Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

On $I_{\pi q\beta^*}$ -closed sets in ideal topological spaces

¹O. Ravi, ²G. Selvi, ³S. Murugesan and ⁴P. Santhi

ABSTRACT. In this paper, a new class of sets called $I_{\pi g\beta^*}$ -closed sets is introduced and its properties are studied in ideal topological space. Moreover $I_{\pi g\beta^*}$ -continuity and the notion of quasi- β^* -I-normal spaces are introduced.

1. Introduction and preliminaries

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I) . $A^*(I) = \{x \in X \mid U \cap A \notin I \text{ for each open neighborhood}$ U of $x\}$ is called the local function of A with respect to I and τ [11]. When there is no chance for confusion $A^*(I)$ is denoted by A^* . For every ideal topological space (X, τ, I) , there exists a topology τ^* finer than τ , generated by the base $\beta(I, \tau) =$ $\{U \setminus I \mid U \in \tau \text{ and } I \in I\}$. In general $\beta(I, \tau)$ is not always a topology [10]. Observe additionally that $Cl^*(A) = A^* \cup A$ [17] defines a Kuratowski closure operator for τ^* . Int^{*}(A) will denote the interior of A in (X, τ^*) .

In this paper, we define and study a new notion $I_{\pi g\beta^*}$ -closed set by using the notion of β_I^* -open set. Some new notions depending on $I_{\pi g\beta^*}$ -closed sets such as $I_{\pi g\beta^*}$ -open sets, $I_{\pi g\beta^*}$ -continuity and $I_{\pi g\beta^*}$ -irresoluteness are also introduced and a decomposition of β^* -*I*-continuity is given. Also by using $I_{\pi g\beta^*}$ -closed sets characterizations of quasi- β^* -*I*-normal spaces are obtained. Several preservation theorems for quasi- β^* -*I*-normal spaces are given.

Throughout this paper, space (X, τ) (or simply X) always means topological space on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively.

A subset A of a topological space (X, τ) is said to be regular open [15](resp. regular closed [15]) if A = Int(Cl(A)) (resp. A = Cl(Int(A))).

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54C08.

Key words and phrases. π -open set, $I_{\pi g\beta^{\star}}$ -closed set, β_I^{\star} -open set, $I_{\pi g\beta^{\star}}$ -continuity, quasi- β^{\star} -I-normal space.

¹⁵⁷

The finite union of regular open sets is said to be π -open [18] in (X, τ). The complement of a π -open set is π -closed [18].

A subset A of a topological space (X, τ) is said to be β -open [1] if $A \subseteq Cl(Int(Cl(A)))$ and the complement of a β -open set is called β -closed [1].

The intersection of all β -closed sets containing A is called the β -closure [2] of A and is denoted by β Cl(A).

Note that $\beta Cl(A) = A \cup Int(Cl(Int(A)))$ [3].

A subset A of a space (X, τ) is said to be π g-closed [4] (resp. $\pi g\beta$ -closed [16]) if $Cl(A) \subseteq U$ (resp. $\beta Cl(A) \subseteq U$) whenever $A \subseteq U$ and U is π -open in X.

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be m- π -closed [7] if f(V) is π -closed in (Y, σ) for every π -closed in (X, τ) .

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be π g-continuous [4] (resp. $\pi g\beta$ continuous [16]) if $f^{-1}(V)$ is π g-closed (resp. $\pi g\beta$ -closed) in (X, τ) for every closed set V of (Y, σ) .

A space (X, τ) is said to be quasi- β -normal [13] if for every pair of disjoint π -closed subsets A, B of X, there exist disjoint β -open sets U, V of X such that A \subseteq U and B \subseteq V.

A space (X, τ) is said to be quasi-normal [18] if for every pair of disjoint π closed subsets A, B of X, there exist disjoint open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$.

An ideal I is said to be codense [5] if $\tau \cap I = \emptyset$.

A subset A of an ideal topological space X is said to be *-dense-in-itself [9](resp. β_I^* -open [6], α^* -*I*-open [8], β -*I*-open [8]) if $A \subseteq A^*$ (resp. $A \subseteq Cl(Int^*(Cl(A)))$, $Int(Cl^*(Int(A))) = Int(A), A \subseteq Cl(Int(Cl^*(A)))$).

The complement of β_I^* -open set is β_I^* -closed [6].

