
Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

38
ISSN 2362 – 8022 | www.apjeas.apjmr.com

A Molecular Dynamics Heuristic for Solving the Traveling Salesperson Problem

Jaderick P. Pabico
1
, Jose Rene L. Micor

2
 and Ma. Christine A. Gendrano

3

1
jppabico@uplb.edu.ph,

2
jrlmicor@uplb.edu.ph,

3
ma.christine.gendrano@dlsu.edu.ph

1
Institute of Computer Science, University of the Philippines Los Baños

2
Institute of Chemistry, University of the Philippines Los Baños

3
College of Computer Studies, De La Salle University – Science and Technology Complex

Abstract – In this paper, a nature-based metaphor for

computation is presented as a heuristic solution for a popular

combinatorial optimization problem, the traveling salesperson

problem (TSP). The metaphor was aptly named artificial

chemistry (ACHEM) because the computational process is

based on molecular dynamics. It is designed as a distributed

stochastic algorithm that simulates reaction systems of

algorithmic objects whose behavior is inspired by natural

chemical systems. Finding the optimal solutions for TSP are

particularly intractable for problem instances that are very

large. This is the reason why a heuristic, such as the ACHEM,

is a preferred solution than a computational procedure that

provides optimal ones. To evaluate the utility of the heuristic,

ACHEM was applied to find near-optimal solutions to large

instances of the TSP. Results show that ACHEM outperformed

other nature-based heuristics such as the simulated annealing

and the self organizing maps, while it performed as good as the

genetic algorithm and the ant colony optimization. Thus,

ACHEM provides another natural metaphor for solving hard

instances of the TSP.

Keywords – Artificial chemistry, combinatorial optimization,

traveling salesperson problem, TSP

I. INTRODUCTION

The traveling salesperson problem (TSP) has been used as a

paradigm for solving real-world problems such as shop floor

control, scheduling, distribution of goods and services, vehicle

routing, product design, and VLSI layout [1]. Given a set of

cities, and known distances between each pair of cities, the TSP

is the problem of finding a Hamiltonian tour such that the total

distance traveled is minimum. A Hamiltonian tour is a tour that

visits each city exactly once. TSP may also be stated as the

search for the minimum Hamiltonian cycle instead, which is

actually a Hamiltonian tour with the requirement that the

salesperson return to the city where it started. Other TSP

variants consider the cost of traveling between two cities, or the

time it will take to travel between them, but the problem does

not change [2],[3].

Exact solutions to solving TSP have been proposed by

many researchers but these solutions are only efficient for small

problem instances. TSP has proved to be intractable for large

problem instances, where intractability of a solution means that

even the fastest known computer will take a very long time to

solve the problem. The TSP is intractable because if there are n

cities, the number of possible tours is (n – 1)!/2. If, for

example, the recent fastest computer can compute for the cost

of one tour in 12s, checking all possible tours when n is very

large might take more than a human's lifetime. Table 1 shows

the number of all possible tours and the approximate amount of

time it will take to solve the TSP for some n  20. Realistically,

the amount of time to compute for the cost of one tour

increases as the length of tour increases, which in turn

increases as the number of cities (n) increases. To simplify the

estimate, the approximate time in Table 1 did not take into

account the corresponding increase in computing for the cost of

one tour at n>5. It is highly possible that the values in Table 1

will take longer than estimated at problem instances where n>5.

Most real-world applications that use TSP as a paradigm for

computation have n >> 20. Thus, checking all possible

solutions when n > 20 is impractical.

Table 1. The number of all possible tours and the approximate

amount of time to solve n-city TSP's, where n  20, with the

assumption that a computer can compute for one tour in a

constant time of 12s.

Number of

Cities (n)

Number of

Possible Tours
Time

5 12 12 s

8 2,520 2.5 ms

10 181,440 0.18 s

12 19,958,400 20 s

15 87,178,291,200 12.1 hours

18 177,843,714,048,000 5.64 years

20 60,822,550,204,416,000 1,927 years

Intractable problems are said to belong to the class of NP-

hard problems and TSP has proved to belong to the same class

[4],[5]. Because of the nature of the TSP, researchers have

developed heuristic and metaheuristic methodologies so that

intractable instances of the TSP may be given practical

solutions. Practicality here means that the problem can be

computed within a reasonable amount of time, while the

solutions found are near-optimal. Computing within reasonable

amount of time means that a satisfiable solution can be

obtained within a specified deadline (which, intuitively, should

be shorter than a human's lifetime), while near-optimality

means that the seeker of the solution is already satisfied with

Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

39
ISSN 2362 – 8022 | www.apjeas.apjmr.com

the best solution found so far (which might not necessarily

mean the very best solution, but the solution seeker has already

found it practically useful anyway).

Heuristic solutions to TSP have been studied extensively.

Graph-based heuristics such as branch and bound [6], cutting

planes [7], Lagrangian relaxation [8],[9], and branch-and-cut

[10], as well as multi-agent-based and nature-inspired

algorithms such as genetic algorithms [11], memetic algorithms

[12]–[14], tabu search [15], simulated annealing [16],

simulated jumping [17], neural networks [18], and ant colonies

[19]–[21] have been used and shown to find optimal and near

optimal solutions to several instances of TSP.

