 

 𝐯 
=   𝐚 2 − 𝑎𝐓

2  

 
If 𝐫(𝑡) is the position vector for a smooth curve 𝐶 [for which 𝐍 𝑡  exists], then 

the tangential and normal components of acceleration are as follows. 

Note that 𝑎𝐍 ≥ 0. The normal component of acceleration is also called the 

centripetal component of acceleration. 

The tangential and normal components of 

acceleration are obtained by projecting  𝐚 

onto 𝐓 and  𝐍 

Figure 1.5 
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Note that 𝑎 lies in the plane of 𝐓 and 𝐍. So, we can use Figure 1.5 to conclude that, for any time 𝑡, the components 

of the projection of the acceleration vector onto 𝐓 is given by 𝑎𝐓 = 𝐚 ∙ 𝐓,  and onto 𝐍 is given by 𝑎𝐍 = 𝐚 ∙ 𝐍. 

Moreover, because 𝐚 = 𝐯′ and 𝐓 = 𝐯  𝐯  , we have 

𝑎𝐓 = 𝐚 ∙ 𝐓                                                            
    = 𝐓 ∙ 𝐚                                                          

   =
𝐯

 𝐯 
∙ 𝐚                                                     

  =
𝐯 ∙ 𝐚

 𝐯 
                                                       

 

For the normal component of acceleration, using  𝐚 = 𝑎𝐓𝐓 + 𝑎𝐍𝐍  ,   𝐓 × 𝐓 = 0, and               𝐓 × 𝐍 = 1, we 

have 

 

𝐯 × 𝐚 =  𝐯 𝐓 ×  𝑎𝐓𝐓 + 𝑎𝐍𝐍                                  
=  𝐯 𝑎𝐓 𝐓 × 𝐓 +  𝐯 𝑎𝐍 𝐓 × 𝐍   
=  𝐯 𝑎𝐍 𝐓 × 𝐍                                   

Therefore, 

 𝐯 × 𝐚 =  𝐯 𝑎𝐍 𝐓 × 𝐍                                                  
=  𝐯 𝑎𝐍                                                

Thus, 

𝑎𝐍 =
 𝐯 × 𝐚 

 𝐯 
                                                   

Also,  𝐚 = 𝐚 ∙ 𝐚 =  𝑎𝐓𝐓 + 𝑎𝐍𝐍   ∙  𝑎𝐓𝐓 + 𝑎𝐍𝐍    

                                = 𝑎𝐓
2 𝐓 2 + 2𝑎𝐓𝑎𝐍𝐓 ∙ 𝐍 + 𝑎𝐍

2 𝐍 2 = 𝑎𝐓
2 + 𝑎𝐍

2  

                          𝑎𝐍
2 =  𝐚 − 𝑎𝐓

2  

Since 𝑎𝐍 > 0, we have 𝑎𝐍 =   𝐚 − 𝑎𝐓
2   

 
DATA ANALYSIS OF PROBLEM STATEMENT 

 

From theorem 1.1 the position function for a projectile is given by 

              𝐫 𝑡 =  𝑣0 cos 𝜃 𝑡𝒊 +   +  𝑣0 sin 𝜃 𝑡 −
1

2
𝑔𝑡2 𝒋…… …………… … . . (1) 

 

From the problem statement, we will assume that the known altitude, initial velocity and the angle of elevation are 

respectively. 

 = 30000 𝑓𝑒𝑒𝑡 ,      𝑣0 = 150 𝑓𝑒𝑒𝑡 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑,   and      𝜃 = 45𝑜 , 
Since in air navigation the lowest safe altitude (LSALT) is an altitude that is at least 1,000 feet above any obstacle 

or terrain within a defined safety buffer region around a particular route that a pilot might fly. Also if someone 

fall’s head down from a tower with their body straight, as if in a dive, it could be 102mph (149.6000034 feet per 

second). And one of the best known 'results' of the science of mechanics is that the optimum projection angle for 

achieving maximum horizontal range is 45°. 

