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Abstract 
 

The plastic waste utilization can be addressed toward different valuable products. A promising 
technology for the utilization is by converting it to fuels. Simultaneous modeling and optimization 
representing effect of reactor temperature, catalyst calcinations temperature, and plastic/catalyst 
weight ratio toward performance of liquid fuel production was studied over modified catalyst waste. 
The optimization was performed to find optimal operating conditions (reactor temperature, catalyst 
calcination temperature, and plastic/catalyst weight ratio) that maximize the liquid fuel product. A 
Hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA) method was used for the modeling 
and optimization, respectively. The variable interaction between the reactor temperature, catalyst 
calcination temperature, as well as plastic/catalyst ratio is presented in surface plots. From the GC-
MS characterization, the liquid fuels product was mainly composed of C4 to C13 hydrocarbons. 
 
Keywords: artificial neural network; central composite design; genetic algorithm; optimization; 

plastic waste; Residual Catalytic Cracking  
 
 

Abstrak  
 

KONVERSI LIMBAH PLASTIK MENJADI BAHAN BAKAR CAIR DE NGAN METODE 
PERENGKAHAN KATALITIK MENGGUNAKAN KATALIS BEKAS YAN G 
TERMODIFIKASI: PEMODELAN DAN OPTIMASI MENGGUNAKAN G ABUNGAN 
METODE ARTIFICIAL NEURAL NETWORK DAN GENETIC ALGORITHM. Pemanfaatan 
limbah plastik dapat dilakukan untuk menghasilkan produk yang lebih bernilai tinggi. Salah satu 
teknologi yang menjanjikan adalah dengan mengkonversikannya menjadi bahan bakar. Permodelan, 
simulasi dan optimisasi simultan yang menggambarkan efek dari suhu reaktor, suhu kalsinasi katalis, 
dan rasio berat plastik/katalis terhadap kinerja produksi bahan bakar cair telah dipelajari 
menggunakan katalis bekas termodifikasi Optimisasi ini ditujukan untuk mencari kondisi operasi 
optimum (suhu reaktor, suhu kalsinasi katalis, dan rasio berat plastik/katalis) yang memaksimalkan 
produk bahan bakar cair. Metode Hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA) 
telah digunakan untuk permodelan dan optimisasi simultan tersebut. Inetraksi antar variabel suhu 
reaktor, suhu kalsinasi katalis, dan rasio berat plastik/katalis digambarkan dalam bentuk plot 
surface. Berdasarkan karakterisasi GC-MS, produk bahan bakar yang diperoleh terdiri dari 
komponen-komponen hidrokarbon C4-C13. 

 
Keywords: artificial neural network; central composite design; genetic algorithm; optimasi; limbah 

plastik; Residual Catalytic Cracking 
 
INTRODUCTION 

Plastic waste constitutes a growing social 
problem, because of the loss of natural resources, the 
environmental pollution, and the depletion of landfill 
space. The waste minimization, reuse, recycling, and 

energy recovery are important to ensure the carbon 
cycle in the world. In recent years, the feedstock 
recycling has arisen as a promising alternative aimed 
at the conversion of plastic wastes into valuable 
chemicals and fuels. High temperature pyrolysis and 
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cracking of waste thermoplastic polymers, such as 
polyolefines, polyethylene (PE), and polypropylene 
(PP) are well-known and environmentally benign 
methods of their utilization. Thus, catalytic cracking of 
plastic waste over acidic solids (zeolites-based 
catalysts) has been proposed as an interesting solution 
subject to reduce the cracking temperature (Manos et 
al., 2000). 