In recent years, the chemical metaphor, called artificial

chemistry (ACHEM), has emerged as a computational

paradigm for search, optimization, and machine learning [22]–

[27], which are useful computational tools in artificial

intelligence and computer science. The processes in molecular

dynamics have been used as a computational paradigm because

chemical and biochemical systems of living organisms have

been shown recently to possess computational properties [28]–

[30]. This prompted researchers to develop a metaheuristic

algorithm based on chemical dynamics. In this “kind” of

chemistry, the objects (atoms or molecules) are paradigms for

data or solutions to problems, while the interactions (collisions

or reactions) among objects are paradigms for computation.

The objects and their interactions to one another were used in

the past to solve several toy problems such as the generation of

prime numbers, robot control [27], and number division [31].

In this current effort, ACHEM was employed to search for

near-optimal solutions to large instances of TSP. This was done

by the following procedure:

 1. Mapping Hamiltonian tours as artificial molecules;

 2. Defining the cost of traversing the tours as molecular

mass; and

 3. Developing reactions as functions for creating

solutions to TSPs from a randomly generated

molecules in an occasionally-stirred reaction tank.

With these metaphors, optimal and near-optimal solutions

to TSP were obtained through a method that has the same

efficiency as the known multi-agent-based heuristics.

This paper introduces ACHEM and its utility as a

computational metaphor for solving the TSP. Here, ACHEM is

presented as a distributed approach to combinatorial

optimization based on the dynamics of natural chemical

systems. This presentation discusses ways of how information

can be created and be processed by a collection of artificial

molecules floating in a simulated reactor tank. ACHEM is

shown here to search for the near-optimal solution to TSP

through mapping of molecules to Hamiltonian tours, relating

molecular mass to molecule’s rate of reaction, and developing

the reaction algorithm.

II. ALGORITHM DEVELOPMENT

This section briefly reviews the TSP and introduces

ACHEM. The discussion proceeds to the development of

algorithms that mimic chemical reactions that result in

information processing. The processing of information happens

in artificial reactor guided by reaction rules. As this simulation

is inspired by the concepts of chemistry, popular nomenclature

in the chemical sciences were extensively used. Readers are

cautioned, however, that they are analogical only.

A. Traveling Salesperson Problem

TSP is defined as the problem of finding the shortest tour or

cycle of a graph G(V, E) that visit each vertex vi  V once,

i=1, ..., n, and n = |V|. Formally, given a set of cities V = {v1,

v2, ..., vn}, an edge set E = {(i, j): vi, vj ϵ V} representing roads

that connect two cities, and a cost measure matrix C, where

each matrix element ci,j is the cost measure associated with

edge (i, j) ϵ E, TSP is the problem of finding the minimal

Hamiltonian tour or cycle. Equations 1 and 2 show the costs of

a Hamiltonian tour (cost(Ht)) and a Hamiltonian cycle

(cost(Hc)), respectively. Figure 1 shows a 4-city TSP showing

two cycles, 1 and 2, as possible solutions. In this example, 1

entails passing through vertices A, B, C, D, and back to A in

that order, while 2 passes through vertices A, C, D, B, and A.

With this example, it is easy to see that 1 costs 97, which is

cheaper to 2 which costs 108. It is easy to see also that cycles

A-B-C-D-A and B-C-D-A-B have the same costs but differ in

their respective starting cities.

cost(Ht) = i=1..n–1 ci,i+1 (1)

cost(Hc) = cn,1 + cost(Ht) (2)

Fig. 1. An example 4-city TSP with two cycles 

1 = A-B-C-D-A and 2 = A-C-D-B-A as possible solutions.

Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

40
ISSN 2362 – 8022 | www.apjeas.apjmr.com

In cases where cities v ϵ V are given by their coordinates (x,

y) and ci,j is the Euclidean distance between cities vi and vj, then

the problem is a Euclidean TSP. If ci,j = cj,i, then the problem is

a symmetric TSP. If ci,j  cj,i for at least one c ϵ C, then the

problem is an asymmetric TSP. Other TSP instances are

TSP(1,2), fractal [32], k-template, prize-collecting, circulant

[33], on-line [34], time-dependent, angular-metric [35],

maximum/minimum latency [36]–[38], bipartite [37], remote

[39], and precedence-constrained that have also attracted

considerable research attention in recent years. The test bed

problems used in this contribution are the symmetric and

asymmetric TSP instances from TSPLIB [40].

B. Artificial Chemistry

In the physical world, molecular interactions and their

corresponding chemical reactions happen under specific

physical and structural conditions. Molecules carry with them

information specific to their composition such as molecular

weight and molecular structure. Chemical reactions, on the

other hand, cause changes to the composition of the reacting

molecules. A change in composition means a change in the

information being carried by the molecules. With this idea in

mind, the composition of molecules can be seen as a kind of

information storage, while the reaction between them as a kind

of information processing. The more molecules involved in the

reaction and the faster the reaction, the more information is

processed. Therefore, one can create an abstract system, similar

to chemical systems, which is capable of information storage

and processing.