 

So using 𝑔 = 32 feet per second per second, equation (1) becomes  

𝐫 𝑡 =  150 cos
𝜋

4
 𝑡𝒊 +  30000 +  150 sin

𝜋

4
 𝑡 −

1

2
∙ 32𝑡2 𝒋 

=  75 2 𝑡 𝒊 +  30000 + 75 2 𝑡 − 16𝑡2 𝒋                
 

 

http://en.wikipedia.org/wiki/Air_navigation
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writing the trajectory in the form of parametric equation, the position vector 𝐫 𝑡  becomes 

 

𝑥 𝑡 = 75 2𝑡                                    𝑦 𝑡 = 30000 + 75 2𝑡 − 16𝑡2               
 

a) For how long is the pilot airborne is the time taken by the pilot to complete its motion, which is represented 

by the curve in Figure 1.1 

 

Impact occurs when  𝑦(𝑡) = 0, thus 

16𝑡2 − 75 2𝑡 − 30000 = 0 
 

here  𝑎 = 16,    𝑏 = −75 2    and    𝑐 = −30000  and so solving this quadratic equation yields  

𝑡 =
−𝑏 ±  𝑏2 − 4𝑎𝑐

2𝑎
                                             

 𝑡 =
75 2 ±   75 2 

2
− 4 16 (−30000)

2(16)
 

                   =
75 2 ± 1389.6942211

32
 ≈ 46.74    or   − 40.11 

 

Since negative time has no meaning in this context we take the positive root. Therefore the pilot is in the air for 

about 46.74 seconds. 

b) The horizontal distance travelled by the pilot is known as the range (R), which is represented by a straight 

horizontal line to where it cuts the plane below in Figure 1.1 

 

The horizontal motion for the trajectory is  

                       𝑥 𝑡 = 75 2𝑡  ……… …………… …… .  (2)                                   
 

applying the definition of limit gives 

lim
        𝑡→46.74

𝑥 𝑡    = lim
        𝑡→46.74

 75 2 𝑡 

                                             =      75 2  46.74                

                            ≈  4957.52            
Since the river is located 5 000 feet, the pilot falls on the island about 4 958 feet away from where he jumped. 

 

a) The pilot final velocity upon landing on the ground is the speed at impact, which is represented by the 

diagonal arrow (𝑣𝑓) in Figure 1.1 

 

By the definition of velocity and speed in Chapter Three 

 

𝐕𝐞𝐥𝐨𝐜𝐢𝐭𝐲 = 𝐯 𝑡 = 𝐫′(𝑡) = 𝑥′ 𝑡 𝒊 + 𝑦′ 𝑡 𝒋 

                                                                      =  75 2 𝒊 +  75 2 − 32𝑡 𝒋 

 

and  𝐬𝐩𝐞𝐞𝐝 =  𝐯(𝒕) =  𝐫′(𝑡) =   𝑥′ 𝑡  2 +  𝑦′ 𝑡  2 . So the pilot speed at impact is 

 𝐯 46.74  =   75 2 
2

+  75 2 − 32 ∙  46.74 
2

≈ 1394 

 

Therefore the pilot final velocity (𝑣𝑓) or speed at impact is 1 394 feet per second. 

b) The maximum height is the maximum value of the vertical distance attain by the pilot above the horizontal 

plane to the point of projection. In Figure 1.1, the maximum height is represented by the middle vertical 

line (H).  
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The maximum height occurs when 

                        𝑦′ 𝑡 = 75 2 − 32𝑡 = 0    
 

which implies that  

                  𝑡 =
75 2

32
≈ 3.31  𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

So the maximum height reached by the pilot is 

            𝑦  
75 2

32
 = 30000 + 75 2  

75 2

32
 − 16  

75 2

32
 

2

 

 
                                 ≈ 30175.78  feet                               maximum height when  𝑡 ≈ 3.31 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  
 

Our velocity vector, speed and acceleration vector are;     