A subset A of an ideal topological space X is said to be $I_{\pi g}$ -closed [12] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is π -open in X.

A function f : (X, τ , I) \rightarrow (Y, σ) is said to be $I_{\pi g}$ -continuous [12] if f⁻¹(V) is $I_{\pi g}$ -closed in (X, τ , I) for every closed set V of (Y, σ).

LEMMA 1.1. [14] Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = Cl(A^*) = Cl(A) = Cl^*(A)$.

THEOREM 1.2. [12] Every πg -closed set is $I_{\pi g}$ -closed but not conversely.

THEOREM 1.3. [12] For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following holds: Every πg -continuous function is $I_{\pi g}$ -continuous but not conversely.

PROPOSITION 1.4. [8] Every β -I-open set is β -open but not conversely.

2. $I_{\pi g\beta^*}$ -closed sets

DEFINITION 2.1. Let (X, τ, I) be an ideal topological space and let A be a subset of X. The union of all β_I^* -open sets contained in A is called the β_I^* -interior of A and is denoted by β_I^* Int(A).

DEFINITION 2.2. Let (X, τ, I) be an ideal topological space and let A be a subset of X. The intersection of all β_I^* -closed sets containing A is called the β_I^* -closure of A and is denoted by $\beta_I^* Cl(A)$. LEMMA 2.3. Let (X, τ, I) be an ideal topological space. For a subset A of X, the followings hold:

(1) $\beta_I^* Cl(A) = A \cup Int(Cl^*(Int(A))),$

(2) $\beta_I^* Int(A) = A \cap Cl(Int^*(Cl(A))).$

DEFINITION 2.4. A subset A of an ideal topological space (X, τ, I) is called $I_{\pi g\beta^{\star}}$ -closed if $\beta_I^{\star}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in X. The complement of $I_{\pi q\beta^{\star}}$ -closed set is said to be $I_{\pi q\beta^{\star}}$ -open.

PROPOSITION 2.5. Every β -open set is β_I^* -open but not conversely.

PROOF. Let A be β -open set. Then $A \subseteq Cl(Int(Cl(A)))$ which implies $A \subseteq Cl(Int^{*}(Cl(A)))$. Hence A is β_{I}^{*} -open set.

EXAMPLE 2.6. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $\{b\}$ is β_I^* -open set but not β -open.

THEOREM 2.7. Every \star -dense-in-itself and $I_{\pi q\beta^{\star}}$ -closed set is a $\pi g\beta$ -closed set.

PROOF. Let $A \subseteq U$, and U is π -open in X. Since A is $I_{\pi g\beta^*}$ -closed, $\beta_I^* \text{Cl}(A) \subseteq U$. By Lemmas 1.1 and 2.3, $\beta_I^* \text{Cl}(A) = A \cup \text{Int}(\text{Cl}^*(\text{Int}(A))) = A \cup \text{Int}(\text{Cl}(\text{Int}(A))) = \beta \text{Cl}(A)$. Then, $\beta \text{Cl}(A) \subseteq U$. So A is $\pi g\beta$ -closed.

THEOREM 2.8. Let A be $I_{\pi g\beta^{\star}}$ -closed in (X, τ, I) . Then $\beta_I^{\star} Cl(A) \setminus A$ does not contain any non-empty π -closed set.

PROOF. Let F be a π -closed set such that $F \subseteq \beta_I^* Cl(A) \setminus A$. Then $F \subseteq X \setminus A$ implies $A \subseteq X \setminus F$. Therefore $\beta_I^* Cl(A) \subseteq X \setminus F$. That is $F \subseteq X \setminus \beta_I^* Cl(A)$. Hence $F \subseteq \beta_I^* Cl(A) \cap (X \setminus \beta_I^* Cl(A)) = \emptyset$. This shows $F = \emptyset$.

PROPOSITION 2.9. Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then the following properties hold:

(1) If A is $\pi g\beta$ -closed, then A is $I_{\pi g\beta^*}$ -closed,

(2) If A is $I_{\pi g}$ -closed, then A is $I_{\pi g\beta^*}$ -closed.

PROOF. The proof is obvious.

REMARK 2.10. From Theorem 1.2, Theorem 1.4 and Proposition 2.9, we have the following diagram.

