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Abstract – In this paper, a nature-based metaphor for 

computation is presented as a heuristic solution for a popular 

combinatorial optimization problem, the traveling salesperson 

problem (TSP). The metaphor was aptly named artificial 

chemistry (ACHEM) because the computational process is 

based on molecular dynamics. It is designed as a distributed 

stochastic algorithm that simulates reaction systems of 

algorithmic objects whose behavior is inspired by natural 

chemical systems. Finding the optimal solutions for TSP are 

particularly intractable for problem instances that are very 

large. This is the reason why a heuristic, such as the ACHEM, 

is a preferred solution than a computational procedure that 

provides optimal ones. To evaluate the utility of the heuristic, 

ACHEM was applied to find near-optimal solutions to large 

instances of the TSP. Results show that ACHEM outperformed 

other nature-based heuristics such as the simulated annealing 

and the self organizing maps, while it performed as good as the 

genetic algorithm and the ant colony optimization. Thus, 

ACHEM provides another natural metaphor for solving hard 

instances of the TSP.  

Keywords – Artificial chemistry, combinatorial optimization, 

traveling salesperson problem, TSP 

I. INTRODUCTION 

The traveling salesperson problem (TSP) has been used as a 

paradigm for solving real-world problems such as shop floor 

control, scheduling, distribution of goods and services, vehicle 

routing, product design, and VLSI layout [1]. Given a set of 

cities, and known distances between each pair of cities, the TSP 

is the problem of finding a Hamiltonian tour such that the total 

distance traveled is minimum. A Hamiltonian tour is a tour that 

visits each city exactly once. TSP may also be stated as the 

search for the minimum Hamiltonian cycle instead, which is 

actually a Hamiltonian tour with the requirement that the 

salesperson return to the city where it started. Other TSP 

variants consider the cost of traveling between two cities, or the 

time it will take to travel between them, but the problem does 

not change [2],[3].  

Exact solutions to solving TSP have been proposed by 

many researchers but these solutions are only efficient for small 

problem instances. TSP has proved to be intractable for large 

problem instances, where intractability of a solution means that 

even the fastest known computer will take a very long time to 

solve the problem. The TSP is intractable because if there are n 

cities, the number of possible tours is (n – 1)!/2. If, for 

example, the recent fastest computer can compute for the cost 

of one tour in 12s, checking all possible tours when n is very 

large might take more than a human's lifetime. Table 1 shows 

the number of all possible tours and the approximate amount of 

time it will take to solve the TSP for some n  20. Realistically, 

the amount of time to compute for the cost of one tour 

increases as the length of tour increases, which in turn 

increases as the number of cities (n) increases. To simplify the 

estimate, the approximate time in Table 1 did not take into 

account the corresponding increase in computing for the cost of 

one tour at n>5. It is highly possible that the values in Table 1 

will take longer than estimated at problem instances where n>5. 

Most real-world applications that use TSP as a paradigm for 

computation have n >> 20. Thus, checking all possible 

solutions when n > 20 is impractical. 

 

Table 1. The number of all possible tours and the approximate 

amount of time to solve n-city TSP's, where n  20, with the 

assumption that a computer can compute for one tour in a 

constant time of 12s. 

Number of  

Cities (n) 

Number of  

Possible Tours 
Time 

5 12 12 s 

8 2,520 2.5 ms 

10 181,440 0.18 s 

12 19,958,400 20 s 

15 87,178,291,200 12.1 hours 

18 177,843,714,048,000 5.64 years 

20 60,822,550,204,416,000 1,927 years 

  

Intractable problems are said to belong to the class of NP-

hard problems and TSP has proved to belong to the same class 

[4],[5]. Because of the nature of the TSP, researchers have 

developed heuristic and metaheuristic methodologies so that 

intractable instances of the TSP may be given practical 

solutions. Practicality here means that the problem can be 

computed within a reasonable amount of time, while the 

solutions found are near-optimal. Computing within reasonable 

amount of time means that a satisfiable solution can be 

obtained within a specified deadline (which, intuitively, should 

be shorter than a human's lifetime), while near-optimality 

means that the seeker of the solution is already satisfied with 
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the best solution found so far (which might not necessarily 

mean the very best solution, but the solution seeker has already 

found it practically useful anyway). 

