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Anti fuzzy ideal extension of Γ−semiring

M. Murali Krishna Rao and B. Venkateswarlu

Abstract. In this paper the concept of anti fuzzy prime ideal, anti fuzzy semi
prime ideal ,anti fuzzy ideal extension in a Γ−semiring have been introduced.

We obtain a characterization of a prime ideal of a Γ−semiring in terms of anti
fuzzy ideal extension of complement of its characteristic function.

1. Introduction

The notion of semiring was introduced by H. S. Vandiver [14] in 1934.The
notion of Γ−ring was introduced by N. Nobusawa [10] as a generalization of ring
in 1964. M. K. Sen [13] introduced the notion of Γ−semigroup in 1981. The
notion of ternary algebraic system was introduced by Lehmer [5] in 1932, Lister [6]
introduced ternary ring. Dutta & Kar [1] introduced the notion of ternary semiring
which is a generalization of ternary ring and semiring. In1995, M. Murali Krishna
Rao [7] introduced the notion of Γ−semiring which is a generalization of Γ−ring,
ternary semiring and semiring. After the paper [7] published, many mathematicians
obtained interesting results on Γ−semiring. L. A. Zadeh [16] introduced the notion
of a fuzzy subset µ of a set X as a function from X into [0,1]. The concept of fuzzy
subgroup was introduced by A. Rosenfeld [11]. In 2001, X. Y. Xie [15] introduced
the notion of extension of fuzzy ideal in semigroups. In 2009, M. Shabir and Y.
Nawaz [12] M. Khan and T. Asif [4] introduced the notion of an anti fuzzy ideal
in semigroups. Zhan, Dudek , Jun contributed a lot of theory of fuzzy semiring.
In 2011, T. K. Dutta et .al [2] introduced the notion of fuzzy ideal extension in
a Γ−semiring . In this paper the concept of anti fuzzy prime ideal , anti fuzzy
semiprime ideal, anti fuzzy ideal extension in a Γ−semiring have been introduced
and obtained a characterization of a prime ideal of a Γ−semiring in terms of anti
fuzzy ideal extension of complement of its characteristic function. Anti fuzzy prime
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ideal, anti fuzzy semi prime ideal and anti fuzzy k−ideal are preserved by anti fuzzy
ideal extension.

2. Preliminaries

In this section we recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. A set R together with two associative binary operations called
addition and multiplication (denoted by + and · respectively) will be called a
semiring provided

(i). Addition is a commutative operation
(ii). Multiplication distributes over addition both from the left and from the

right .
(iii). There exists 0 ∈ R such that x+0 = x and x ·0 = 0 ·x = 0 for each x ∈ R

Definition 2.2. Let M and Γ be additive abelian groups. If there exists a
mappingM×Γ×M → M (images to be denoted by xαy, x, y ∈ M,α ∈ Γ) satisfying
the following conditions for all x, y, z ∈ M,α, β ∈ Γ

(i). xα(yβz) = (xαy)βz
(ii). xα(y + z) = xαy + xαz
(iii). x(α+ β)y = xαy + xβz
(iv). (x+ y)αz = xαz + yαz

Then M is called a Γ−ring.

Definition 2.3. Let (M,+) and (Γ,+) be commutative semigroups. Then we
call M as a Γ−semiring, if there exists a mapping M × Γ × M → M is written
(x, α, y) as xαy such that it satisfies the following axioms for all x, y, z ∈ M and
α, β ∈ Γ

(i). xα(yβz) = (xαy)βz
(ii). xα(y + z) = xαy + xαz
(iii). x(α+ β)y = xαy + xβz
(iv). (x+ y)αz = xαz + yαz

We illustrate the definition of Γ−semiring by the following examples.

Example 2.1. Every semiring M is a Γ−semiring with Γ = M and ternary
operation as the usual semiring multiplication.