Catalytic conversion of plastic waste to fuels 
and chemicals has proven to be a promising procedure 
depending on catalyst, reactor type, and operating 
conditions. Thermal pyrolysis is a typical chemical 
recycling process, enabling production of monomers, 
mainly ethylene, propene, and butene from waste 
plastics at higher temperature. In case of the cracking 
processes, their main products are fuels fractions, 
gaseous hydrocarbons, and liquid mixtures of 
hydrocarbons boiling in the range of temperatures 
~35-360oC (gasoline and light gas oils) as well as the 
solid carbon residues, similar to coke. The plastic 
waste cracking can be converted toward different 
interesting products (olefinic gases, gasolines, heavy 
oils, etc.). The procedure becomes an efficient route 
which utilizes waste stuffs to produce any useful 
products.  

Inline with the phenomena, use of catalysts 
allows the plastic degradation pathway to be modified 
that would affects the process temperature (reduce 
temperature). Comprehensively, two positive effects 
are expected by incorporation of a catalyst into the 
reaction medium: (i) a reduction of the cracking 
temperature, and (ii) suitable control of the selectivity, 
which enables the formation of more-valuable 
products. Accordingly, a great variety of 
heterogeneous catalysts have been investigated for the 
catalytic cracking of plastics, such as: (a) silica 
alumina (Songip et al., 1993; Ishihara et al., 1990; 
Sakata et al., 1999), (b) conventional commercial 
zeolites (HZSM-5, HBeta, HY, etc.) (Manos et al., 
2000; Songip et al.,1993; Sakata et al.,1999; Marcilla 
et al.,2007), (c) fresh and spent FCC catalysts, (Ali et 
al., 2002; Cardona and Corma, 2000; Akpanudoh et 
al., 2005; De la Puente et al., 2002; De la Puente et 
al., 1997), (d) mesostructured catalysts (MCM-41, 
FSM-16, Al-SBA-15, AlUTD-1) (Serrano et al., 2000; 
Aguado et al., 1997; Serrano et al., 2000), and (e) 
superacid solid catalyst (ZrO2/SO4

2-) (Liu and 
Meuzelaar,1996). Among the different catalysts tested 
for the conversion of polyolefinic plastics, zeolites are 
one of the most extensively studied. However, the 
catalytic cracking of plastic polymers over 
conventional zeolites is limited by the bulky nature of 
the plastic polymer molecules and the small size of the 
zeolite micropores. This obstacle can be avoided by 
using larger-pore catalysts, such as mesoporous MCM-
41, or zeolites with small crystal sizes (100 nm) that 
exhibit a high proportion of external surface acid sites. 
Thus, a significant decrease in the crystal size of ZSM-
5 zeolite has led to an enhanced activity in the 
cracking of both polyolefins and lube oils.  

The great majority of the previous works are 
focused on the catalyst finding particularly on fresh 

catalyst leading to the appropriate catalyst for plastic 
or polymer conversion to fuels and chemicals. In terms 
of modeling and optimization, there are no researchers 
concerned on improving the process itself, such as 
finding the optimum operating conditions with respect 
to maximum reactor performances. The modeling and 
optimization were important to find optimum 
operating conditions with respect to maximum yield or 
conversion to fuels. In this paper, the simultaneous 
modeling and optimization using hybrid artificial 
neural network-genetic algorithm method is developed 
in order to reduce cost of the complex cracking 
research.  

The present work is intended to develop 
simultaneous modeling and optimization algorithm to 
find optimal operating conditions (reactor temperature, 
calcination temperature, and catalyst/plastic sample 
ratio) with respect to maximum performance of plastic 
waste conversion to liquid fuels over modified residual 
catalytic cracking (RCC) waste catalyst. The modeling 
and optimization used a hybrid artificial neural 
network-genetic algorithm (ANN-GAalgorithm). A 
Central Composite Design (CCD) method was utilized 
to design the experimental works for training the ANN 
model. 
 