Heuristic solutions to TSP have been studied extensively. 

Graph-based heuristics such as branch and bound [6], cutting 

planes [7], Lagrangian relaxation [8],[9], and branch-and-cut 

[10], as well as multi-agent-based and nature-inspired 

algorithms such as genetic algorithms [11], memetic algorithms 

[12]–[14], tabu search [15], simulated annealing [16], 

simulated jumping [17], neural networks [18], and ant colonies 

[19]–[21] have been used and shown to find optimal and near 

optimal solutions to several instances of TSP.  

In recent years, the chemical metaphor, called artificial 

chemistry (ACHEM), has emerged as a computational 

paradigm for search, optimization, and machine learning [22]–

[27], which are useful computational tools in artificial 

intelligence and computer science. The processes in molecular 

dynamics have been used as a computational paradigm because 

chemical and biochemical systems of living organisms have 

been shown recently to possess computational properties [28]–

[30]. This prompted researchers to develop a metaheuristic 

algorithm based on chemical dynamics. In this “kind” of 

chemistry, the objects (atoms or molecules) are paradigms for 

data or solutions to problems, while the interactions (collisions 

or reactions) among objects are paradigms for computation. 

The objects and their interactions to one another were used in 

the past to solve several toy problems such as the generation of 

prime numbers, robot control [27], and number division [31].  

In this current effort, ACHEM was employed to search for 

near-optimal solutions to large instances of TSP. This was done 

by the following procedure: 

 1. Mapping Hamiltonian tours as artificial molecules; 

 2. Defining the cost of traversing the tours as molecular 

mass; and 

 3. Developing reactions as functions for creating 

solutions to TSPs from a randomly generated 

molecules in an occasionally-stirred reaction tank. 

With these metaphors, optimal and near-optimal solutions 

to TSP were obtained through a method that has the same 

efficiency as the known multi-agent-based heuristics.  

This paper introduces ACHEM and its utility as a 

computational metaphor for solving the TSP. Here, ACHEM is 

presented as a distributed approach to combinatorial 

optimization based on the dynamics of  natural chemical 

systems. This presentation discusses ways of how information 

can be created and be processed by a collection of artificial 

molecules floating in a simulated reactor tank. ACHEM is 

shown here to search for the near-optimal solution to TSP 

through mapping of molecules to Hamiltonian tours, relating 

molecular mass to molecule’s rate of reaction, and developing 

the reaction algorithm.  

II. ALGORITHM DEVELOPMENT 

This section briefly reviews the TSP and introduces 

ACHEM. The discussion proceeds to the development of 

algorithms that mimic chemical reactions that result in 

information processing. The processing of information happens 

in artificial reactor guided by reaction rules. As this simulation 

is inspired by the concepts of chemistry, popular nomenclature 

in the chemical sciences were extensively used. Readers are 

cautioned, however, that they are analogical only.  

A. Traveling Salesperson Problem 

TSP is defined as the problem of finding the shortest tour or 

cycle of a graph G(V, E) that visit each vertex vi  V once, 

i=1, ..., n, and n = |V|. Formally, given a set of cities V = {v1, 

v2, ..., vn}, an edge set E = {(i, j): vi, vj ϵ V} representing roads 

that connect two cities, and a cost measure matrix C, where 

each matrix element ci,j is the cost measure associated with 

edge (i, j) ϵ E, TSP is the problem of finding the minimal 

Hamiltonian tour or cycle. Equations 1 and 2 show the costs of 

a Hamiltonian tour (cost(Ht)) and a Hamiltonian cycle 

(cost(Hc)), respectively. Figure 1 shows a 4-city TSP showing 

two cycles, 1 and 2, as possible solutions. In this example, 1 

entails passing through vertices A, B, C, D, and back to A in 

that order, while 2 passes through vertices A, C, D, B, and A. 