 𝐯 𝑡 =  75 2 𝒊 +  75 2 − 32𝑡 𝒋    

 

           𝐯 𝑡  =   75 2 
2

+  75 2 − 32𝑡 
2

= 2 5625 − 1200 2𝑡 + 256𝑡2 

 

and       𝐚 𝑡 = 𝐯′ 𝑡 = 0𝒊 − 32𝒋 = −32𝒋 
 

 From theorem 1.3, the tangential component of acceleration is given by  𝑎𝐓 =
𝐯∙𝐚

 𝐯 
   

 

and so                                              𝑎𝐓(𝑡) =
𝐯 𝑡 ∙𝐚 𝑡 

 𝐯 𝑡  
 =

 75 2𝒊+ 75 2−32𝑡 𝒋  ∙ 0𝒊−32𝒋 

2 5625−1200 2𝑡+256𝑡2
           

𝑎𝐓(𝑡)   =
−32 75 2 − 32𝑡 

2 5625 − 1200 2𝑡 + 256𝑡2
          

                                                             =
−16 75 2 − 32𝑡 

 5625 − 1200 2𝑡 + 256𝑡2
             

 

and the normal component of acceleration is given by       𝑎𝐍 =
 𝐯×𝐚 

 𝐯 
 

note that 𝐚 𝑡 = −32𝒋 = 0𝒊 − 32𝒋 + 0𝒌. Thus 

 

          𝐯 𝑡 × 𝐚 𝑡 =   

𝒊 𝒋 𝒌

75 2  75 2 − 32𝑡 0

0 −32 0

  = 0𝒊 + 0𝒋 − 2400 2 𝒌              

 

Therefore, 

       𝑎𝐍(𝑡) =
 𝐯(𝑡) × 𝐚(𝑡) 

 𝐯(𝑡) 
=

 0𝒊 + 0𝒋 − 2400 2𝒌 

2 5625 − 1200 2𝑡 + 256𝑡2
 

                  

                   =
 02 + 02 +  −2400 2 ²

2 5625 − 1200 2𝑡 + 256𝑡2
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45° 

                   =
1200 2

 5625 − 1200 2𝑡 + 256𝑡2
                  

 

at that particular time  𝑡 =
75 2

32
, therefore we have 

𝑎𝐓  
75 2

32
 =

−16  75 2 − 32  
75 2

32
  

 5625 − 1200 2  
75 2

32
 + 256  

75 2

32
 

2
= 0          … …………… …… . . (3) 

 

𝑎𝐍  
75 2

32
 =

1200 2

 5625 − 1200 2  
75 2

32
 + 256  

75 2

32
 

2
= 32      ……… …………… … . (4) 

From Figure 1.1, the tangential and the normal component of acceleration can be illustrated as 

  
 
 
 
 
                                                       
                                                         
 
 
 

Figure 1.6 
 

 

The results in equation (3) and (4) are always true for all situations under projectile motion with no air resistance. In 

order to prove this, we consider the model for the path of a projectile, given by the equation 

𝐫 𝑡 =  𝑣0 cos 𝜃 𝑡𝒊 +   +  𝑣0 sin 𝜃 𝑡 −
1

2
𝑔𝑡2 𝒋 

Writing the trajectory in the form of parametric equation, the position vector  𝐫 𝑡  becomes 

𝑥 𝑡 =  𝑣0 cos 𝜃 𝑡                               𝑦 𝑡 =  +  𝑣0 sin 𝜃 𝑡 −
1

2
𝑔𝑡2               

 

Now, at maximum,  𝑦′ 𝑡 = 0  
which implies that  

𝑦′ 𝑡 = 𝑣0 sin 𝜃 − 𝑔𝑡 = 0 

𝑔𝑡 = 𝑣0 sin 𝜃 

                                                                  𝑡 =
𝑣0 sin 𝜃

𝑔
      (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑙𝑒) 

 