MATERIALS AND METHOD 
Catalyst Preparation  

A modified spent catalyst from Residual 
Catalytic Cracking (RCC) plant was used in this 
research in order to utilize the catalyst waste. The 
catalyst waste was obtained from a RCC 
petrochemical company in Indonesia which is 
abundant in availability. Modification of the used 
catalyst was performed using some physical and 
chemicals treatments. The catalyst was dried overnight 
at 110oC in an oven (MEMMERT) and therefore was 
calcined at certain temperature for 3 hours in a 
programmable box furnace (NEY VULCAN 3-550). 
The calcination temperatures were set based on 
experimental design (479-621oC).  The resulted 
powder was crushed into the desired size (42-62 
mesh).  

The plastic waste samples were mixed 
polypropylene (PP) and polyethylene (PE) from 
drinking water bottle and drinking water cup with ratio 
of PP:PE is 1:1, respectively. The plastic samples were 
cut to form smaller chips. Twenty five grams of mixed 
plastic waste was used in each experimental run. 
Catalyst/plastic ratio used in each experimental run 
was designed based on the experimental design (0.06-
0.11), while cracking time of each run was 60 minutes. 

 

Catalyst Testing and Liquid Fuel Characterization 
The catalytic performance of plastic waste 

conversion to fuels was tested in a fixed bed reactor 
equipped with an electric heater (local brand-self 
fabricated) as depicted in Figure 1. The reactor was 
built from stainless steel tube with a diameter of 1 inch 
which put inside the electric heater. Reactor 
temperature was measured and controlled by a digital 
temperature controller (Autonics).  
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Figure 1. Experimental setup of catalytic cracking of plastic waste, (1) Gate Valve, (2) Flowmeter,  

(3) Temperature Controller, (4) Split Tube Furnace, (5) Fixed Bed Reactor, (6) Condensor, (7) Liquid fuel trap,  
(8) Stainless steel Tube, (9) Catalyst, (10) Plastic sample, (11) Glass wool 

 
A part of the catalyst was put in the center of 

the reactor (below the plastic sample). The glass wool 
was plugged below the catalyst to avoid overflow of 
the liquid plastic. The glass wool was also put above 
the plastic sample. Here, the plastic vapor should be 
confirmed to be able to flow inside the glass wool 
packed. Another part of the catalyst was put above the 
last glass wool packed in order to more crack the 
plastic vapor.  Before reaction, the reactor inside was 
flushed with nitrogen flow for 15 minutes. The reactor 
was heated up to certain temperature (reactor 
temperature) with respect to the experimental design 
(479-621oC). Vapor product (cracked substance) was 
flowed through a condenser (temperature of 5oC) to 
condense the vapor to form liquid fuel, while the non 
condensable gas was collected in a gas sampling pot. 
The liquid product was stored in a flask. Therefore, 
the liquid fuel product was analyzed using a gas 
chromatography-mass spectrometry (GC-MS) 
(SHIMADZU QP2010S) equipped with RTX-5 
column. The liquid fuel product was also analyzed 
using infrared spectroscopy on a SHIMADZU FT-IR 
spectroscopy. The spectrum of pure chloroform was 
used as the background and liquid fuel product sample 
was dissolved in chloroform and used for FTIR 
analysis. Single beam spectra (4000-400 cm−1) of the 
samples were obtained, and corrected against the 
background spectrum of chloroform, to present the 
spectra in absorbance units at a resolution of 16 cm−1.  
 
Experimental Design for Training Data 

A central composite rotatable design was 
employed for designing experimental works to provide 
training data for Artificial Neural Network model 
developed (Montgomery, 2001). Three independent 
variables or process parameters, namely reactor 
temperature, catalyst calcination temperature, and 
catalyst/plastic weight ratio, were selected as 
controlled factors. Ranges of independent variables 
were chosen based on conditions obtained from the 
variables screened prior to optimization. These 
experimental data are used for validating the Artificial 

Neural Network model for the plastic conversion 
process.  The sequence of experiment was randomized 
in order to minimize the effects of uncontrolled 
factors. 
 