With this example, it is easy to see that 1 costs 97, which is 

cheaper to 2 which costs 108. It is easy to see also that cycles 

A-B-C-D-A and B-C-D-A-B have the same costs but differ in 

their respective starting cities. 

cost(Ht) = i=1..n–1 ci,i+1 (1) 

cost(Hc) = cn,1 + cost(Ht) (2) 

  

Fig. 1. An example 4-city TSP with two cycles 

1 = A-B-C-D-A and 2 = A-C-D-B-A as possible solutions. 
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In cases where cities v ϵ V are given by their coordinates (x, 

y) and ci,j is the Euclidean distance between cities vi and vj, then 

the problem is a Euclidean TSP. If ci,j = cj,i, then the problem is 

a symmetric TSP. If ci,j  cj,i for at least one c ϵ C, then the 

problem is an asymmetric TSP. Other TSP instances are 

TSP(1,2), fractal [32], k-template, prize-collecting, circulant 

[33], on-line [34], time-dependent, angular-metric [35], 

maximum/minimum latency [36]–[38], bipartite [37], remote 

[39], and precedence-constrained that have also attracted 

considerable research attention in recent years. The test bed 

problems used in this contribution are the symmetric and 

asymmetric TSP instances from TSPLIB [40].  

B. Artificial Chemistry 

In the physical world, molecular interactions and their 

corresponding chemical reactions happen under specific 

physical and structural conditions. Molecules carry with them 

information specific to their composition such as molecular 

weight and molecular structure. Chemical reactions, on the 

other hand, cause changes to the composition of the reacting 

molecules. A change in composition means a change in the 

information being carried by the molecules. With this idea in 

mind, the composition of molecules can be seen as a kind of 

information storage, while the reaction between them as a kind 

of information processing. The more molecules involved in the 

reaction and the faster the reaction, the more information is 

processed. Therefore, one can create an abstract system, similar 

to chemical systems, which is capable of information storage 

and processing.  

Formally, ACHEM is defined by a triple (M, R, A), where M 

is a set of artificial molecules, R is a set of reaction rules 

describing the interaction among molecules, and A is an 

algorithm driving the ACHEM system. The molecules in M 

may be composed of abstract symbols [41], strings of 

characters [42]–[44], expressions [23], binary strings 

[27],[45], numbers [26], or logical or mathematical proofs [46]. 

This work introduces Hamiltonian cycles as molecules that 

encode solutions to TSP.  

The rules in R can be defined explicitly [41] or implicitly by 

using string matching and string concatenation [42],[44],[47], 

calculus [23],[48], Turing machines [28], finite state 

machines or machine language [27], proof theory [48], matrix 

multiplication [45], or simple arithmetic operations [26]. In this 

paper, reaction rule is presented as a reordering procedure. In 

this rule, when two molecules collide or interact, a new pair of 

molecules, different from the originally colliding molecules, is 

created, but both encoding portions of the reactants. It is 

possible that the products of the collision are the same as the 

reactants. When this happens, the collision is said to be elastic.  

The algorithm A describes how the rules are applied to a 

“soup” of artificial molecules. The algorithm may simulate a 

well-stirred abstract topology-less reaction tank [23],[27],[42], 

an Euclidean discrete reaction vessel [41],[47], a continuous 3-

dimensional space [49], or a self-organizing topology [50]. In 

this effort, A simulates a topology-less reaction tank that 

partitions the soup into levels of reaction activities as a function 

of molecular mass.  

C. ACHEM for TSP 

1) Molecular Properties 

The vertices vi  V, i=1, ..., n are considered as the set of 

atoms in the n-city TSP abstract world. These atoms exist in 

stable molecular forms that can be considered as Hamiltonian 

cycles. The set of artificial molecules M is the set of 

Hamiltonian cycles that visit the nodes vi  V once, i=1, ..., n. 

Each of the molecules m  M is a fixed-length n–ary string, 

where m is defined by a n-long regular expression {1|2| ... |n}
n
 

with the constraint that m contains only the n permutation of 

cities taken n. This constraint provides assurance that m 

encodes a valid Hamiltonian cycle. The cost of traversing the 

Hamiltonian cycle (Equation 2) is a function of the cost matrix 

C and can be regarded as the molecular mass of m. The 

molecular mass is directly proportional to the excitation energy 

of the molecule.   

