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ABSTRACT

A total of seven biocontrol agents with known antifungal activity against other soilborne fungal 
pathogens were screened for their antagonistic potential against Sclerotium rolfsii Sacc, the causal 
agent of stem rot disease of groundnut (Arachis hypogaea L.) by dual culture assay. Among the various 
biocontrol agents tested Bacillus subtilis strain G-1 was the most effective in inhibiting the mycelial 
growth of S. rolfsii and recorded an inhibition of 28%. Groundnut seeds when treated with B. subtilis 
G-1 showed significant increases in root length, shoot length and seedling vigour. A talc-based powder 
formulation of the highly effective strain, B. subtilis G-1, was developed and its efficacy in controlling 
groundnut stem rot was determined under greenhouse conditions. The results indicated that seed 
treatment with the powder formulation of B. subtilis G-1 alone effectively reduced the incidence of 
stem rot and increased the pod yield; but combined application through seed and soil increased the 
efficacy. Seed treatment and soil application with B. subtilis G-1 reduced the stem rot incidence from 
80 per cent (with non-bacterized seeds) to 5 per cent. When the treated seeds were sown in soil, the 
antagonist moved to the rhizosphere and multiplied well in it. These results suggest that B. subtilis G-1 
is an effective bioagent against stem rot of groundnut. Further studies are required to assess its efficacy 
in controlling stem rot of groundnut under field conditions. 

Highlights

•	 Bacillus subtilis strain G-1 has good potential as a microbial agent for biological control of stem rot of 
groundnut caused by Sclerotium rolfsii.

Keywords: Arachis hypogaea, Sclerotium rolfsii, stem rot, biological control, Bacillus subtilis

Sclerotium rolfsii Sacc, the causal agent of groundnut 
stem rot, is an important soilborne pathogen in 
many areas of the world where groundnut (Arachis 
hypogaea L.) is grown. The fungus infects lower stems 
of groundnut, which are in contact with the soil as 
well as pegs, pods and roots. Infected plants show 
wilting of one or few branches initially, but the whole 
plant may wilt and die within few weeks of infection. 

Whitish fungal mycelium and light-to-dark brown 
sclerotia appear on the soil surface and diseased 
plant tissues (Linderman and Gilbert 1973, Punja 
and Rahe 1992). High soil moisture, denser plant 
stands and frequent irrigation favour infection and 
fungal mycelial spread within and between plants 
(Coley-Smith and Cooke 1971, Punja 1985, Punja 
and Rahe 1992, Sconyers et al., 2005). Control of this 
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pathogen is difficult as it produces sclerotia which 
overwinter in soil and on plant debris and emerge 
as inoculum and cause disease during the following 
season (Punja 1988). The fungus once established 
in the soil is very difficult to eliminate. Presently, 
there are no commercial groundnut cultivars that 
are resistant to stem rot. Cultural methods including 
crop rotation with non-host for S. rolfsii, deep 
ploughing and non-dirting cultivation provides 
only partial control of stem rot (Garren 1961). 
Fungicides are widely used for the management of 
stem rot of groundnut (Hagan et al., 1986, Hagan 
et al., 1988, Csinos 1989, Grichar 1995). But the ill 
effects of synthetic fungicides on the environment 
and their escalating cost, development of resistant 
mutants of pathogens and frequent breakdown of 
resistant cultivars strongly demand a sustainable 
and an alternative management approach to control 
crop diseases. Biological control of plant diseases 
has been studied extensively as an alternative to 
chemical control. Several microorganisms such 
as Pseudomonas spp. (Karthikeyan et al., 2006), 
Trichoderma harzianum (Cilliers et al., 2003), and 
Streptomyces spp. (Adhilakshmi et al., 2014) have 
been identified as effective biocontrol agents against 
S. rolfsii. The objectives of this research were to 
examine biocontrol strains with known antifungal 
activity against other soilborne fungal pathogens 
for their antifungal activity against S. rolfsii in vitro 
and to test their efficacy in controlling stem rot of 
groundnut under greenhouse conditions.