Formally, ACHEM is defined by a triple (M, R, A), where M

is a set of artificial molecules, R is a set of reaction rules

describing the interaction among molecules, and A is an

algorithm driving the ACHEM system. The molecules in M

may be composed of abstract symbols [41], strings of

characters [42]–[44], expressions [23], binary strings

[27],[45], numbers [26], or logical or mathematical proofs [46].

This work introduces Hamiltonian cycles as molecules that

encode solutions to TSP.

The rules in R can be defined explicitly [41] or implicitly by

using string matching and string concatenation [42],[44],[47],

calculus [23],[48], Turing machines [28], finite state

machines or machine language [27], proof theory [48], matrix

multiplication [45], or simple arithmetic operations [26]. In this

paper, reaction rule is presented as a reordering procedure. In

this rule, when two molecules collide or interact, a new pair of

molecules, different from the originally colliding molecules, is

created, but both encoding portions of the reactants. It is

possible that the products of the collision are the same as the

reactants. When this happens, the collision is said to be elastic.

The algorithm A describes how the rules are applied to a

“soup” of artificial molecules. The algorithm may simulate a

well-stirred abstract topology-less reaction tank [23],[27],[42],

an Euclidean discrete reaction vessel [41],[47], a continuous 3-

dimensional space [49], or a self-organizing topology [50]. In

this effort, A simulates a topology-less reaction tank that

partitions the soup into levels of reaction activities as a function

of molecular mass.

C. ACHEM for TSP

1) Molecular Properties

The vertices vi  V, i=1, ..., n are considered as the set of

atoms in the n-city TSP abstract world. These atoms exist in

stable molecular forms that can be considered as Hamiltonian

cycles. The set of artificial molecules M is the set of

Hamiltonian cycles that visit the nodes vi  V once, i=1, ..., n.

Each of the molecules m  M is a fixed-length n–ary string,

where m is defined by a n-long regular expression {1|2| ... |n}
n

with the constraint that m contains only the n permutation of

cities taken n. This constraint provides assurance that m

encodes a valid Hamiltonian cycle. The cost of traversing the

Hamiltonian cycle (Equation 2) is a function of the cost matrix

C and can be regarded as the molecular mass of m. The

molecular mass is directly proportional to the excitation energy

of the molecule.

2) Artificial Reactions

Two reaction rules were designed: a zero-order reversible

(i.e., non-catalytic) reaction (Equation 3) and a forward

catalytic reaction (Equation 4). The first reaction can be

considered as a collision of two molecules. All collisions of

two molecules m1 and m2 may have unique outcomes, m3 and

m4. Each collision can be represented as a function R1: M  M

 M  M. However, if the products of the reaction are the

same as the reactants, i.e., m1 + m2  m1 + m2, then the

collision is an elastic collision [51],[52].

m1 + m2  m3 + m4 (3)

m5 + w  m6 (4)

Similar to the cycle crossover in genetic algorithms [53],

the first reaction rule performs reordering under the constraint

that each city comes from one reactant or the other. The

reaction rule in Equation 3 is described in Algorithm 1:

Algorithm 1. Non-Catalytic Reaction Rule

1. Let an integer l  [1, n] be the index of the city encoded in

any molecule m. The indexing order does not matter (i.e.,

whether the index goes from left to right or vice- versa) as

long as there is consistency in using one order of direction

throughout this algorithm.

2. Take a random integer between 1 and n and assign it to l.

Let l0 = l.

3. Taking the reactant m1, locate the lth atom in m1 and move it

as the lth atom for m3.

4. Take note of the lth atom in m2 and locate it in m1. Replace

the value of l with the index of the atom found in m1.

5. Repeat steps 3 to 4 until the lth atom in m2 is the same as

the l0th atom in m1.

6. For all indeces l with no atoms yet in m3, move the lth atom

from reactant m1 as the lth atom in product m3.

7. Repeat steps 2 to 6 for reactant m2 and product m4.

Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

41
ISSN 2362 – 8022 | www.apjeas.apjmr.com

An elastic collision of the form m1 + m2  m1 + m2 happens

when the stopping criterion described in step 5 of the above

rule is reached during the first iteration. Consider for example a

10-city TSP with two molecules m1 encoding the cycle I-H-B-

A-G-D-E-J-F-C-I and m2 with cycle a-b-c-d-e-f-g-h-i-j. Notice

that the lower case letter was used in m2 for illustration

purposes only so that one can see where the cities on thefinal

product came from. Assume further that l=1 was used as

obtained randomly in step 2 of Algorithm 1. Comparing the lth

(i.e., first) city of both tours, it is seen that city I in m1 is

matched to city A in m2, which is in the 4th position in m1. The

product m3 will then take city I as its first city, and city A as its

fourth city. City D is the 4th city in m2, which is the 6th city in

m1. Thus, m3 will take city D as its 6th city. Continuing this

process, m3 will soon contain the following cities in its cycle so

far: I-*-*-A-*-D-*-*-F-*-J-I, where an * symbol means that the

position has not been filled-up yet. Notice that the filled-up

positions are cities that came from m1. To fill up the unfilled

positions in m3, respective positions in m2 are copied in m3,

resulting in the following cycle for m3: I-b-c-A-e-D-g-h-F-j-I.