2) Artificial Reactions 

Two reaction rules were designed: a zero-order reversible 

(i.e., non-catalytic) reaction (Equation 3) and a forward 

catalytic reaction (Equation 4). The first reaction can be 

considered as a collision of two molecules. All collisions of 

two molecules m1 and m2 may have unique outcomes, m3 and 

m4. Each collision can be represented as a function R1: M  M 

 M  M. However, if the products of the reaction are the 

same as the reactants, i.e., m1 + m2  m1 + m2, then the 

collision is an elastic collision [51],[52].  

m1 + m2  m3 + m4 (3) 

m5 + w  m6 (4) 

Similar to the cycle crossover in genetic algorithms [53], 

the first reaction rule performs reordering under the constraint 

that each city comes from one reactant or the other. The 

reaction rule in Equation 3 is described in Algorithm 1:  

 

Algorithm 1. Non-Catalytic Reaction Rule 

1. Let an integer l  [1, n] be the index of the city encoded in 

any molecule m. The indexing order does not matter (i.e., 

whether the index goes from left to right or vice- versa) as 

long as there is consistency in using one order of direction 

throughout this algorithm.  

2. Take a random integer between 1 and n and assign it to l. 

Let l0 = l.  

3. Taking the reactant m1, locate the lth atom in m1 and move it 

as the lth atom for m3.  

4. Take note of the lth atom in m2 and locate it in m1. Replace 

the value of l with the index of the atom found in m1.  

5. Repeat steps 3 to 4 until the lth atom in m2 is the same as 

the l0th atom in m1.  

6. For all indeces l with no atoms yet in m3, move the lth atom 

from reactant m1 as the lth atom in product m3.  

7. Repeat steps 2 to 6 for reactant m2 and product m4.  
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An elastic collision of the form m1 + m2  m1 + m2 happens 

when the stopping criterion described in step 5 of the above 

rule is reached during the first iteration. Consider for example a 

10-city TSP with two molecules m1 encoding the cycle I-H-B-

A-G-D-E-J-F-C-I and m2 with cycle a-b-c-d-e-f-g-h-i-j. Notice 

that the lower case letter was used in m2 for illustration 

purposes only so that one can see where the cities on thefinal 

product came from. Assume further that l=1 was used as 

obtained randomly in step 2 of Algorithm 1. Comparing the lth 

(i.e., first) city of both tours, it is seen that city I in m1 is 

matched to city A in m2, which is in the 4th position in m1. The 

product m3 will then take city I as its first city, and city A as its 

fourth city. City D is the 4th city in m2, which is the 6th city in 

m1. Thus, m3 will take city D as its 6th city. Continuing this 

process, m3 will soon contain the following cities in its cycle so 

far: I-*-*-A-*-D-*-*-F-*-J-I, where an * symbol means that the 

position has not been filled-up yet. Notice that the filled-up 

positions are cities that came from m1. To fill up the unfilled 

positions in m3, respective positions in m2 are copied in m3, 

resulting in the following cycle for m3: I-b-c-A-e-D-g-h-F-j-I. 

Consequently, m4 will encode the following: a-H-B-d-G-f-E-J-

i-C-a. Notice that both products m3 and m4 are valid 

Hamiltonian cycles. Figure 2 summarizes this process in a 

simple colored visualization. 

 

 

Fig. 2. Two cycles m1 and m2 colliding according to Algorithm 1 to produce m3 and m4. 

The second reaction (Equation 4) can be considered as a 

collision of molecule m5 with the tank’s walls w to produce 

another molecule m6. The wall w can be considered as a 

catalyst of the reaction and is never modified, thus this reaction 

can be represented by a function R2: M  M and is 

algorithmically described in Algorithm 2 with simple colored 

visualization in Figure 3 for a 10-city TSP and random l=5. 

Algorithm 2. Catalytic Reaction Rule 

1. Let an integer l ∈  [1, n] be the index of the city encoded in molecule m5.  

2. Take a random integer between 1 and n – 1 and assign it to l. l will represent the lth atom of m5 

that will collide with w.  

3. Swap the lth atom with the (l + 1)th atom. The resulting molecule will be m6.  

  

 

Fig. 3. A sample cycle m5 colliding with the wall according to Algorithm 2 to produce m6. 

3) Reaction Vessel 

The reactor algorithm A operates on a soup of molecules S = {m1, ..., m||S||}, ||S|| << ||M||. The development of the soup S is 

realized by iteratively applying steps 2 to 5 of Algorithm 3.  