Materials and Methods

Microbial cultures

The fungus, S. rolfsii was isolated from stem rot 
infected groundnut plants and maintained on potato 
dextrose agar (PDA) (Difco Laboratories, Detroit, 
MI) medium under laboratory conditions. The 
antagonistic organisms viz., Bacillus subtilis G-1, 
Bacillus subtilis EPCO 8, Bacillus amyloliquefaciens 
B2, Streptomyces sp. ANR, Streptomyces sp. PDK, 
Streptomyces sp. SA and Pseudomonas fluorescens 
Pf1 were obtained from the Department of Plant 
Pathology, Tamil Nadu Agricultural University, 

Coimbatore, India. The bioinoculants viz. Bacillus 
megaterium var phosphaticum strain PBS, Rhizobium 
strain BMBS, Azospirillum brasiliense strain 204 and 
Azotobacter chrooccocum strain AC1 were obtained 
from the Department of Agricultural Microbiology, 
Tamil Nadu Agricultural University, Coimbatore, 
Tamil Nadu, India.

In vitro screening of antagonists against S. rolfsii

The bacterial and actinomycete isolates were tested 
for their in-vitro antagonistic activity against S. rolfsii 
by dual culture technique (Dennis and Webster 1971). 
The antagonists were streaked on one side of a Petri 
dish containing PDA medium at 1 cm from the edge 
of plate. The mycelial disc (8-mm-dia) taken from the 
margin of 5-day-old cultures of S. rolfsii was placed 
on the opposite side in the Petri dish perpendicular 
to the antagonist. The plates were incubated at room 
temperature (28± 2°C) for 6-7 days. The percent 
inhibition of growth of the test pathogen was 
calculated using the following formula:

Where; I =percentage of inhibition, C = radial growth 
of the pathogen in control and T =radial growth of 
pathogen in treatment.

Efficacy of antagonists on seed germination and 
seedling vigour 

The antagonists viz., B. subtilis G-1, B. subtilis EPCO8 
and B. amyloliquefaciens B2 which inhibited the growth 
of S. rolfsii in dual culture assay were evaluated for 
their effect on seed germination and seedling vigour. 
The bacterial isolates were grown on nutrient broth 
with constant shaking at 150 rpm for 48 h at room 
temperature (28±2°C). The bacterial cells were 
harvested by centrifugation at 6,000 rpm for 15 min 
and the pellet was suspended in 0.01 M phosphate 
buffer (pH 7.0. The final concentration of the 
suspension was adjusted to approximately 108 CFU/
ml (OD595 = 0.3) in a spectrophotometer and used as 
inoculum (Thompson 1996). Groundnut seeds (TMV 
7) were soaked in the bacterial suspension for 3 min 
and dried in shade for 2 h. 
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The plant growth promoting activity of the bacterial 
antagonists was assessed based on the seedling 
vigour following the standard roll towel method 
(International Seed Testing Association 1996). The 
treated seeds were placed on coarse blotter paper 
sheets and covered with a moistened blotter and 
rolled. The roll was kept on a butter paper sheet 
and rolled as a bundle, and incubated in a growth 
chamber at 25°C. Five replications were maintained 
for each treatment. The root and shoot lengths of 
seedlings were measured and the germination 
percentage was calculated after 10 days. The vigour 
index was calculated by multiplying percent plant 
stand with the sum of shoot length and root length 
(Baki and Anderson 1973).