πg -closed	\longrightarrow	$\pi g eta$ - $closed$
\downarrow		\downarrow
$I_{\pi g}$ -closed	\longrightarrow	$I_{\pi g eta^\star} extsf{-}closed$

where none of these implications is reversible as shown in the following examples.

EXAMPLE 2.11. (1) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{b\}, \{d\}, \{b, d\}, \{b, c, d\}\}$ and $I = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Then $A = \{b\}$ is $\pi g\beta$ -closed set but not πg -closed set. Also $C = \{b\}$ is $I_{\pi g\beta^*}$ -closed set but not $I_{\pi g}$ -closed.

(2) Let $X = \{a, b, c, d, e\}, \tau = \{X, \emptyset, \{a\}, \{e\}, \{a, e\}, \{a, b, e\}, \{a, b, d, e\}\}$ and $I = \{\emptyset, \{a\}, \{e\}, \{a, e\}\}$. Then $B = \{a, e\}$ is $I_{\pi g \beta^{\star}}$ -closed set but it is not $\pi g \beta$ -closed. THEOREM 2.12. Every π -open and $I_{\pi g\beta^*}$ -closed set is α^* -I-open.

PROOF. $\beta_I^* \operatorname{Cl}(A) \subseteq A$, since A is π -open and $I_{\pi g \beta^*}$ -closed. We have $\operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A))) \subseteq$ \subseteq A and $\operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A))) \subseteq \operatorname{Int}(A)$. Always $\operatorname{Int}(A) \subseteq \operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A)))$. Therefore $\operatorname{Int}(A) = \operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A)))$, which shows that A is α^* -*I*-open.

REMARK 2.13. The union of two $I_{\pi g\beta^{\star}}$ -closed sets need not be $I_{\pi g\beta^{\star}}$ -closed.

EXAMPLE 2.14. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{a\}\}$. Then $A = \{a\}$ and $B = \{b\}$ are $I_{\pi g\beta^{\star}}$ -closed sets but their union $\{a, b\}$ is not $I_{\pi g\beta^{\star}}$ -closed.

REMARK 2.15. The intersection of two $I_{\pi g\beta^*}$ -closed sets need not be $I_{\pi g\beta^*}$ -closed.

EXAMPLE 2.16. Consider the Example 2.14. Let $A = \{a, b, c\}$ and $B = \{a, b, d\}$ are $I_{\pi g\beta^{\star}}$ -closed sets but their intersection $\{a, b\}$ is not $I_{\pi g\beta^{\star}}$ -closed.

THEOREM 2.17. If A is $I_{\pi g\beta^*}$ -closed and $A \subseteq B \subseteq \beta_I^* Cl(A)$, then B is $I_{\pi g\beta^*}$ -closed.

PROOF. Let A be $I_{\pi g\beta^*}$ -closed and B \subseteq U, where U is π -open. Then A \subseteq B implies A \subseteq U. Since A is $I_{\pi g\beta^*}$ -closed, $\beta_I^* \text{Cl}(A) \subseteq U$. B $\subseteq \beta_I^* \text{Cl}(A)$ implies $\beta_I^* \text{Cl}(B) \subseteq G_I^* \text{Cl}(A)$. Therefore $\beta_I^* \text{Cl}(B) \subseteq U$ and hence B is $I_{\pi g\beta^*}$ -closed.

THEOREM 2.18. Let (X, τ, I) be an ideal topological space. Then every subset of X is $I_{\pi q\beta^*}$ -closed if and only if every π -open set is α^* -I-open.

PROOF. Necessity: It is obvious from Theorem 2.12. Sufficiency: Suppose that every π -open set is α^* -*I*-open. Let A be a subset of X and U be π open such that $A \subset U$. By hypothesis $\operatorname{Int}(Cl^*(\operatorname{Int}(A))) \subset \operatorname{Int}(Cl^*(\operatorname{Int}(U)))$

U be π -open such that $A \subseteq U$. By hypothesis $Int(Cl^*(Int(A))) \subseteq Int(Cl^*(Int(U))) = Int(U) \subseteq U$. Then $\beta_I^*Cl(A) \subseteq U$. So A is $I_{\pi g\beta^*}$ -closed.

THEOREM 2.19. Let (X, τ, I) be an ideal topological space. $A \subseteq X$ is $I_{\pi g\beta^*}$ -open if and only if $F \subseteq \beta_I^* Int(A)$ whenever F is π -closed and $F \subseteq A$.