Example 2.2. Let M be the additive seimgroup of all m×n matrices over the
set of non negative rational numbers and Γ be the additive semigroup of all n×m
matrices over the set of non negative integers, then with respect to usual matrix
multiplication M is a Γ−semiring.

Example 2.3. Let S be a semiring and Mp; q(S) denote the additive abelian
semigroup of all p × q matrices with identity element whose entries are from S.
Then Mp, q(S) is a Γ−semiring with Γ = Mp, q(S) ternary operation is defined
by xαz = x(α′)z, with respect to usual matrix multiplication, where α′ denote the
transpose of the matrix α, for all x, y and α ∈ Mp, q(S).
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Example 2.4. Let X and Y be abelian semigroups with identity element. Let
M = Hom(X,Y ),Γ = Hom(Y,X) and ∀a, b ∈ M,α ∈ Γ. Define aαb be the usual
composition map. Then M is a Γ−semiring.

Definition 2.4. A Γ−semiring M is said to have zero element if there exists
an element 0 ∈ M such that 0 + x = x = x+ 0 and 0αx = xα0 = 0,∀x ∈ M.

Definition 2.5. A Γ−semiring M is said to be a commutative Γ−semiring if
xαy = yαx, ∀x, y ∈ M and α ∈ Γ.

Definition 2.6. A subset A of Γ−semiring M is a left (right) ideal of M if
A is an additive semigroup of M and the set MΓA = {xαy | x ∈ M,α ∈ Γ, y ∈
A}(AΓM) is contained in A. If A is both left and right ideals then A is an ideal of
M.

Definition 2.7. An ideal I of a Γ−semiring M is called a k−ideal, if b ∈
M,a+ b and a ∈ I then b ∈ I.

Definition 2.8. Let S be a nonempty set, a mapping f : S → [0, 1] is called
a fuzzy subset of S.

Definition 2.9. Let A be a nonempty subset of S. The characteristic function
of A is a fuzzy subset of S is defined by

χA(x) =

{
1, if x ∈ A;
0, if x /∈ A.

The complement of characteristic function is denoted by χc
A.

Definition 2.10. Let f be a fuzzy subset of S, for t ∈ [0, 1] the set ft = {x ∈
S | f(x) > t} is called level subset of S with respect to f.

Definition 2.11. A fuzzy subset µ of a Γ−semiringM is called fuzzy left(right)
of M if it satisfies

µ(x+ y) > min{µ(x), µ(y)}, µ(xαy) > µ(y){µ(xαy) > µ(x)}, ∀x, y ∈ M,α ∈ Γ.

If µ is a fuzzy left (right) ideal of Γ−semiring M then µ(0) > µ(x), ∀x ∈ M.

Definition 2.12. A fuzzy subset f of Γ−semiring M is called fuzzy ideal of
M, if ∀x, y ∈ M,α ∈ Γ,

f(x+ y) > min{f(x), f(y)}, f(xαy) > max{f(x), f(y)}

Definition 2.13. A fuzzy subset µ of a Γ−semiring M is called an anti fuzzy
ideal left (right) ideal of M if,

µ(x+ y) 6 max{µ(x), µ(y)}, µ(xαy) 6 µ(y){µ(xαy) 6 µ(x)}, ∀x, y ∈ M,α ∈ Γ.

If µ is an anti fuzzy left (right) ideal of Γ−semiring M then µ(0) 6 µ(x), ∀x ∈ M.

Definition 2.14. A fuzzy subset µ of a Γ−semiring M is called an anti fuzzy
ideal of M if µ is both an anti fuzzy left and anti fuzzy right ideal of M.

Definition 2.15. The complement of a fuzzy subset µ of a Γ−semiring M is
denoted by µc and is defined as µc(x) = 1− µ(x),∀x ∈ M.
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Definition 2.16. A fuzzy ideal f of a Γ−semiring M with zero 0 is said to be
a k−fuzzy ideal of M if f(x+y) = f(0) and f(y) = f(0) ⇒ f(x) = f(0), ∀x, y ∈ M.