Consequently, m4 will encode the following: a-H-B-d-G-f-E-J-

i-C-a. Notice that both products m3 and m4 are valid

Hamiltonian cycles. Figure 2 summarizes this process in a

simple colored visualization.

Fig. 2. Two cycles m1 and m2 colliding according to Algorithm 1 to produce m3 and m4.

The second reaction (Equation 4) can be considered as a

collision of molecule m5 with the tank’s walls w to produce

another molecule m6. The wall w can be considered as a

catalyst of the reaction and is never modified, thus this reaction

can be represented by a function R2: M  M and is

algorithmically described in Algorithm 2 with simple colored

visualization in Figure 3 for a 10-city TSP and random l=5.

Algorithm 2. Catalytic Reaction Rule

1. Let an integer l ∈ [1, n] be the index of the city encoded in molecule m5.

2. Take a random integer between 1 and n – 1 and assign it to l. l will represent the lth atom of m5

that will collide with w.

3. Swap the lth atom with the (l + 1)th atom. The resulting molecule will be m6.

Fig. 3. A sample cycle m5 colliding with the wall according to Algorithm 2 to produce m6.

3) Reaction Vessel

The reactor algorithm A operates on a soup of molecules S = {m1, ..., m||S||}, ||S|| << ||M||. The development of the soup S is

realized by iteratively applying steps 2 to 5 of Algorithm 3.

Algorithm 3. Reactor Algorithm

1. Initialize the soup S with ||S|| molecules selected randomly from M.

2. Using stochastic sampling with replacement, select two molecules m1 and m2 from S without removing them.

3. Apply the reaction rule in Algorithm 1 for the two reactants m1 and m2 to produce the products m3 and m4.

4. With a small chance, apply the reaction rule in Algorithm 2 for a randomly chosen heavy (i.e. higher mass) molecule

m5 to produce m6.

5. Repeat steps 2 to 3 until the density of molecules with lower molecular mass exceeds a tolerance level.

6. Decay the heavier molecules by removing them out of S and replace them with randomly selected molecules from M.

7. Go back to step 2 unless the density of molecules with lower molecular mass did not improve.

8. What remains is a soup of molecules that encode optimal or near-optimal solutions to TSP.

Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

42
ISSN 2362 – 8022 | www.apjeas.apjmr.com

The sampling procedure of step 2 of Algorithm 3 gives

higher chances of reacting or colliding to molecules with low

molecular masses. This simulates the level of excitation energy

a molecule needs to overcome so that it will be able to collide

with another molecule easily. This means that the lighter the

molecule, the higher the chances that it will collide with other

similarly-lighter molecules. The parallelism between ACHEM

and real chemistry and summary of notations used are

summarized in Table 2. These algorithms were applied to find

solutions to large instances of symmetric and asymmetric TSPs.

Table 2. Parallelism of real chemistry and ACHEM and

summary of notations used.

 Real Chemistry ACHEM Notation

Set of atoms Set of vertices M

Single atom A vertex v

A molecule A Hamiltonian cycle m

Molecular mass Tour cost f

Reaction Algorithms 1 and 2 R1 and R2

Universe Soup S

Chemistry Algorithm 3 A

III. RESULTS AND DISCUSSION

A. ACHEM Performance

ACHEM was applied to solve five sets of random instances

of symmetric 50–city TSPs, and to four examples of

asymmetric TSPs namely, Oliver30 (a 30–city problem), EIl50

(a 50–city problem), EIl75 (a 75–city problem), and KroA100

(a 100–city problem) [40]. These test problems were chosen

because these were the ones used by other researchers. Because

of this, one can compare the results obtained here with those

obtained by other nature–inspired heuristics such as simulated

annealing (SA) [54], self organizing maps (SOM) [55], genetic

algorithms (GA) [56],[57], and ant colony optimization (ACO)

[19].

Table 3 shows the comparison of the average tour length

found by ACHEM, SA and SOM on five sets of random

instances of symmetric 50–city TSPs.

Table 3. Comparison of the average tour length found by

ACHEM, SA, and SOM on five sets of random instances of

symmetric 50-city TSPs. Values in boldface are the best

average tour length per problem.

Problem ACHEM SA SOM

1 5.87 5.88 6.06

2 6.15 6.01 6.25

3 5.59 5.65 5.83

4 5.67 5.81 5.87

5 6.15 6.33 6.70

Values in boldface are the best average tour length for each

of the problem sets. ACHEM results were averaged over 5

trials. It can be seen that ACHEM performs fairly as SA while

it outperforms SOM.