PROOF. Necessity: Let A be $I_{\pi g\beta^*}$ -open and F be π -closed such that $F \subseteq A$. Then $X \setminus A \subseteq X \setminus F$ where $X \setminus F$ is π -open. $I_{\pi g\beta}$ -closedness of $X \setminus A$ implies $\beta_I^* \operatorname{Cl}(X \setminus A) \subseteq X \setminus F$. Then $F \subseteq \beta_I^* \operatorname{Int}(A)$.

Sufficiency: Suppose F is π -closed and $F \subseteq A$ implies $F \subseteq \beta_I^* \text{Int}(A)$. Let $X \setminus A \subseteq U$ where U is π -open. Then $X \setminus U \subseteq A$ where $X \setminus U$ is π -closed. By hypothesis $X \setminus U \subseteq \beta_I^* \text{Int}(A)$. That is $\beta_I^* \text{Cl}(X \setminus A) \subseteq U$. So, A is $I_{\pi g \beta^*}$ -open.

DEFINITION 2.20. A subset A of an ideal topological space (X, τ, I) is called M_{I} -set if $A = U \cup V$ where U is π -closed and V is β_{I}^{*} -open.

PROPOSITION 2.21. Every π -closed set is M_I -set but not conversely.

EXAMPLE 2.22. Consider the Example 2.14. Let $A = \{a, b\}$. Then A is M_I -set but not π -closed.

PROPOSITION 2.23. Every β_I^* -open set is M_I -set but not conversely.

EXAMPLE 2.24. Consider the Example 2.14. Let $A = \{c, d\}$. Then A is M_I -set but not β_I^* -open.

PROPOSITION 2.25. Every β_I^* -open set is $I_{\pi q \beta^*}$ -open but not conversely.

PROOF. Let A be β_I^* -open set. Then $A \subseteq Cl(Int^*(Cl(A)))$. Assume that F is π closed and $F \subseteq A$. Then $F \subseteq Cl(Int^*(Cl(A)))$ which implies $F \subseteq A \cap Cl(Int^*(Cl(A)))$ $= \beta_I^*Int(A)$ by Lemma 2.3. Hence, by Theorem 2.19, A is $I_{\pi q\beta^*}$ -open.

EXAMPLE 2.26. Consider the Example 2.14. Let $A = \{c\}$. Then A is $I_{\pi g\beta^*}$ open set but not β_I^* -open.

THEOREM 2.27. For a subset A of (X, τ, I) the following conditions are equivalent:

(1) A is β_I^{\star} -open,

(2) A is $I_{\pi g\beta^*}$ -open and a M_I -set.

PROOF. (1) \Rightarrow (2) It is obvious.

 $(2) \Rightarrow (1)$ Let A be $I_{\pi g\beta^{\star}}$ -open and a M_I -set. Then there exist a π -closed set U and β_I^{\star} -open set V such that $A = U \cup V$. Since $U \subseteq A$ and A is $I_{\pi g\beta^{\star}}$ -open, by Theorem 2.19, $U \subseteq \beta_I^{\star}$ Int(A) and $U \subseteq Cl(Int^{\star}(Cl(A)))$. Also, $V \subseteq Cl(Int^{\star}(Cl(V))) \subseteq Cl(Int^{\star}(Cl(A)))$. Then $A \subseteq Cl(Int^{\star}(Cl(A)))$. So A is β_I^{\star} -open.

The following examples show that concepts of $I_{\pi g\beta^{\star}}$ -open set and M_{I} -set are independent.

EXAMPLE 2.28. Let (X, τ, I) be the same ideal topological space as in Example 2.14. Then $\{c, d\}$ is a M_I -set but not $I_{\pi g\beta^*}$ -open.

EXAMPLE 2.29. Let (X, τ, I) be the same ideal topological space as in Example 2.14. Then $\{d\}$ is $I_{\pi g\beta^{\star}}$ -open set but not a M_I -set.

3. $I_{\pi q \beta^*}$ -continuity and $I_{\pi q \beta^*}$ -irresoluteness

DEFINITION 3.1. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be $I_{\pi g\beta^{\star}}$ continuous (resp. β^{\star} -I-continuous) if $f^{-1}(V)$ is $I_{\pi g\beta^{\star}}$ -closed (resp. β_{I}^{\star} -closed) in X for every closed set V of Y.