Development of Simultaneous Algorithm for 
Modeling and Optimization  

Artificial Neural Network (ANN) has been 
widely used in chemical engineering applications for 
modeling of complex process, process control, and 
fault detection and diagnosis (Stephanopoulos and 
Han, 1996; Huang et al., 2003; Radhakrishnan and 
Suppiah, 2004; Fissore et al., 2004).  The combination 
of ANN and Genetic Algorithm (GA) has been used 
by previous researchers for modeling and optimization 
of integrated process (Nandi et al., 2002; Nandi et al., 
2004; Ahmad et al., 2004). The detail hybrid 
algorithm for simultaneous modeling and optimization 
using ANN and GA has been developed (Istadi and 
Amin, 2007; Istadi and Amin, 2006) for complex 
plasma reactor application. They reported that the 
hybrid ANN-GA technique is a powerful method for 
process modeling and optimization which is better 
than other technique such as response surface 
methodology (RSM), particularly for complex process 
model. 

The RSM method proposes a quadratic model 
as empirical model for representing effect of 
independent variables toward the targeting response. 
Therefore, all models which may not follow the 
quadratic trend are forced to the quadratic model. 
Disadvantages of the RSM method are improved by 
Hybrid Artificial Neural Network-Genetic Algorithm 
(ANN-GA) method. In the last method, empirical 
mathematical modeling of catalytic cracking is 
conducted by Artificial Neural Network, while the 
optimization of operating conditions is performed 
using Genetic Algorithm method.  

In general, four main steps are developed in the 
ANN training process: assembling the training data, 
creating the network object, training the network, and 
simulating the network response to new inputs. 



Plastic Waste Conversion to Liquid Fuels … (Istadi et al.) 

134 

Schematic of the feedforward neural network with 
backpropagation training used in the model 
development is depicted in Figure 2, while detail 
algorithm of the hybrid ANN-GA was developed 
elsewhere (Istadi and Amin, 2007; Istadi and Amin, 
2006).  

The detail stepwise procedure for the hybrid 
ANN-GA algorithm modified from the previous 
publications (Istadi and Amin, 2007; Istadi and  Amin, 
2006) is depicted schematically in Figure 3. The fit 
quality of the ANN model 

 
 

Figure 2. A schematic diagram of the multi-layered 
perceptron (MLP) in feedforward neural network with 

backpropagation training 
 

 
Figure 3. Flowchart of the hybrid ANN-GA algorithms for simultaneous modeling and optimization 
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RESULTS AND DISCUSSION 
Development of Algorithm for Simultaneous 
Artificial Neural Network-Genetic Algorithm 
(ANN-GA) Method 

Detailed kinetics of the stated multiple 
reactions in the conservation equations are required in 
development of a phenomenological model reactor. 
Due to the tedious procedures involved in obtaining 
the requisite kinetic information within the 
phenomenological model, the exclusively data-based 
ANN-GA methods were chosen for maximizing the 
yield of liquid and gas fuels. In this study, 
simultaneous modeling and optimization of complex 
process within cracking process for conversion of 
plastic waste to liquid fuels over catalytic fixed bed 
reactor is addressed. Purpose of the optimization is to 
find optimum operating conditions with respect to 
maximum yields of liquid fuel.  Accordingly, three 
operating factors, namely reactor temperature, catalyst 
calcinations temperature, and catalyst: plastic sample 
ratio, were used as input space of the ANN model. 
Meanwhile, the yield of liquid and gas fuels are 
assigned as output variables of the ANN model which 
will be maximized.  

Regarding the simultaneous modeling and 
optimization algorithm using the hybrid ANN-GA 
(Figure 3), the accuracy of the hybrid method was 
validated by a set of simple discrete data developed 
from a simple quadratic equation as an example (i.e. 
y=-2x2+15x+5). From the testing, the determination 
coefficient (R2) of the method closes to 1 means that 
the empirical method (ANN-GA) has a good fitting, 
while the relative error of the optimized results 
(comparison between GA results and analytical 
solution) are below 10%. In overall, a researcher only 
enters discreet data of multi input (multi independent 
variables) and single output (single dependent 
variables) or multi output. After the simulation, the 
researcher gets a robust simulator of the process as 
well as the optimized operating conditions (input 
variables) to obtain the maximum performances. 