From theorem 1.3, the tangential component of acceleration is given by  𝑎𝐓 =
𝐯∙𝐚

 𝐯 
   

But, 

 𝐯 𝑡 = 𝐫′ 𝑡 =  𝑣0 cos 𝜃 𝒊 +  𝑣0 sin 𝜃 − 𝑔𝑡 𝒋  
 

 𝐯 𝑡  =   𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2         and 

 

    𝐚 𝑡 = 𝐯′ 𝑡 = 0𝒊 − 𝑔𝒋 = −𝑔𝒋     

𝑡 =
75 2

32
 

𝑣0 𝑦 
• 

𝑎𝐍 𝐍 

𝑥 
𝐚 
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Therefore, 

𝑎𝐓 𝑡 =
  𝑣0 cos 𝜃 𝒊 +  𝑣0 sin 𝜃 − 𝑔𝑡 𝒋 ∙  0𝒊 − 𝑔𝒋 

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
                     

 

=
−𝑔 𝑣0 sin 𝜃 − 𝑔𝑡 

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
                              

 

Substituting    𝑡 =
𝑣0 sin 𝜃

𝑔
  into the above equation, we obtain 

              𝑎𝐓  
𝑣0 sin 𝜃

𝑔
 =

−𝑔  𝑣0 sin 𝜃 − 𝑔  
𝑣0 sin 𝜃

𝑔
  

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
                    

                                       =
−𝑔 𝑣0 sin 𝜃 − 𝑣0 sin 𝜃 

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
= 0      … ………… ………… (3) 

 

And the normal component of acceleration is given by 

              𝑎𝐍 =
 𝐯 × 𝐚 

 𝐯 
 

 

But, 

          𝐯 𝑡 × 𝐚 𝑡 =   

𝒊 𝒋 𝒌
𝑣0 cos 𝜃 𝑣0 sin 𝜃 − 𝑔𝑡 0

0 −𝑔 0
           

 = 0𝒊 + 0𝒋 − 𝑔 𝑣0 cos 𝜃 𝒌                                                                 
Therefore, 

                       𝑎𝐍 𝑡 =
 0𝒊 + 0𝒋 − 𝑔 𝑣0 cos 𝜃 𝒌 

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
 

                                    

                                 =
 02 + 02+ −𝑔𝑣0 cos 𝜃 2

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
=

  −𝑔𝑣0 cos 𝜃 2

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
 

            

                                 =
 −𝑔𝑣0 cos 𝜃 

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
=

 −𝑔 ∙  𝑣0 cos 𝜃 

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔𝑡 2
 

 

Now substituting  𝑡 =
𝑣0 sin 𝜃

𝑔
  into the above equation, we obtain 

 

𝑎𝐍  
𝑣0 sin 𝜃

𝑔
 =

 𝑔 ∙  𝑣0 cos 𝜃 

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑔  
𝑣0 sin 𝜃

𝑔
  

2
 

                     

                          =
 𝑔 ∙  𝑣0 cos 𝜃 

  𝑣0 cos 𝜃 2 +  𝑣0 sin 𝜃 − 𝑣0 sin 𝜃 2
   

    

    =
 𝑔 ∙  𝑣0 cos 𝜃 

  𝑣0 cos 𝜃 2
  =

 𝑔 ∙  𝑣0 cos 𝜃 

 𝑣0 cos 𝜃 
=  𝑔 = 𝑔    ……… …………… … (4) 
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Hence, from equation (3) and (4), we establish the theorem given below. 

Theorem 1.4 

 

 

 

 

 

 

 

 

 

DISCUSSION OF RESULTS 

Case 1 

Keeping 𝑣0 and  𝜃 constant and taking   = 40000 𝑓𝑒𝑒𝑡 we have 

 

                             𝑦 𝑡 = 40000 + 75 2𝑡 − 16𝑡2  
 

Equating the above equation to zero and solving for 𝑡 we obtain 

 𝑡  =
75 2 ± 1603.511771

32
 ≈ 53.42 

 

From equation (2), applying the definition of limit, we have 

 

lim
        𝑡→53.42

𝑥 𝑡    = lim
        𝑡→53.42

 75 2 𝑡 

                                                                     =      75 2  53.42    ≈ 5666.50              
Thus the pilot falls into the river. 