Definition 2.17. A fuzzy ideal f of a Γ−semiring M is said to be a fuzzy
k−ideal of M if f(x) > min{f(x+ y), f(y)}, ∀x, y ∈ M.

Definition 2.18. Let M be a Γ−semiring. A fuzzy ideal µ of M is said to be
an anti fuzzy-k−ideal of M if µ(x) 6 max{µ(x+ y), µ(y)}.

Definition 2.19. Let M be a Γ−semiring. Let µ be an anti fuzzy ideal of
Γ−semiring M, for any t ∈ [0, 1], µt is defined by µt = {x ∈ M | µ(x) 6 t} then µt

is called an anti level subset.

3. Main results:

In this section the concept of anti fuzzy prime ideal, anti fuzzy semi prime
ideal, anti fuzzy ideal extension in a Γ−semiring have been introduced.

Definition 3.1. Let µ be a fuzzy subset of a Γ−semiring M and x ∈ M. Then
the fuzzy subset ⟨x, µ⟩ : M → [0, 1] is defined by ⟨x, µ⟩(y) = sup

α∈Γ
µ(xαy), for all

y ∈ M, is called an extension of µ by x.

Definition 3.2. Let µ be a fuzzy subset of a Γ−semiring M. Then µ is called
an anti fuzzy prime ideal if µ(xαy) = min{µ(x), µ(y)}, for all x, y ∈ M,α ∈ Γ.

Definition 3.3. Let µ be an anti fuzzy ideal of a Γ−semiring M. Then µ is
called an anti fuzzy semi prime ideal if µ(x) 6 µ(xαx), for all x ∈ M.

Definition 3.4. Let µ be a fuzzy subset of a Γ−semiring M. We define anti
support µ = {x ∈ M | µ(x) < 1}.

Definition 3.5. Let M be a Γ−semiring A ⊆ M.x ∈ M. We define

⟨x,A⟩ = {y ∈ M | xαy ∈ A,∀α ∈ Γ}.

Theorem 3.1. Let A be a non empty subset of a Γ−semiring M. If a fuzzy
subset µ in M such that

µ(x) =

{
0, if x ∈ A

1, if x /∈ A .

Then µ is an anti fuzzy ideal of M if and only if A is an ideal of M.

Proof. Suppose µ is an anti fuzzy ideal of Γ−semiring M.

Let x, y ∈ A.

⇒µ(x) = 0, µ(y) = 0, µ(x+ y) 6 max{µ(x), µ(y)} = 0

⇒x+ y ∈ A.

Let x, y ∈ M,α ∈ Γ.

⇒µ(xαy) 6 min{µ(x), µ(y)} = 0

⇒xαy ∈ A.
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Hence A is an ideal of Γ−semiring M.
Conversely let x, y ∈ M,α ∈ Γ, A be an ideal of M.

Case(1): If x, y ∈ A,µ(x) = 0, µ(y) = 0, µ(x+ y) = 0, xαy ∈ A ⇒ µ(xαy) = 0,
then µ(x+ y) 6 max{µ(x), µ(y)}, µ(xαy) 6 min{µ(x), µ(y)}
Case(2): If x, y /∈ A then x + y /∈ A.µ(x) = 1, µ(y) = 1, µ(x + y) = 1, xαy ∈ A ⇒
µ(xαy) = 0 then µ(x+ y) 6 max{µ(x), µ(y)}, µ(xαy) 6 min{µ(x), µ(y)}
Case(3): If x ∈ A, y /∈ A then x + y ∈ A,µ(x) = 0, µ(y) = 1, µ(x + y) = 1, xαy ∈
A ⇒ µ(xαy) = 0 then µ(x+ y) 6 max{µ(x), µ(y)}, µ(xαy) 6 min{µ(x), µ(y)}
Case(4): If y ∈ A, x /∈ A then x + y /∈ A,µ(x) = 1, µ(y) = 0, µ(x + y) = 0, xαy ∈
A ⇒ µ(xαy) = 0 then µ(x+ y) 6 max{µ(x), µ(y)}, µ(xαy) 6 min{µ(x), µ(y)}
Therefore µ is an anti fuzzy ideal of M. �

Theorem 3.2. Let µ be an anti fuzzy ideal of a commutative Γ−semiring M.
Then the following are equivalent

(1). µ is an anti fuzzy semi prime ideal
(2). µ(x) = µ(xαx) for all x ∈ M,α ∈ Γ

Proof. (2) ⇒ (1) is obvious. Suppose µ is an anti fuzzy semi prime ideal.
By definition 3.3 , we have µ(x) 6 µ(xαx) for all x ∈ M,α ∈ Γ, since µ is an
anti fuzzy ideal of a Γ−semiring M. µ(xαx) = µ(x). Hence µ(x) = µ(xαx) for all
x ∈ M,α ∈ Γ. Hence the theorem. �

The following proof of the theorem is a straight forward verification.

Theorem 3.3. Let µ be a non empty fuzzy subset of Γ−semiring M. Then µ is
an anti fuzzy prime ideal of a Γ−semiring M if and only if µtis a prime ideal of a
Γ−semiring M for any t ∈ Im(µ) where µt is defined by µt = {x ∈ M | µ(x) 6 t}.

Theorem 3.4. Let µ be an anti fuzzy right ideal of a Γ−semiring M. Then
⟨x, µ⟩ is an anti fuzzy right ideal of M.

Proof. Let z, y ∈ M,α ∈ Γ. Then

⟨x, µ⟩(y + z) = sup
α∈Γ

µ
(
xα(y + z)

)
= sup

α∈Γ
µ(xαy + xαz))

6 sup
α∈Γ

max{µ(xαy), µ(xαy)}

= max

{
sup
α∈Γ

µ(xαy), sup
α∈Γ

µ(xαy)

}
= max {⟨x, µ⟩y, ⟨x, µ⟩z)}

⟨x, µ⟩(yαz) = sup
β∈Γ

µ
(
xβ(yαz)

)
= sup

β∈Γ
µ
(
(xβy)αz)

)
6 sup

β∈Γ
µ
(
xβy

)
= ⟨x, µ⟩y.

Hence ⟨x, µ⟩ is an anti fuzzy right ideal of Γ−semiring M. �
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Corollary 3.1. Let µ be an anti fuzzy ideal of a commutative Γ−semiring M
and x ∈ M. Then the extension ⟨x, µ⟩ is an anti fuzzy ideal of Γ−semiring M.

Theorem 3.5. Let µ be an anti fuzzy prime ideal of a Γ−semiring M and
x ∈ M. Then ⟨x, µ⟩ is an anti fuzzy prime ideal of M.

Proof. Let x, y ∈ M,β ∈ Γ. Then

⟨x, µ⟩(yβz) = sup
α∈Γ

µ
(
xα(yβz)

)
= sup

α∈Γ
min {µ(x), µ(yβz)}

= sup
α∈Γ

min
{
µ(x),min{µ(y), µ(z)}

}
= sup

α∈Γ
min

{
min{µ(x), µ(y)}, min{µ(x), µ(z)}

}
= sup

α∈Γ
min

{
µ(xαy), µ(xαz)

}
,

= min
{
sup
α∈Γ

µ(xαy), sup
α∈Γ

µ(xαz)
}
,

= min
{
⟨x, µ⟩y, ⟨x, µ⟩z

}
.

Hence ⟨x, µ⟩ is an anti fuzzy prime ideal of Γ−semiring M. �

Theorem 3.6. Let µ be a fuzzy subset of a commutative Γ−semiring M and
x ∈ M such that the extension ⟨x, µ⟩ = µ for every x ∈ M. Then µ is a constant
function.