In this research, the ANN model performance 
for comparison between targeted yield and predicted 
yield for liquid fuel model is shown in Figure 4. In the 
figure, observed values of liquid fuel yield are 
compared to predicted values of the yield. From the 
figures, the ANN models are fit well to the 
experimental data which proven by high determination 
coefficients (R2) of 0.95. The high R2 value implies a 

good fitting between the observed (experimental) and 
the predicted values, which means that the ANN-based 
model is suitable for representing the real process. 
Indeed, the hybrid ANN models are suitable for 
simulating performance of the plastic waste catalytic 
cracking to liquid fuel over modified spent catalyst. 
The good fitting is also revealed by low mean square 
error (MSE) during training of the model. 
 

 
 
Figure 4. Observed versus predicted values for ANN model 

fitting of liquid fuel yield (R2 = 0.95) 
 
Effect of Operating Parameters on Liquid Fuel 
Product Yield 

This section presents simulation results on 
effect of operating conditions, i.e. reactor temperature, 
catalyst calcination temperature, and catalyst/plastic 
weight ratio toward liquid fuel yield in a catalytic 
fixed bed reactor.  The simulation was carried out by 
varying the operating parameters (reactor temperature, 
catalyst calcination temperature, and catalyst/plastic 
weight ratio) according to the experimental design 
(central composite design (CCD)) presented in Table 
1.  The experimental data used for training the ANN 
model are presented in Table 2 including the yield of 
liquid fuel and the yield of gas fuel as targeted 
performances.  

 

Table 1. Range and level of independent variables using Central Composite Design (CCD) 

Range and Levels 
Factors  

 (-α)  (-1)  (0)  (+1)  (+α) 
Reactor Temperature [oC] 479 500 550 600 621 
Calcination Temperature [oC] 479 500 550 600 621 

Catalyst/Plastic Weight Ratio [g/g] 0.9 1.0 1.25 1.5 1.6 
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Table 2. Results of experiments based on the central composite design 

Independent Variables Dependent Variables 

Run No. Reactor Temperature 
(oC) 

Calcination 
Temperature (oC) 

Catalyst/Plastic 
Ratio (g/g) 

Liquid Fuel 
Yield (%) 

Gas Fuel Yield (%) 

1 500 500 0.08 25.20 21.0 
2 600 500 0.08 35.62 15.00 
3 500 600 0.08 24.60 18.40 
4 600 600 0.08 27.56 15.30 
5 550 479 0.08 39.24 16.40 
6 550 621 0.08 31.96 16.80 
7 479 550 0.08 21.00 11.36 
8 621 550 0.08 37.92 21.90 
9 550 550 0.08 31.76 23.52 
10 550 550 0.08 33.76 24.56 
11 550 550 0.08 32.34 25.23 
12 550 550 0.08 33.12 23.20 
13 550 550 0.08 31.87 23.40 
14 500 550 0.07 23.09 16.94 
15 500 550 0.10 20.57 17.34 
16 600 550 0.07 34.42 20.09 
17 600 550 0.10 24.18 22.45 
18 479 550 0.08 35.23 24.38 
19 621 550 0.08 23.57 25.26 
20 550 550 0.06 27.75 21.98 
21 550 550 0.11 23.83 21.04 
22 550 550 0.08 34.04 22.44 
23 550 550 0.08 29.25 23.07 
24 550 550 0.08 29.67 20.33 
25 550 550 0.08 30.18 23.63 
26 550 550 0.08 27.69 20.42 

Note:  Pressure : atmospheric;  total cracking time: 60 minutes 
*)The yields data (with catalyst) was calculated from experimental yields results minus the yields without 

catalyst.  
 