Table 4 shows the comparison of the best integer tour

length found by ACHEM, GA and ACO on four examples of

asymmetric instances of TSPs. Values in boldface are the best

average tour length for each of the problem instances. Results

show that ACHEM has the same performance as both GA and

ACO at lower problem instances (n50), and outperforms both

GA and ACO at a higher problem instance (n>50).

Table 4. Comparison of the best integer tour length found by

ACHEM, GA, and ACO on four examples of asymmetric

instances of TSP. Values in boldface are the better tour

length found per problem.

Problem ACHEM GA ACO

Oliver30 421 421 421

Eil50 424 428 424

Eil75 550 545 555

KroA100 21,280 21,761 22,363

B. Soup Development

Figure 4a shows the development of the soup in a reactor

tank of ACHEM that solves a randomly created symmetric 10–

City TSP of known optimum. Here, the optimum cost is

cost(Hc) = 500. Notice further that the optimum Hamiltonian

cycle was found at the third simulation epoch, lost it at the

fourth epoch, and then rediscovered during the fifth epoch

where it was never lost until the end of simulation run. One

epoch means one iteration of applying steps 2 through 5 of

Algorithm 3. Notice that the soup evolved into having

molecules that store Hamiltonian cycles with lower cost(Hc)'s.

The downward spikes in the maximum line (shown in Figure

4a with gray circles) show that during the simulation, the soup

was almost saturated with molecules of lower molecular mass,

as the difference between the maximum and minimum

cost(Hc)'s is just 20. This observation was collaborated by

Figure 4b which shows the tank’s saturation level of molecules

with lower molecular mass. The peaks in Figure 4b coincide

with the downward spikes in the maximum line of Figure 4a.

This signifies that ACHEM was able to find other Hamiltonian

cycles of almost optimal costs during the simulation epoch

where the peaks and spikes occur.

Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

43
ISSN 2362 – 8022 | www.apjeas.apjmr.com

(a) Simulation Epoch vs. Molecular Mass

(b) Simulation Epoch vs. Saturation Level

Fig. 4. The development of the soup in a reactor tank that solves a 10-city TSP.

 Figure 5a shows the development of a soup of molecules

designed to solve the KroA100, an example of a 100-city TSP.

Here, the optimal tour has cost(Hc) = 5,200 and was found by

ACHEM during its 92nd epoch. Notice that the peaks and

spikes still occur but not as sharp as that of the 10-city TSP.

Notice also that the evolution of the development of the non-

optimal soup to the soup with optimal values follows a

curvilinear pattern. This evolutionary progress is normal for

higher problem instances. Figure 5b shows the saturation level

of the best molecule at each epoch. Notice that at the 92nd

epoch, the number of best molecules only counts to three,

which is enought for ACHEM to find the optimal solution. Had

ACHEM sustain the saturation count of 16 it obtained during

the 5th epoch, it might have found the optimal earlier than the

92nd epoch. This lateness can be attributed to the effects of

reversible reaction used in the simulation.

(a) Simulation Epoch vs. Molecular Mass

(b) Simulation Epoch vs. Saturation Level

Fig. 5. The development of the soup in a reactor tank that solves a 100-city TSP.

C. Effects of Reversible Reaction

The sharpness of peaks in the saturation graphs presented in

Figures 4b and 5b can be explained by the nature of the

reaction rules used in the ACHEM simulations, particularly

Algorithms 1 and 2. With these algorithms, a soup of molecules

saturated with higher molecular mass at time T will alternately

develop into a soup saturated with molecules of lower

molecular mass at time T+T, and then into a soup of

molecules with higher molecular mass at next time T+2T. The

value of T depends on the frequency of collisions among

molecules, while the conservation of mass can be constantly

assumed via some other way. This kind of behavior brought

about by the algorithms in the soup of molecules may distrupt

the evolution of molecules that encode the optimal Hamiltonian

cycle, which as a result prolong the search.

To avoid the disrupting effects of the reaction rule on the

solutions being solved by the artificial chemical system, it is

recommended that the reaction rule be designed to keep the

reactants to the product side of the reaction equation. For

example, a second-order catalytic reaction rule of the form x1 +

x2 + X  x1 + x2 + x3 + x4 that can initiate a mass-action

kinetics might be a better one than the rule that was used in this

study. Here, the concentration of the implicit substrate X might

be kept constant. The production of new atoms x3 and x4 might

create an implicit competition for space which may lead to an

evolutionary process. This kind of reaction rule is already being

studied as an extension of this research.

Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

44
ISSN 2362 – 8022 | www.apjeas.apjmr.com

IV. CONCLUSION

In this paper, it was shown that artificial chemical objects

can store information while the reactions among them can

initiate information processing. An artificial chemical system

that is capable of solving large instances of combinatorial

optimization problems such as the TSP was designed. By

giving computational metaphor to molecular properties as

solutions and to molecular reactions as ways to create new

solutions, the ACHEM system was able to develop an artificial

soup of molecules in a reactor tank that store optimal and near-

optimal solutions to TSP. Experiments showed that ACHEM

can find quality solutions to TSP with the same quality as other

nature-inspired methods.