Algorithm 3. Reactor Algorithm 

1. Initialize the soup S with ||S|| molecules selected randomly from M. 

2. Using stochastic sampling with replacement, select two molecules m1 and m2 from S without removing them. 

3. Apply the reaction rule in Algorithm 1 for the two reactants m1 and m2 to produce the products m3 and m4. 

4. With a small chance, apply the reaction rule in Algorithm 2 for a randomly chosen heavy (i.e. higher mass) molecule 

m5 to produce m6. 

5. Repeat steps 2 to 3 until the density of molecules with lower molecular mass exceeds a tolerance level. 

6. Decay the heavier molecules by removing them out of S and replace them with randomly selected molecules from M. 

7. Go back to step 2 unless the density of molecules with lower molecular mass did not improve. 

8. What remains is a soup of molecules that encode optimal or near-optimal solutions to TSP.  
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The sampling procedure of step 2 of Algorithm 3 gives 

higher chances of reacting or colliding to molecules with low 

molecular masses. This simulates the level of excitation energy 

a molecule needs to overcome so that it will be able to collide 

with another molecule easily. This means that the lighter the 

molecule, the higher the chances that it will collide with other 

similarly-lighter molecules. The parallelism between ACHEM 

and real chemistry and summary of notations used are 

summarized in Table 2. These algorithms were applied to find 

solutions to large instances of symmetric and asymmetric TSPs.  

 

Table 2. Parallelism of real chemistry and ACHEM and 

summary of notations used. 

 Real Chemistry ACHEM Notation 

Set of atoms Set of vertices M 

Single atom A vertex v 

A molecule A Hamiltonian cycle m 

Molecular mass Tour cost f 

Reaction Algorithms 1 and 2 R1 and R2 

Universe Soup S 

Chemistry Algorithm 3 A 

 

III. RESULTS AND DISCUSSION 

A. ACHEM Performance 

ACHEM was applied to solve five sets of random instances 

of symmetric 50–city TSPs, and to four examples of 

asymmetric TSPs namely, Oliver30 (a 30–city problem), EIl50 

(a 50–city problem), EIl75 (a 75–city problem), and KroA100 

(a 100–city problem) [40]. These test problems were chosen 

because these were the ones used by other researchers. Because 

of this, one can compare the results obtained here with those 

obtained by other nature–inspired heuristics such as simulated 

annealing (SA) [54], self organizing maps (SOM) [55], genetic 

algorithms (GA) [56],[57], and ant colony optimization (ACO) 

[19].  

Table 3 shows the comparison of the average tour length 

found by ACHEM, SA and SOM on five sets of random 

instances of symmetric 50–city TSPs.  

Table 3. Comparison of the average tour length found by 

ACHEM, SA, and SOM on five sets of random instances of 

symmetric 50-city TSPs. Values in boldface are the best 

average tour length per problem. 

Problem ACHEM SA SOM 

1 5.87 5.88 6.06 

2 6.15 6.01 6.25 

3 5.59 5.65 5.83 

4 5.67 5.81 5.87 

5 6.15 6.33 6.70 

Values in boldface are the best average tour length for each 

of the problem sets. ACHEM results were averaged over 5 

trials. It can be seen that ACHEM performs fairly as SA while 

it outperforms SOM.  

 

Table 4 shows the comparison of the best integer tour 

length found by ACHEM, GA and ACO on four examples of 

asymmetric instances of TSPs. Values in boldface are the best 

average tour length for each of the problem instances. Results 

show that ACHEM has the same performance as both GA and 

ACO at lower problem instances (n50), and outperforms both 

GA and ACO at a higher problem instance (n>50).  

 

Table 4. Comparison of the best integer tour length found by 

ACHEM, GA, and ACO on four examples of asymmetric 

instances of TSP. Values in boldface are the better tour 

length found per problem. 

Problem ACHEM GA ACO 

Oliver30 421 421 421 

Eil50 424 428 424 

Eil75 550 545 555 

KroA100 21,280 21,761 22,363 

  

B. Soup Development 

Figure 4a shows the development of the soup in a reactor 

tank of ACHEM that solves a randomly created symmetric 10–

City TSP of known optimum. Here, the optimum cost is 

cost(Hc) = 500. Notice further that the optimum Hamiltonian 

cycle was found at the third simulation epoch, lost it at the 

fourth epoch, and then rediscovered during the fifth epoch 

where it was never lost until the end of simulation run. One 

epoch means one iteration of applying steps 2 through 5 of 

Algorithm 3. Notice that the soup evolved into having 

molecules that store Hamiltonian cycles with lower cost(Hc)'s. 