Effect of the reactor temperature and the ratio 

of catalyst to plastic weight on the liquid fuel yield is 
demonstrated in Figure 5, while effect of the reactor 
and the catalyst calcination temperatures is depicted in 
Figure 6.  

 
 

Figure 5. Surface plot of liquid fuel yield model as function 
of reactor temperature and catalyst/plastic sample ratio 

 
 

Figure 6. Surface plot of liquid fuel yield model as function 
of reactor temperature and calcination temperature 

 
From the figures, the liquid fuel yield is 

affected by reactor temperature and catalyst/plastic 
weight ratio significantly. The liquid fuel product yield 
is also affected by catalyst calcination temperature 
slightly. The reactor temperature gives most 
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significant effect on the production of liquid fuel 
product. That’s true because the reactor temperature 
relates with the energy supply required for the catalytic 
cracking process. In thermal cracking process (without 
catalyst), a higher reactor temperature (more than 
850oC) is needed to fulfill the required energy for 
cleavage of carbon-carbon bonding in polymer 
materials. However in this catalytic cracking, the 
catalyst gives alternative routes which lowers 
activation energy of the cracking process. The thermal 
energy is required for activation of the catalyst itself to 
do the catalytic cracking process. The catalyst gives 
alternative routes of reaction mechanism so that the 
activation energy is lower. 

In this research, the catalyst used is a modified 
spent-catalyst obtained from residual catalytic 
cracking plant. The catalyst calcination temperature 
provides sufficient energy for opening the active sites 
in the catalyst pore and leads to high surface area of 
the catalyst. In calcination of the catalyst, formation of 
Brønsted acid sites within the catalyst structure, having 
important roles in hydrocarbon cracking process, is 
controlled significantly by optimum calcination 
temperature. The presence of Brønsted acid sites 
ensures that carbon-carbon cleavage occurs in the 
catalytic cracking. The acid sites could be proven by 
catalyst characterization method of pyridine 
adsorption on Brønsted acid sites in infrared band at 
1540 cm-1 (Tanabe et al., 1989; Zheng et al., 2009). 
The Brønsted acidity depends on the zeolite structure 
and the chemical composition of the molecular sieves 
(Lercher et al., 2008; Auroux et al., 1993). The 
catalytic cracking is essentially carbenium ion 
chemistry. Due to the high temperature of reactor or 
the presence of Brønsted acid sites in the modified 
spent RCC catalyst, the carbenium ions may split into 
a smaller carbenium ion and an alkene molecule. Thus, 
carbon-carbon bond scission occurs in the carbenium 
ion atom. The next task for using spent catalyst is how 
to regenerate the strong Brønsted acid sites in the 
modified catalyst. The correlation of operating 
parameters, i.e. reactor temperature and catalyst 
calcination temperature, is important in term of 
regenerating the strong Brønsted acid sites within the 
catalyst surface. The weight ratio of catalyst to plastic 
sample is related to weight hourly space velocity of the 
catalytic cracking reaction. 

Optimization of Operating Parameters to 
Maximize Liquid Fuel Product Yield 

Optimization plot of three independent 
variables (reactor temperature; catalyst calcination 
temperature; and catalyst/plastic weight ratio) using 
Genetic Algorithm method is depicted in Figure 7. In 
the optimization, the Genetic Algorithm showed a 
powerful method. By using this tool, a global 
maximum operating condition is achieved better than a 
local optimum as obtained from ordinary or 
differential-based optimization method. From the 
optimization, the optimal operating conditions, i.e. 
reactor temperature of 561oC, catalyst calcinations 
temperature of 477oC, and catalyst/plastic weight ratio 
of 0.08, were produced with respect to maximum 
liquid product yield of 39.58 %. 