ACKNOWLEDGEMENTS

This research effort is funded by and was conducted at the

Research Collaboratory for Advanced Intelligent Systems,

Institute of Computer Science, University of the Philippines

Los Baños, College, Laguna.

REFERENCES

[1] D.L. Applegate, R.E. Bixby, V. Chvatal and W.J. Cook.

2007. The Traveling Salesman Problem: A

Computational Study. Princeton University Press:

Princeton (ISBN 978069112993).

[2] M. Gendreau, J-Y. Potvin, O. Braysy, G. Hasle abd A.

Lokketangen. 2008. Metaheuristics for the vehicle

routing problem and its extensions: A categorized

bibliography. In B.L. Golden, S. Raghavan and E.A.

Wasil (eds.) The Vehicle Routing Problem: Latest

Advances and New Challenges. Operations

Research/Computer Science Interfaces Series,

volume 42. Springer: New York, pp. 143–169 (ISBN

0387777776).

[3] K.L. Hoffman, M. Padberg and G. Rinaldi. 2013.

Traveling salesman problem. In S.I. Gass and M.C. Fu

(eds.) Encyclopedia of Operations Research and

Management Science, 3rd edition. Springer:New York,

pp. 1573–1578 (ISBN 978-1-4419-1137-7).

[4] R.M. Karp. 1972. Reducibility among combinatorial

problems. In J.W. Thatcher and R.E. Miller (eds.)

Complexity of Computer Computations. Plenum:

New York. pp. 85–103 (ISBN 0306307073).

[5] M.R. Garey and D.S. Johnson. 1979. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. Macmillan Higher Education:San

Francisco, CA, pp. 338 (ISBN 978-0716710455).

[6] S. Tschoke, R. Luling and B. Monien. 1995. Solving the

traveling salesman problem with a distributed branch-

and-bound algorithm on a 1024 processor network. In

Proceedings of the 9th International Parallel

Processing Symposium (IPPS95), pp. 182–189.

[7] V. Chvatal, W. Cook, G.B. Dantzig, D.R. Fulkerson and

S.M. Johnson. 2010. Solution of a large-scale traveling-

salesman problem. In M. Junger, T.M. Liebling, D.

Naddef, G.L. Nehhauser, W.R. Pulleyblank, G. Reinelt,

G. Rinaldi and L.A. Wolsey (eds.) 50 Years of Integer

Programming 1958 – 2008 : From the Early Years to

the State-of-the-Art. Springer-Verlag:Berlin. pp. 7–28

(DOI 10.1007/978-3-540-68279-0_1).

[8] M. Held and R.M. Karp. 1970. The traveling salesman

problem and minimum spanning trees. Operations

Research 18(6):1138–1162.

[9] M. Held and R.M. Karp. 1971. The traveling salesman

problem and minimum spanning trees: Part II.

Mathematical Programming 1(1):6–25.

[10] M. Padberg and G. Rinaldi. 1987. Optimization of a 532-

city symmetric traveling salesman problem by branch-

and-cut. Operations Research Letters 6:1–7.

[11] J.P. Pabico and E.A. Albacea. 2008. The Interactive

Effects of Operators and Parameters to GA

Performance Under Different Problem Sizes. Philippine

Computing Journal 3(2):26–37 (ISSN 1908-1995).

[12] P. Moscato and M.G. Norman. 1992. A memetic

approach for the traveling salesman problem:

Implementation of a computational ecology for

combinatorial optimization on message-passing

systems. In M. Valero, E. Onate, M. Jane, J.L. Larriba

and B. Suarez (eds.) Parallel Computing and

Transputer Applications 1: Proceedings of the

International Conference, Barcelona, Spain. IOS

Press:Amsterdam, pp. 187–194 (ISBN 978-

9051990966).

[13] B. Freisleben and P. Merz. 1996. A genetic local search

algorithm for solving symmetric and asymmetric

traveling salesman problems. In Proceedings of the

1996 IEEE International Conference on

Evolutionary Computation (ICEC96), Nagoya

University, Japan. IEEE: Piscataway, NJ, pp. 616–621

(ISBN 0-7803-2902-3).

[14] B. Freisleben and P. Merz. 1996. New genetic local

search operators for the traveling salesman problem. In

H.M. Voigt, W. Ebeling, I. Rechenberg, and H.P.

Schwefel (eds.) Proceedings of the 4th Conference on

Parallel Problem Solving from Nature (PPSN IV),

Berlin, Germany, Lecture Notes in Computer Science

Volume 1141, pp. 890–899. Springer (ISBN 978-3-540-

61723-5).

[15] M. Zachariasen and M. Dam. 1996. Tabu search on the

geometric traveling salesman problem. In I.H. Osman

and J.P. Kelly (eds.) Meta-Heuristics: Theory and

Applications. Springer: US, pp. 571–587 (ISBN 978-1-

4613-1361-8).

[16] O.C. Martin and S.W. Otto. 1996. Combining simulated

annealing with local search heuristics. Annals of

Operations Research 63(1):57–75 (DOI

10.1007/BF02601639).

Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

45
ISSN 2362 – 8022 | www.apjeas.apjmr.com

[17] S. Amin. 1999. Simulated jumping. Annals of

Operations Research 86:23–38 (DOI

10.1023/A:1018954718550).

[18] O. Miglino, D. Menczer and P. Bovet. 1994. A neuro-

ethological approach for the TSP: Changing

methaphors in connectionist models. Journal of

Biological systems 2(3):357–366. DOI

10.1142/S0218339094000210.

[19] L.M. Gambardella and M. Dorigo. 1995. Ant-Q: A

reinforcement learning approach to the traveling

salesman problem. In Proceedings of the Twelfth

International Conference on Machine Learning,

Tahoe City, CA. Morgan Kaufmann Publishers, pp.

252–260 (ISBN 1558603778).

[20] L.M. Gambardella and M. Dorigo. 1996. Solving

symmetric and asymmetric TSPs by ant colonies. In

Proceedings of the 1996 IEEE International

Conference on Evolutionary Computation (ICEC96),

Nagoya University, Japan. IEEE: Piscataway, NJ, pp.

622–627 (ISBN 0-7803-2902-3).

[21] M. Dorigo and L.M. Gambardella. 1997. Ant colonies

for the traveling salesman problem. BioSystems

43(2):73–81 (DOI 10.1016/S0303-2647(97)01708-5).

[22] G. Berry and G. Boudol. 1992. The chemical abstract

machine. Journal of Theoretical Computer Science

96(1):217–248 (DOI 10.1016/0304-3975(92)90185-I).

[23] W. Fontana. 1992. Algorithmic chemistry. In C.G.

Langton, C. Taylor, J.D. Farmer and S. Rasmussen

(eds.) Proceedings of the Workshop on Artificial Life

(ALIFE90) 88:159–209, Redwood City, CA. Addison–

Wesley.

[24] W. Banzhaf. 1995. Self-organizing algorithms derived

from RNA interactions. In W. Banzhaf and F.H.

Eeckman (eds.) Evolution and Biocomputation,

Lecture Notes in Computer Science 899:69–102.

Springer:Berlin (DOI 10.1007/3-540-59046-3_6).

[25] T. Ikegami and T. Hashimoto. 1995. Coevolution of

machines and tapes. In F. Moran, A. Moreno, J.J.

Merelo and P. Chacon (eds.) Advances in Artificial

Life: Proceedings of Third European Conference on

Artificial Life, Lecture Notes in Computer Science
929:234–245, Berlin. Springer–Verlag (DOI 10.1007/3-

540-59496-5_302).

[26] W. Banzhaf, P. Dittrich and H. Rauhe. 1996. Emergent

computation by catalytic reactions. Nanotechnology

7(1):307–314 (DOI 10.1088/0957-4484/7/4/001).

[27] P. Dittrich, W. Banzhaf, H. Rauhe and J. Ziegler. 1998.

Macroscopic and microscopic computation in an

artificial chemistry. In P. Dittrich, H. Rauhe and W.

Banzhaf (eds.) Proceedings of the Second German

Workshops on Artificial Life (GWAL97), University

of Durtmond, pp. 19–22 (ISSN 0941-4568).

[28] A. Hjemfelt, E.D. Weinberger and J. Ross. 1991.

Chemical implementation of neural networks and Turing

machines. Proceedings of National Academy of

Sciences of the United States of America
88(24):10983–10987.

[29] L.M. Adleman. 1994. Molecular computation of

solutions to combinatorial problems. Science

266(5187):1021–1024 (DOI 10.1126/science.7973651).

[30] A. Arkin and J. Ross. 1994. Computational functions in

biochemical reaction networks. Journal of Biophysics

67(2):560–578 (DOI 10.1016/S0006-3495(94)80516-8).

[31] P. Dittrich. 1998. Real evolution in artificial chemistries.

In C.L. Nehaniv and G.P. Wagner (eds.) The Right

Stuff: Appropriate Mathematics for Evolutionary

and Developmental Biology, Technical Report Number

315, University of Hardfordshire School of Information

Science, pp. 27–31.

[32] M. G. Norman and P. Moscato. 1995. The Euclidean

traveling salesman problem and a space-filling curve.

Chaos, Solutions and Fractals 6:389–397.

[33] Q. F. Yang, R. E. Burkard, E. Cela and G. J. Woeginger.

1995. Hamiltonian cycles in circulant digraphs with two

stripes. Technical Report SFB-Report 20, Technische

Universitat Graz.

[34] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie and

M. Talamo. 1994. Server request with on-line routing. In

Proceedings of the Fourth Scandinavian Workshop

on Algorithm Theory (SWAT94), Aarhus, Dinamarca,

Springer–Verlag.

[35] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani

and B. Schieber. 1997. The angular-metric traveling

salesman problem. In Proceedings of the Eighth

Annual ACM-SIAM Symposium on Discrete

Algorithms.

[36] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleybank,

P. Raghavan and M. Sudan. 1994. The minimum latency

problem. In Annual Symposium on Theory of

Computation (STOC).