Compatibility tests

The bacterial antagonist viz., B. subtilis G-1 which 
showed the highest mycelial growth inhibition 
and plant growth promoting activity was used for 
further studies. B. subtilis G-1 was tested in vitro for 
its compatibility with other beneficial soil inoculants 
by cross-streak assay on nutrient agar medium. 
B. subtilis G-1 was streaked as a strip at one end 
of the Petri plate and incubated for 24 h at room 
temperature (28±2°C). The test strains viz. Bacillus 
megaterium var phosphaticum strain PBS, Rhizobium 
strain BMBS, Azospirillum brasiliense strain 204 and 
Azotobacter chrooccocum strain AC1 were streaked on 
the Petri plate perpendicular to B. subtilis. The plates 
were incubated further for 48 h at (28±2°C) and 
observed for the growth inhibition.

Development of formulation of B. subtilis G-1

A loopful of B. subtilis G-1 was inoculated into the 
nutrient broth and incubated in a rotary shaker at 150 
rpm for 48 h at room temperature (28±2°C). After 48 h 
of incubation, the broth containing 9 × 108 cfu/ml was 
used for the preparation of talc-based formulation. 
To the 400 ml of bacterial suspension, 1 kg of the 
sterile talc powder, 15 g of calcium carbonate and 
10 g of carboxymethyl cellulose (CMC) were added 
and mixed under sterile conditions (Vidhyasekaran 
and Muthuamilan 1995). The product was shade 
dried to reduce the moisture content to 35% and 

then packed in white polypropylene bag and sealed. 
The prepared formulation was tested for its ability to 
suppress stem rot of groundnut under greenhouse 
conditions. At the time of application, the population 
of bacteria in the talc-based powder formulation was 
2.5 x 108 cfu/g.

Greenhouse studies

The stem rot susceptible groundnut cultivar, cv. 
TMV7 (Bunch type; duration 115–120 days) obtained 
from the Department of Oilseeds, Tamil Nadu 
Agricultural University, Coimbatore, Tamil Nadu, 
India was used. The fungus, S. rolfsii, was multiplied 
in sand-maize medium (Riker and Riker 1936) for 15 
days and the sand–maize inoculum was mixed with 
the sterilised soil in the ratio of 1:19 in polyethylene 
bags. The polyethylene bags were shaken vigorously 
to ensure uniform distribution of the inoculum. 
Earthen pots (30 cm diameter) were filled up with 5 
kg of infested soil and arranged on the greenhouse 
benches. The pots were incubated for three days 
before planting. Seeds were treated with the powder 
formulation of B. subtilis at the rate of 10 g/kg of 
seeds and the treated seeds were sown in the infested 
soil (Ruark and Shew 2010). Five groundnut seeds 
were planted in each pot. In another set of pots, seed 
treatment was followed by soil application of talc-
based powder formulation at the rate of 5g/ pot at 
the time of sowing. Seeds mock-treated with the talc 
powder formulation without B. subtilis G-1 were kept 
as control. Carbendazim (0.2%) was used as a check. 
Each pot served as a replicate and each treatment 
was replicated five times. The initial population of 
B. subtilis G-1 in the soil was determined by dilution 
plating immediately following the treatment. The 
percentage of stem rot incidence was recorded 25 
days after sowing. The experiment was repeated 
three times.

Population density assays of B. subtilis G-1 in the 
rhizosphere 

The rhizosphere population of B. subtilis G-1 was 
assessed at different time intervals. Groundnut 
plants from each treatment were pulled out gently 
with roots intact and root portions were cut in to 
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small bits. All root bits with adhering soil particles 
were thoroughly mixed, weighed and transferred 
to 100 ml of sterile distilled water and shaken for 30 
min on a rotary shaker. After thorough shaking the 
population of B. subtilis G-1 in the suspension was 
estimated by dilution plate method.

Statistical analysis

The completely randomized design was used for the 
laboratory and greenhouse experiments. Arc sine 
transformation of data on percentage of stem rot 
incidence was done and Duncan’s multiple range test 
(DMRT) was first applied to the transformed values 
and then transferred to the original means (Gomez 
and Gomez 1984). The data were analyzed using SAS 
statistical software version 9.2 (SAS Institute, Inc., 
Cary, NC). 