 
Figure 7. Optimization plot of three variables (reactor 

temperature; catalyst calcination temperature; and 
catalyst/plastic weight ratio) using Genetic Algorithm 

 
Characterization of Liquid Fuel Product 

Identification and composition of hydrocarbon 
components in the liquid fuel product were determined 
using GC-MS as presented in Table 3. From the table, 
the modified RCC catalyst waste could produce the 
hydrocarbon-based liquid fuels (C4-C13) as listed in the 
Table 3. Hydrocarbons range of the liquid product 
could be controlled by varying the reactor temperature 
and type of the catalyst.  

 
 

Table 3. Identification and composition of main hydrocarbons components of liquid fuels product using GC-MS analysis 

Retention time (minutes) Main Identified Compound Composition (%) 

2.225 C4H8 (2-Methyl-1-propene) 3.33 
2.408 C5H10 (2-Methyl-2-butene) 3.44 
2.650 C6H12 (3-Methyl-2-pentene) 8.08 
3.208 C7H14 (3-Methyl-2-hexene) 13.66 
3.983 C7H8 (Methyl benzene) 10.96 
5.133 C9H18 (Propil-Cyclohexane) 10.26 
5.308 C9H18 (2,4-dimethyl-1-Heptane) 12.00 
15.175 C13H28 (n-tridecanol) 38.27 
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Catalyst configuration and reactor design 
(depicted in Figure 1) is also essential towards 
controlling range of hydrocarbons product with respect 
to the effective contact between liquid and vaporized 
plastic sample and the catalyst bed. In this research, 
the catalyst was divided into two portions, i.e. below 
plastic sample and above plastic sample as depicted in 
Figure 1. The advance investigation of configuration 
of sample and catalyst within the reactor will be 
published in next articles. The configuration of 
catalyst and plastic sample is purposed to enhance the 
contact between liquefied and vaporized plastic 
samples and the catalyst surface effectively. 

The liquid fuel product was also characterized 
by FT-IR method as depicted in Figure 8.  

 
 

 
 

Figure 8. FT-IR characterization of liquid fuel product 
 

From the figure, the strong sharp peaks at 
2970-2924 cm-1 is assigned to stretching vibration of 
C–H bonds (Paradkar and Irudayaraj, 2002; 
Kazanskii, 2007; Siddiqui, 2009), while the lower 
peak at 2337 cm-1 is ascribed to the combinations 
between the bending and twisting CH2 vibrations and 
the double bond vibrations (Siddiqui, 2009). The 
peaks between 3000 and 2800 cm−1 indicate the 
presence of -CH3, -CH2, and C-H functional groups, 
which are indicative of aliphatic species such as 
alkanes (Siddiqui, 2009). The C=C absorbance peak at 
1651 cm−1 confirms that alkene groups are present. 
The presence of peak in 1373 to 1458 cm−1 due to the 
deformation vibrations of C-H bonds confirms the 
presence of aliphatic groups. A sharp weak peak at 
732 cm−1 and two sharp medium peaks at 887 and 964 
cm-1 indicating C-H cyclic deformations which suggest 
either aromatic. 
 
CONCLUSIONS 

Simultaneous modeling and optimization of 
liquid fuel production from plastic waste over 
modified RCC catalyst waste was studied. From the 
Hybrid Artificial Neural Network-Genetic Algorithm 
simulation, it is shown that the operating parameters 
that most affected the responses were reactor 
temperature followed by the catalyst calcination 
temperature. From the optimization, the optimal 
operating conditions, i.e. reactor temperature of 

561oC, catalyst calcinations temperature of 477oC, and 
catalyst/plastic weight ratio of 0.08, were produced 
with respect to maximum liquid product yield of 
39.58%. From product characterization using GC-MS 
and FT-IR, it can be suggested that the catalytic 
cracking of plastic sample using modified spent RCC 
catalyst produces liquid fuels (C4-C13). 
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