 

Case 2 

Keeping  and  𝜃 constant and taking  𝑣0 = 100 𝑓𝑒𝑒𝑡 𝑝𝑒𝑟𝑠𝑒𝑐𝑜𝑛𝑑 , equation (1) becomes 

 

𝐫 𝑡 =  50 2 𝑡 𝒊 +  30000 + 50 2 𝑡 − 16𝑡2 𝒋 
 

writing the trajectory in the form of parametric equation, the position vector 𝐫 𝑡  becomes 

𝑥 𝑡 = 50 2𝑡                                    𝑦 𝑡 = 30000 + 50 2𝑡 − 16𝑡2 
 

Equating  𝑦 𝑡   to zero and solving for 𝑡, we obtain 

𝑡 =
50 2 ± 50 770

32
 ≈ 45.57 

 

applying the definition of limit to the horizontal motion  𝑥 𝑡  in this case, we have 

lim
        𝑡→45.57

𝑥 𝑡    = lim
        𝑡→45.57

 50 2 𝑡 

                                               lim
        𝑡→45.57

𝑥 𝑡    =      50 2  45.57 ≈ 3222.29                

 

Thus the pilot falls on the island. 

We can also see from Figure 1.6 that at the maximum height, when 𝑡 =
75 2

32
, the tangential component is 0. This is 

reasonable because the direction of motion is horizontal at the point and the tangential component of acceleration is 

equal to the horizontal component of the acceleration. Notice also that the normal component of acceleration is 

equal to the magnitude of the acceleration. In other words, because at that time the speed is constant, the normal 

component of acceleration is perpendicular to the velocity at that point in figure 1.1. 

At every maximum point (time) of a projectile with no air resistance, 

              𝑎𝐓 𝑡 = 0            and            𝑎𝐍 𝑡 =  −𝑔 = 𝑔 

    where 𝑔 = gravity . 
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CONCLUSIONS AND RECOMMENDATIONS 

A projectile is an object in free fall: subject to 

gravity and air resistance. In this context, we did not 

account for air resistance acting on a projectile. Instead, 

we neglected it.  Projectile motion consists of 

independent horizontal and vertical motions. The 

horizontal and vertical motions of a projectile take the 

same amount of time. Projectiles usually move 

horizontally at a constant velocity and undergo uniform 

acceleration in the vertical direction. This acceleration 

is due to gravity. Objects can be projected horizontally 

or at an angle to the horizontal. Projectile motion can 

begin and end at the same or at different heights. 

Understanding how projectile motion works is very 

beneficial in determining how to best propel an object. 

In our discussion of results above, we were able to 

increase the horizontal distance travelled by the pilot to 

enable him cover a greater distance. The two variables 

which affected the horizontal distance were the initial 

velocity, and the height at which he jumped from the 

aircraft. One of these variables is not enough to ensure a 

good horizontal distance. In order to combine these two 

factors to increase the pilot horizontal distance, then the 

pilot has to gather much momentum before propelling 

himself off from the emergency exit to increase his 

initial velocity or increasing the altitude of the aircraft. 

Generally, when the pilot velocity and angle of 

projection are held constant, the higher the projection 

height, the longer the flight time. Hence, if flight time is 

longer the distance is greater.              

Also in the data analysis of the problem statement, 

we were able to establish theorem (4.1) which states 

that at every maximum point (time) of a projectile 

(ignoring air resistance), the tangential component of 

acceleration is equal to zero and the normal (centripetal) 

component of acceleration is equal to gravity. This was 

due to the fact that, at that time the velocity of the 

projectile is horizontal and since the speed of the 

projectile remains constant throughout the flight, the 

tangential component of acceleration now becomes 

zero, causing the normal component of acceleration to 

be equal to the magnitude of the total acceleration 

(gravity).  
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