Table 1. In vitro evaluation of biocontrol agents against  
S. rolfsii by dual culture technique

Biocontrol agents Mycelium 
growth (cm)

Mean 
inhibition 

(%)
Bacillus subtilis G-1 6.50 28.0 (31.95)a

Bacillus subtilis EPCO8 6.65 26.0 (30.66)a

Bacillus amyloliquefaciens B2 6.55 27.0 (31.31)a

Streptomyces sp. ANR 8.85 1.7 (5.16)b

Streptomyces sp. PDK 9.00 0 (1.28)b

Streptomyces sp. SA 9.00 0 (1.28)b

Pseudomonas fluorescens Pf1 9.00 0 (1.28)b

Control 9.00 0 (1.28)b

The data are mean of three replications.
Values in the parenthesis are arcsine transformed values
Means within a column followed by a common letter are not 
significantly different (p=0.05) by DMRT.

Results

In vitro antagonistic activity

A total of seven bio-control agents were tested for 
their efficacy in suppressing mycelial growth of 
S. rolfsii in vitro in dual culture assay. Among the 
various bio-control agents tested, B. subtilis G-1,  
B. amyloliquefaciens B2 and B. subtilis EPCO 8 were 

found effective in inhibiting the mycelial growth of 
S. rolfsii with mean percentage inhibition of 28, 27 
and 26 respectively (Table 1). The in vitro antifungal 
activity of B. subtilis G-1 against S. rolfsii is shown in 
Figure 1.

	 B. subtilis G-1	 Control

Figure 1. In vitro antifungal activity of B. subtilis G-1 against 
Sclerotium rolfsii

Plant growth promoting activity 

Groundnut seeds when treated with different bio-
control agents showed significant increases in 
seed germination, root length, shoot length and 
seedling vigour (Table 2). Among the five bio-
control agents tested, B. subtilis G-1 was the most 
effective in promoting plant growth followed by 
B. amyloliquefaciens B2 and B. subtilis EPCO 8. The 
B. subtilis G-1 recorded a vigour index of 3735; 
whereas B. amyloliquefaciens B2 and B. subtilis EPCO 8 
recorded vigour index of 3420 and 3241 respectively. 
Untreated control seeds recorded seedling vigour of 
2650. 

The compatibility tests with other bio-agents 
revealed that B. subtilis G-1 was compatible with 
other beneficial rhizobacteria including Bacillus 
megaterium var phosphaticum strain PBS, Rhizobium 
strain BMBS, Azospirillum brasiliense strain 204 and 
Azotobacter chrooccocum strain AC1 (Data not shown).

Pot experiment 

B. subtilis G-1 was selected based on its in vitro 
antagonism on dual plate technique and plant 
growth promoting activity for further studies. A talc-
based formulation of B. subtilis G-1 was prepared 
and tested for its efficacy in controlling stem rot 
of groundnut under greenhouse conditions. The 
results of the greenhouse experiments showed that 
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inoculation of S. rolfsii in groundnut caused 80% 
stem rot disease incidence. Seed treatment or soil 
application of powder formulation of B. subtilis G-1 
significantly reduced the incidence of stem rot and 
increased the plant height (Table 3). Seed treatment 
with the powder formulation of B. subtilis G-1 alone 
was effective in controlling stem rot disease compared 
to control; but combined application through seed

Table 2 Effect of seed treatment with biocontrol agents on 
seed germination and seedling vigour of groundnut

Biocontrol agents Germi-
nation (%)

Shoot 
length 
(cm)

Root 
length 
(cm)

Vigour 
index

B. subtilis G-1 99(86.16)a 20.3a 17.4a 3735a
B. amyloliquefaciens 
B2 99(86.16)a 18.6b 16.0ab 3420ab

B. subtilis EPCO 8 98 (83.6)a 18.4b 14.7b 3241b
Streptomyces sp. 
ANR 96(83.15)a 18.3b 12c 2859c

Control 95(80.6)a 15.7c 11.9c 2650c

The data are mean of five replications.
Values in the parenthesis are arcsine transformed values
Data followed by the same letter in a column are not significantly 
different (p = 0.05) from each other according to DMRT. 