Proof. Let µ be a fuzzy subset of a commutative Γ−semiringM and x, y ∈ M.

µ(x) = ⟨y, µ⟩x
= sup

α∈Γ
µ(yαx)

= sup
α∈Γ

µ(xαy)

= ⟨x, µ⟩y = µ(y).

Hence µ(x) = µ(y). Therefore µ is a constant fuzzy function. �

Theorem 3.7. Let µ be a fuzzy subset of a commutative Γ−semiring M. Then
for every t ∈ Im(µ), ⟨x, µt⟩ = ⟨x, µ⟩t for every x ∈ M.

Proof.

Let y ∈ ⟨x, µ⟩t ⇔ ⟨x, µ⟩y 6 t

⇔ sup
α∈Γ

µ(xαy) 6 t

⇔ µ(xαy) 6 t

⇔ xαy ∈ µt

⇔ y ∈ ⟨x, µt⟩, by definition 3.5.

Hence the theorem. �
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Theorem 3.8. Let µ be an anti fuzzy semi prime ideal of a commutative
Γ−semiring M and x ∈ M. Then ⟨x, µ⟩ is an anti fuzzy semi prime ideal of a
Γ−semiring M.

Proof. Let µ be an anti fuzzy semi prime ideal of a Γ−semiring M and
x, y ∈ M,β ∈ Γ. By corollary3.1, the extension ⟨x, µ⟩ is an anti fuzzy ideal of
M. Then

⟨x, µ⟩(yβy) = sup
α∈Γ

µ(xαyβy)

> sup
α∈Γ

µ(xαyβyαx)

= sup
α∈Γ

µ(xαyβxαy)

> sup
α∈Γ

µ(xαy)

= ⟨x, µ⟩y

Hence ⟨x, µ⟩ is an anti fuzzy semi prime ideal of a Γ−semiring M. �

Theorem 3.9. Let M be a commutative Γ−semiring {Si}i∈Ix a non empty
family of semi prime ideals of M and A = {∩Si}i∈I ̸= ϕ then ⟨x, χC

A⟩ is an anti
fuzzy semi prime ideal of M, for all x ∈ M where χC

A is the complement of charac-
teristic function of A.

Proof. Let x ∈ M,α ∈ Γ then xαx ∈ A ⇒ xαx ∈ Si for all i ∈ I ⇒ x ∈ Si for
all i ∈ I ⇒ x ∈ A. Hence A is a semi prime ideal of a Γ−semiring M. By theorem
3.1, χc

A is an anti fuzzy semi prime ideal of a Γ−semiring M. Therefore by theorem
3.8, ⟨x, χc

A⟩ is an anti fuzzy semi prime ideal of a Γ−semiring M. �

Theorem 3.10. Let µ be an anti fuzzy prime ideal of a Γ−semiring M and
x ∈ M such that µ(x) = sup

y∈M
µ(y). Then ⟨x, µ⟩ = µ.

Proof. Let µ be an anti fuzzy prime ideal of a Γ−semiring M and x ∈ M
such that µ(x) = sup

y∈M
µ(y).

Let z ∈ M ⇒ µ(x) > µ(z)

⇒ min{µ(x), µ(z)} = µ(z)

⇒ sup
α∈Γ

µ(xαz) = µ(z),∀z ∈ M

⇒ ⟨x, µ⟩z = µ(z).

Therefore ⟨x, µ⟩ = µ. �

Theorem 3.11. Let µ be an anti fuzzy ideal of a commutative Γ−semiring M
and x ∈ M. Then we have the following

(i). µ ⊇ ⟨x, µ⟩
(ii). ⟨(xα)nx, µ⟩ ⊇ ⟨(xα)n+1x, µ⟩, ∀x ∈ M,α ∈ Γ.
(iii). If µ(x) < 1 then anti supp ⟨x, µ⟩ = M.
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Proof.
(i). Let y ∈ M. Then ⟨x, µ⟩(y) = sup

α∈Γ
µ(xαy) 6 µ(y). Hence µ ⊇ ⟨x, µ⟩.