DEFINITION 3.2. A function $f: (X, \tau, I) \to (Y, \sigma, J)$ is said to be $I_{\pi g\beta^*}$ irresolute if $f^{-1}(V)$ is $I_{\pi g\beta^*}$ -closed in X for every $J_{\pi g\beta^*}$ -closed set V of Y.

DEFINITION 3.3. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be M_I -continuous if $f^{-1}(V)$ is M_I -set in (X, τ, I) for every closed set V of Y.

THEOREM 3.4. A function $f: (X, \tau, I) \to (Y, \sigma)$ is β^* -I-continuous if and only if it is M_I -continuous and $I_{\pi q \beta^*}$ -continuous.

PROOF. This is an immediate consequence of Theorem 2.27.

REMARK 3.5. The following Examples show that:

(1) every $I_{\pi q\beta^{\star}}$ -continuous function is not $\pi g\beta$ -continuous,

(2) every $I_{\pi g\beta^{\star}}$ -continuous function is not $I_{\pi g}$ -continuous.

EXAMPLE 3.6. Let (X, τ, I) be the same ideal topological space as in Example 2.11(2). Let $Y = \{x, y, z\}$ and $\sigma = \{Y, \emptyset, \{y, z\}\}$. Define a function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ as follows: f(a) = f(e) = x, f(c) = f(d) = y and f(b) = z. Then f is a $I_{\pi q\beta^*}$ -continuous function but it is not $\pi g\beta$ -continuous.

EXAMPLE 3.7. Let (X, τ, I) be the same ideal topological space as in Example 2.11(1). Let $Y = \{x, y, z\}$ and $\sigma = \{Y, \emptyset, \{x, y\}\}$. Define a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ as follows: f(a) = f(d) = f(e) = x, f(b) = z and f(c) = y. Then f is a $I_{\pi g\beta^*}$ -continuous function but it is not $I_{\pi g}$ -continuous.

THEOREM 3.8. For a function $f: (X, \tau, I) \to (Y, \sigma)$, the following properties hold:

πg -continuous	\longrightarrow	$\pi g \beta$ -continuous
\downarrow		\downarrow
$I_{\pi q}$ -continuous	\longrightarrow	$I_{\pi q \beta^{\star}}$ -continuous

PROOF. The proof is obvious by Remark 2.10.

The composition of two $I_{\pi g\beta^{\star}}$ -continuous functions need not be $I_{\pi g\beta^{\star}}$ -continuous. Consider the following Example:

EXAMPLE 3.9. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}, I = \{\emptyset, \{a\}\}, Y = \{x, y, z\}, \sigma = \{Y, \emptyset, \{y, z\}\}, J = \{\emptyset, \{x\}\}, Z = \{1, 2\} and \eta = \{Z, \emptyset, \{1\}\}.$ Define $f: (X, \tau, I) \to (Y, \sigma, J)$ by f(a) = f(b) = x, f(c) = y and f(d) = z and $g: (Y, \sigma, J) \to (Z, \eta)$ by g(x) = 1 and g(y) = g(z) = 2. Then f and g are $I_{\pi g \beta^{\star}}$ -continuous. $\{2\}$ is closed in $(Z, \eta), (g \circ f)^{-1}(\{2\}) = f^{-1}(g^{-1}(\{2\}))$ = $f^{-1}(\{y, z\}) = \{c, d\}$ which is not $I_{\pi g \beta^{\star}}$ -closed in (X, τ, I) . Hence $g \circ f$ is not $I_{\pi g \beta^{\star}}$ -continuous.

THEOREM 3.10. Let $f: (X, \tau, I) \to (Y, \sigma, J)$ and $g: (Y, \sigma, J) \to (Z, \eta, K)$ be any two functions. Then

- (1) $g \circ f$ is $I_{\pi q\beta^{\star}}$ -continuous, if g is continuous and f is $I_{\pi q\beta^{\star}}$ -continuous,
- (2) $g \circ f$ is $I_{\pi g\beta^{\star}}$ -continuous, if g is $J_{\pi g\beta^{\star}}$ -continuous and f is $I_{\pi g\beta^{\star}}$ -irresolute,
- (3) $g \circ f$ is $I_{\pi q\beta^{\star}}$ -irresolute, if g is $J_{\pi q\beta^{\star}}$ -irresolute and f is $I_{\pi q\beta^{\star}}$ -irresolute.