and soil increased the efficacy. Maximum reduction 
in the disease incidence and enhancement of the 
plant height were noticed in pots treated with B. 
subtilis G-1 through seed and soil. Seed treatment 
and soil application with B. subtilis G-1 recorded the 
stem rot incidence of 5 percent whereas in control, 
it was 80 percent. Control of stem rot with appli
cation of B. subtilis G-1 by seed treatment and soil 
application was not statistically different from that 
obtained with seed treatment and soil application 
with carbendazim (Table 3). Seed treatment and 
soil application with the powder formulation of 
B. subtilis G-1 significantly increased the pod yield 
besides controlling stem rot disease.

The population of B. subtilis G-1 in the rhizosphere of 
groundnut was assessed at different time intervals. 
When the groundnut seeds were treated with the 
powder formulation of B. subtilis G-1 and sown, 
the bacteria multiplied well in the rhizosphere 
and the rhizosphere population increased 
with increase in the age of the crop (Table 4). 

Discussion

Several strains of Bacillus subtilis are known to 
suppress plant pathogens and improve plant health 

Table 3 Efficacy of Bacillus subtilis strain G-1 in stem rot management and yield enhancement of groundnut under 
greenhouse conditions

Treatments
Disease 

incidence 
(%)

% 
reduction 

over 
control

Plant 
height 
(cm)

% 
increase 

over 
control

Pod yield  
(g/pot)

% increase 
over 

control

Soil application (SA) with B. subtilis (5g/pot) 30 (32.9)b 62.50 67.5c 7.1 101.25cd 278.5
Seed treatment (ST) with B. subtilis (10g/kg) 7.5 (11.3)bc 90.63 71.75b 13.88 104.5b 290.65
ST + SA with B. subtilis 5 (6.6)c 93.75 74.5a 18.25 114.5a 328.03
Soil application with Carbendazim (0.2%) 20 (23.1)bc 75.00 68c 7.9 100d 273.83
Seed treatment Carbendazim (2g/kg) 30 (32.9)b 62.50 68.25c 8.3 102.5c 283.17
SA + ST with Carbendazim 13.8 (19)bc 83.13 72.5b 15.1 113.5a 324.29
Control 80 (66.6)a 63d 26.75e

The data are mean of five replications.
Stem rot incidence was recorded 25 days after sowing.
Values in the parenthesis are arcsine transformed values
Means within a column followed by a common letter are not significantly different (p=0.05) by DMRT. 
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(Leifert et al., 1995, Collins et al., 2003, McSpadden 
Gardener 2004, Toure et al., 2004, Jayaraj et al., 2005, 
Hu et al., 2014, Khabbaz and Abbasi 2014, Zhao et al., 
2014). Bacillus spp. are capable of growing in diverse

Table 4 Survival of B. subtilis G-1 in groundnut rhizosphere 
after application through seed and soil 

Treatment
Rhizosphere population  

(105 cfu/g) 
30 DAS 60 DAS 90 DAS

Soil application (SA) 
with B. subtilis 18. 0b 28.0c 34.3c 

Seed treatment (ST) 
with B. subtilis 18.3b 31.7b 37.3b 

SA + ST 23.3a 41.7a 45.0a 
Control 0.0c 0.0d 0.0d 

Data are mean of five replications.
Data followed by the same letter in a column are not significantly 
different (p = 0.05) by DMRT.