[37] P. Chalasani, R. Motwani and A. Rao. 1996.

Approximation algorithms for robot grasp and delivery.

In 2nd International Workshop on Algorithmic

Foundations of Robotics (WAFR).

[38] M.X. Geomans and J. Kleinberg. 1996. An improved

approximation ratio for the minimum latency problem.

In Proceedings of 7th ACM–SIAM Symposium on

Discrete Algorithms.

[39] M.M. Halldorsson, K. Iwano, N. Katoh and T.

Tokuyama. 1995. Finding subsets maximizing minimum

structures. In Proceedings of 6th ACM–SIAM

Symposium on Discrete Algorithms.

[40] G. Reinelt. 1991. TSPLIB–a traveling salesman library.

ORSA Journal on Computing 3:376–384.

[41] F.J. Varela, H.R. Maturana and R. Uribe. 1974.

Autopoiesis: The organization of living systems.

BioSystems 5(4):187–196.

[42] R.J. Bagley and J.D. Farmer. 1992. Spontaneous

emergence of a metabolism. In C.G. Langton, C. Taylor,

Asia Pacific Journal of Education, Arts and Sciences | Vol. 1, No. 1 | March 2014
__

46
ISSN 2362 – 8022 | www.apjeas.apjmr.com

J.D. Farmer and S. Rasmussen (eds.) Proceedings of

the Workshop on Artificial Life (ALIFE90), Volume 5

of Santa Fe Institute Studies in the Sciences of

Complexity, pages 93–140, Redwood City, CA,

Addison–Wesley.

[43] S.A. Kauffman. 1993. The Origins of Order. Oxford

University Press.

[44] J.S. McCaskill, H. Chorongiewski, D. Mekelburg and U.

Tangen. 1994. Configurable computer hardware to

simulate long-time self-organization of biopolymers.

International Journal of Physical Chemistry
98:1114–1115.

[45] W. Banzhaf. 1993. Self-replicating sequences of binary

numbers – Foundations I and II: General and strings of

length n = 4. Biological Cybernetics 69: 269–281.

[46] W. Fontana and L.W. Buss. 1996. The barrier of

objects: From dynamical system to bounded

organizations. In J.L. Casti and A. Karlqvist (eds.)

Boundaries and Barriers: On the Limits to Scientific

Knowledge, pp. 56– 116, Addison–Wesley, ISBN

0788196758.

[47] M. W. Lugowski. 1989. Computational metabolism. In

C.G. Langton (ed.) Artificial Life.

[48] W. Fontana and L.W. Buss. 1994. What would be

conserved if the tape is played twice? Proceedings of

the National Academy of Sciences of the United

States of America 91(2):757–761.

[49] K.P. Zauner and M. Conrad. 1996. Simulating the

interplay of structure, kinetics, and dynamics in complex

biochemical networks. In R. Hofestadt, M. Loffler, T.

Lengauer and D. Schomburg (eds.) Computer Science

and Biology – Proceedings of the German

Conference on Bioinformatics (GCB96), IMISE

Report, Universitat Leipzig, Germany, pp. 336–338.

[50] P. Dittrich and W. Banzhaf. 1997. A topological

structure based on hashing – Emergence of a spatial

organization. In P. Husbands and I. Harvey (eds.)

Fourth European Conference on Artificial Life
(ECAL97), University of Sussex, Brighton, UK, MIT

Press, ISBN 0-262-58157-4.

[51] J.P. Pabico, J.R.L. Micor and E.R.E. Mojica. 2003.

Solving the scheduling problem using artificial

chemistry. In 32nd Annual Convention of the

Kapisanang Kimika ng Pilipinas, Southern Tagalog

Chapter, ERDB Auditorium, University of the

Philippines Los Baños.

[52] J.P. Pabico, E.R.E. Mojica and J.R.L. Micor. 2003.

Artificial chemistry: Basic concepts and application to

combinatorial problems. In 32nd Annual Convention

of the Kapisanang Kimika ng Pilipinas, Southern

Tagalog Chapter, ERDB Auditorium, University of the

Philippine Los Baños.

[53] D.E. Goldberg. 1989. Genetic Algorithms in Search,

Optimization and Machine Learning. Addison–

Wesley, Boston, MA.

[54] R. Durbin and D. Willshaw. 1987. An analogue

approach to the traveling salesman problem using an

elastic net method. Nature 326:689–691.

[55] J. Y. Potvin. 1993. The traveling salesman problem: A

neural network perspective. ORSA Journal of

Computing 5(4):328–347.

[56] D. Whitley, T. Starkweather and D. Fuquay. 1989.

Scheduling problems and traveling salesman: The

genetic edge recombination operator. In J.D. Schaffer

(ed.) Proceedings of the Third International

Conference on Genetic Algorithms, San Mateo, CA,

Morgan Kaufmann, pp. 133–140.

[57] H. Bersini, C. Oury and M. Dorigo. 1995. Hybridization

of genetic algorithms. Technical Report IRIDIA 95–

22, IRIDIA, Universite Libre de Bruxelles, Belgium.