PROOF. (1) Let V be closed in Z. Then $g^{-1}(V)$ is closed in Y, since g is continuous. $I_{\pi g\beta^*}$ -continuity of f implies that $f^{-1}(g^{-1}(V))$ is $I_{\pi g\beta^*}$ -closed in X. Hence g \circ f is $I_{\pi q\beta^*}$ -continuous.

(2) Let V be closed in Z. Since g is $J_{\pi g\beta^{\star}}$ -continuous, $g^{-1}(V)$ is $J_{\pi g\beta^{\star}}$ -closed in Y. As f is $I_{\pi g\beta^{\star}}$ -irresolute, $f^{-1}(g^{-1}(V))$ is $I_{\pi g\beta^{\star}}$ -closed in X. Hence g \circ f is $I_{\pi g\beta^{\star}}$ -continuous. (3) Let V be $K_{\pi g\beta^{\star}}$ -closed in Z. Then $g^{-1}(V)$ is $J_{\pi g\beta^{\star}}$ -closed in Y, since g is $J_{\pi g\beta^{\star}}$ -irresolute. Because f is $I_{\pi g\beta^{\star}}$ -irresolute, $f^{-1}(g^{-1}(V))$ is $I_{\pi g\beta^{\star}}$ -closed in X. Hence g \circ f is $I_{\pi g\beta^{\star}}$ -closed in X. Hence g \circ f is $I_{\pi g\beta^{\star}}$ -closed in X.

162

4. Quasi- β^* -*I*-normal spaces

DEFINITION 4.1. An ideal topological space (X, τ, I) is said to be quasi- β^* -Inormal if for every pair of disjoint π -closed subsets A, B of X, there exist disjoint β_I^* -open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$.

PROPOSITION 4.2. If X is a quasi- β -normal space, then X is quasi- β^* -I-normal.

PROOF. It is obtained from Proposition 2.5.

THEOREM 4.3. The following properties are equivalent for a space X:

- (1) X is quasi- β^* -I-normal,
- (2) for any disjoint π -closed sets A and B, there exist disjoint $I_{\pi g\beta^*}$ -open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$,
- (3) for any π -closed set A and any π -open set B containing A, there exists an $I_{\pi q\beta^{\star}}$ -open set U such that $A \subseteq U \subseteq \beta_I^{\star} Cl(U) \subseteq B$.

PROOF. (1) \Rightarrow (2) The proof is obvious.

(2) \Rightarrow (3) Let A be any π -closed set of X and B any π -open set of X such that A \subseteq B. Then A and X\B are disjoint π -closed subsets of X. Therefore, there exist disjoint $I_{\pi g \beta^*}$ -open sets U and V such that A \subseteq U and X\B \subseteq V. By the definition of $I_{\pi g \beta^*}$ -open set, We have that X\B $\subseteq \beta_I^*$ Int(V) and U $\cap \beta_I^*$ Int(V) = \emptyset . Therefore, we obtain β_I^* Cl(U) $\subseteq \beta_I^*$ Cl(X\V) and hence A \subseteq U $\subset \beta_I^*$ Cl(U) \subseteq B.

 $(3) \Rightarrow (1)$ Let A and B be any disjoint π -closed sets of X. Then $A \subseteq X \setminus B$ and X \B is π -open and hence there exists an $I_{\pi g \beta^*}$ -open set G of X such that $A \subseteq G \subseteq \beta_I^* \operatorname{Cl}(G) \subseteq X \setminus B$. Put $U = \beta_I^* \operatorname{Int}(G)$ and $V = X \setminus \beta_I^* \operatorname{Cl}(G)$. Then U and V are disjoint β_I^* -open sets of X such that $A \subseteq U$ and $B \subseteq V$. Therefore, X is quasi- β^* -I-normal.

THEOREM 4.4. Let $f: X \to Y$ be an $I_{\pi g\beta^*}$ -continuous m- π -closed injection. If Y is quasi-normal, then X is quasi- β^* -I-normal.