The downward spikes in the maximum line (shown in Figure 

4a with gray circles) show that during the simulation, the soup 

was almost saturated with molecules of lower molecular mass, 

as the difference between the maximum and minimum 

cost(Hc)'s is just 20. This observation was collaborated by 

Figure 4b which shows the tank’s saturation level of molecules 

with lower molecular mass. The peaks in Figure 4b coincide 

with the downward spikes in the maximum line of Figure 4a. 

This signifies that ACHEM was able to find other Hamiltonian 

cycles of almost optimal costs during the simulation epoch 

where the peaks and spikes occur.  
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(a) Simulation Epoch vs. Molecular Mass 

 

(b) Simulation Epoch vs. Saturation Level 

 

Fig. 4. The development of the soup in a reactor tank that solves a 10-city TSP. 

 Figure 5a shows the development of a soup of molecules 

designed to solve the KroA100, an example of a 100-city TSP. 

Here, the optimal tour has cost(Hc) = 5,200 and was found by 

ACHEM during its 92nd epoch. Notice that the peaks and 

spikes still occur but not as sharp as that of the 10-city TSP. 

Notice also that the evolution of the development of the non-

optimal soup to the soup with optimal values follows a 

curvilinear pattern. This evolutionary progress is normal for 

higher problem instances. Figure 5b shows the saturation level 

of the best molecule at each epoch. Notice that at the 92nd 

epoch, the number of best molecules only counts to three, 

which is enought for ACHEM to find the optimal solution. Had 

ACHEM sustain the saturation count of 16 it obtained during 

the 5th epoch,  it might have found the optimal earlier than the 

92nd epoch. This lateness can be attributed to the effects of 

reversible reaction used in the simulation. 

 

(a) Simulation Epoch vs. Molecular Mass 

 

(b) Simulation Epoch vs. Saturation Level 

 

Fig. 5. The development of the soup in a reactor tank that solves a 100-city TSP. 

 

C. Effects of Reversible Reaction 

The sharpness of peaks in the saturation graphs presented in 

Figures 4b and 5b can be explained by the nature of the 

reaction rules used in the ACHEM simulations, particularly 

Algorithms 1 and 2. With these algorithms, a soup of molecules 

saturated with higher molecular mass at time T will alternately 

develop into a soup saturated with molecules of lower 

molecular mass at time T+T, and then into a soup of 

molecules with higher molecular mass at next time T+2T. The 

value of T depends on the frequency of collisions among 

molecules, while the conservation of mass can be constantly 

assumed via some other way. This kind of behavior brought 

about by the algorithms in the soup of molecules may distrupt 

the evolution of molecules that encode the optimal Hamiltonian 

cycle, which as a result prolong the search. 

To avoid the disrupting effects of the reaction rule on the 

solutions being solved by the artificial chemical system, it is 

recommended that the reaction rule be designed to keep the 

reactants to the product side of the reaction equation. For 

example, a second-order catalytic reaction rule of the form x1 + 

x2 + X  x1 + x2 + x3 + x4 that can initiate a mass-action 

kinetics might be a better one than the rule that was used in this 

study. Here, the concentration of the implicit substrate X might 

be kept constant. The production of new atoms x3 and x4 might 

create an implicit competition for space which may lead to an 

evolutionary process. This kind of reaction rule is already being 

studied as an extension of this research.  
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IV. CONCLUSION 

In this paper, it was shown that artificial chemical objects 

can store information while the reactions among them can 

initiate information processing. An artificial chemical system 

that is capable of solving large instances of combinatorial 

optimization problems such as the TSP was designed. By 

giving computational metaphor to molecular properties as 

solutions and to molecular reactions as ways to create new 

solutions, the ACHEM system was able to develop an artificial 

soup of molecules in a reactor tank that store optimal and near-

optimal solutions to TSP. Experiments showed that ACHEM 

can find quality solutions to TSP with the same quality as other 

nature-inspired methods. 
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