environments due to the production of endospores 
that can tolerate extreme pH, temperature, and 
osmotic conditions; therefore, they offer several 
advantages over other antagonistic microorganisms 
(Earl et al., 2008). A number of B. subtilis strains 
have been integrated successfully into several pest 
management programs (Jacobsen et al., 2004). A 
number of commercial products based on B. subtilis 
including Kodiak (Gufstafson Biologicals, Plano, 
TX), Serenade (Agraquest Inc., Davis, CA), Subtilex 
(Becker Underwood, Ames, IA) have been developed 
for the control of various plant diseases (Schisler et 
al., 2004). B. subtilis is known to rapidly colonize 
plant roots and has the capacity to multiply on the 
roots (Dijkstra et al., 1987). It remains close to the root 
tip by passive displacement on the elongating cells. 
B. subtilis produce more than two dozen structurally 
diverse antifungal and antibacterial compounds 
(Stein 2005). Furthermore several strains of Bacillus 
sp. are known to induce systemic resistance by 
producing volatile organic compounds (Ryu et al., 
2004) and to promote plant and root growth through 
the production of phytohormones and extracellular 
enzymes (Yao et al., 2006, Forchetti et al., 2007, Lee et 
al., 2008, Swain and Ray 2009, Lahlali et al., 2013). In 
the present study, it was observed that among the 

various antagonists tested in vitro, B. subtilis G-1 
was the most effective in inhibiting the growth of S. 
rolfsii in vitro. Groundnut seeds when treated with B. 
subtilis G-1 showed significant increases in per cent 
germination, root length, shoot length and seedling 
vigour. 

Seed treatment or soil application of talc-based 
powder formulations of B. subtilis G-1 significantly 
increased the plant height and reduced the incidence 
of stem rot. The antagonist when applied through 
seed and soil reduced the stem rot incidence up to 
93% under greenhouse conditions and its effects 
were equal to or greater than those achieved with 
the commercial fungicide. It is possible that the 
physiological alterations induced in groundnut 
due to the plant growth promoting substances like 
auxins (Cameco et al., 2001) produced by the B. 
subtilis might have resulted in increased plant height. 
These results suggest that B. subtilis strain G-1 is an 
effective biocontrol agent against S.rolfsii. 

When the groundnut seeds were treated with the 
powder formulation of B. subtilis G-1 and sown, the 
bacteria multiplied well in the rhizosphere and the 
rhizosphere population increased with increase in 
the age of the crop. The increase in population of B. 
subtilis G-1 indicates the potential of the antagonist to 
provide effective and long-lasting protection against 
stem rot of groundnut. 

The compatibility tests with other bio-agents 
revealed that B. subtilis G-1 was compatible with 
other beneficial rhizobacteria including Bacillus 
megaterium var phosphaticum strain PBS, Rhizobium 
strain BMBS, Azospirillum brasiliense strain 204 and 
Azotobacter chrooccocum strain AC1. This B. subtilis 
strain G-1 may have potential use in the integrated 
management of S. rolfsii in groundnut. It has been 
reported that the biocontrol agents that are effective 
in greenhouse bioassays do not perform similarly 
under field conditions (Lewis et al., 1993; Jones and 
Samac 1996). Various factors including chemical and 
physical properties of the soil, weather conditions, 
host plant species, presence of non-target plant 
pathogens, and interactions with other soil microflora 
and fauna influence the ability of applied biocontrol 
agents to colonize, multiply, disperse, produce 
necessary compounds, or parasitize plant pathogens 
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(Weller 1988). Hence, rigorous evaluation under field 
conditions in hot spot areas and extensive studies on 
its biology will be required. 

Conclusion

The bacterial antagonist, Bacillus subtilis G-1 
significantly controlled stem rot disease of groundnut 
and increased the plant growth under greenhouse 
conditions. This strain warrants further investigation 
for its ability to control stem rot and other soil-borne 
diseases of groundnut under field conditions. The 
antagonistic activity of B. subtilis G-1 is likely due to 
volatile and diffusible metabolites. Further research 
on the field efficacy and mode of action of this strain 
is in progress.
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