PROOF. Let A and B be disjoint π -closed sets of Y. Since f is m- π -closed injection, f(A) and f(B) are disjoint π -closed sets of Y. By the quasi-normality of X, there exist disjoint open sets U and V such that f(A) \subseteq U and f(B) \subseteq V. Since f is $I_{\pi g\beta^*}$ -continuous, then f⁻¹(U) and f⁻¹(V) are disjoint $I_{\pi g\beta^*}$ -open sets such that A \subseteq f⁻¹(U) and B \subseteq f⁻¹(V). Therefore X is quasi- β^* -I-normal by Theorem 4.3.

THEOREM 4.5. Let $f: X \to Y$ be an $I_{\pi g\beta^*}$ -irresolute m- π -closed injection. If Y is quasi- β^* -I-normal, then X is quasi- β^* -I-normal.

PROOF. Let A and B be disjoint π -closed sets of Y. Since f is m- π -closed injection, f(A) and f(B) are disjoint π -closed sets of Y. By quasi- β^* -*I*-normality of Y, there exist disjoint $I_{\pi g\beta^*}$ -open sets U and V such that f(A) \subseteq U and f(B) \subseteq V. Since f is $I_{\pi g\beta^*}$ -irresolute, then f⁻¹(U) and f⁻¹(V) are disjoint $I_{\pi g\beta^*}$ -open sets such that A \subseteq f⁻¹(U) and B \subseteq f⁻¹(V). Therefore X is quasi- β^* -*I*-normal.

THEOREM 4.6. Let (X, τ, I) be an ideal topological space where I is codense. Then X is quasi- β^* -I-normal if and only if it is quasi- β -normal.

References

- Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] Abd El-Monsef, M. E., Mahmoud, R. A. and Lashin, E. R.: β-closure and β-interior, Rep. J. of. Fac. of. Edu. Ain. Shams. Univ., 10(1986), 235-245.
- [3] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1)(1986), 24-32.
- [4] Dontchev, J. and Noiri, T.: Quasi-normal spaces and πg-closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [5] Dontchev, J., Ganster, M. and Rose, D.: *Ideal resolvability*, Topology and its Applications, 93(1999), 1-16.
- [6] Ekici, E.: On AC_ℓ-sets, BC_ℓ-sets, β^{*}_ℓ-open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(1)(2011), 47-54.
- [7] Ekici, E. and Baker, C. W.: On πg-closed sets and continuity, Kochi J. Math., 2(2007), 35-42.
- [8] Hatir, E. and Noiri, T.: On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [9] Hayashi, E.: Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [10] Jankovic, D. and Hamlett, T. R.: New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [11] Kuratowski, K.: Topology, Vol. 1, Academic Press, New York (1966).
- [12] Rajamani, M., Inthumathi, V. and Krishnaprakash, S.: $\mathcal{I}_{\pi g}$ -closed sets and $\mathcal{I}_{\pi g}$ -continuity, Journal of Advanced Research in Pure Mathematics, 2(4)(2010), 63-72.
- [13] Ravi, O., Selvi, G., Murugesan, S. and Pandi, A.: Associated properties of β - $\pi g\beta$ -closed functions, Submitted.
- [14] Renuka Devi, V., Sivaraj, D. and Tamizh Chelvam, T.: Codense and Completely codense ideals, Acta Math. Hungar., 108(3)(2005), 197-205.
- [15] Stone, M. H.: Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [16] Tahiliani, S.: On $\pi g\beta$ -closed sets in topological spaces, Note di Matematica, 30(1)(2010), 49-55.
- [17] Vaidyanathaswamy, R.: The localization theory in set topology, Proc. Indian Acad. Sci., Sect A, 20(1944), 51-61.
- [18] Zaitsev, V.: On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk. SSSR, 178(1968), 778-779.

Received by editors 15.07.2014; available online 09.02.2015.

 $^1\mathrm{Department}$ of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India.

E-mail address: : siingam@yahoo.com

 $^2\mathrm{Department}$ of Mathematics, Vickram College of Engineering, Enathi, Sivagangai Dt, Tamil Nadu, India.

E-mail address: : mslalima11@gmail.com

³SRI S. RAMASAMY NAIDU MEMORIAL COLLEGE, SATTUR-626 203, TAMIL NADU, INDIA. *E-mail address:* : satturmuruges1@gmail.com

 $^4\mathrm{NPR}$ College of Engineering and Technology, Natham, Dindigul Dt, Tamil Nadu, India.

E-mail address: : saayphd.11@gmail.com