(ii). ⟨(xα)n+1x, µ⟩y = sup
β∈Γ

µ(xα)n+1xβy) 6 sup
α∈Γ

µ(xα)nxβy.

Hence ⟨(xα)nx, µ⟩ ⊇ ⟨(xα)n+1x, µ⟩, for all x ∈ M.
(iii). Let y ∈ M. We have ⟨x, µ⟩(y) = sup

α∈Γ
µ(xαy) 6 µ(x) < 1, for all y ∈ M.

⇒ y ∈ anti supp ⟨x, µ⟩, by definition 3.4. Hence anti supp ⟨x, µ⟩ = M.
�

Theorem 3.12. Let µ be an anti fuzzy prime ideal of a commutative Γ−semiring
M. If µ is not constant then µ is not a minimal anti fuzzy prime ideal of a com-
mutative Γ−semiring M.

Proof. By theorems 3.5 , 3.11, for each x ∈ M, ⟨x, µ⟩ is an anti fuzzy prime
ideal of M and ⟨x, µ⟩ ⊆ µ. Since µ is not constant fuzzy subset by theorem 3.6,
there exists y ∈ M such that ⟨y, µ⟩ is a proper subset of µ. Hence µ is not a minimal
anti fuzzy prime ideal of a commutative Γ−semiring M. �

Theorem 3.13. I is a prime ideal of Γ−semiring M if and only if χc
I is an

anti fuzzy prime ideal of Γ−semiring M.

Proof. Suppose I is a prime ideal of Γ−semiring M and χc
I is the charac-

teristic function of I. By theorem 3.1, χc
I is an anti fuzzy ideal of Γ−semiring

M. Let x, y ∈ M,α ∈ Γ and xαy ∈ I. Then χc
I(xαy) = 0. Since I is a prime

ideal of Γ−semiring M. We have x ∈ I or y ∈ I,⇒ χc
I(x) = 0 or χc

I(y) = 0.
Hence χc

I(xαy) = min{χc
1(x), χ

c
1(y)} = 0. Let xαy /∈ I. Since I is a prime ideal of

Γ−semiring M. We have x /∈ I and y /∈ I. χc
I(x) = 1, χc

1(y)} = 1, χc
1(xαy) = 1.

Hence χc
I(xαy) = min{χc

I(x), χ
c
I(y)} Hence χc

I is an anti fuzzy prime ideal of
Γ−semiring M.

Conversely χc
I is an anti fuzzy prime ideal of Γ−semiring M. Then χI is an

fuzzy ideal of Γ−semiring M ⇒ I is an ideal of Γ−semiring M. Let x, y ∈ M,α ∈ Γ
such that xαy ∈ I. Then χc

1(xαy) = 0. Suppose x /∈ I and y /∈ I, χc
1(xαy) =

min{χc
1(x), χ

c
1(y)} = min{1, 1} = 1. This is a contradiction to our assumption.

Hence x ∈ I or y ∈ I. Thus I is a prime ideal of Γ−semiring M. �

Theorem 3.14. Let µ be an anti fuzzy ideal of a commutative Γ−semiring M.
If for y ∈ M,µ(y) is not minimal in µ(M) and ⟨x, µ⟩ = µ then µ is an anti fuzzy
prime ideal of a commutative Γ−semiring M.

Proof. Let a, b ∈ M,α ∈ Γ then µ(aαb) 6 µ(a) and µ(aαb) 6 µ(b).
Case(1): Let µ(a) be minimal in µ(M).
⇒ µ(aαb) = µ(a) and µ(aαb = µ(a) = min{µ(a), µ(b)}
Case(2): Neither µ(a) nor µ(b) is a minimal in µ(M) then by hypothesis ⟨a, µ⟩ = µ
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and ⟨b, µ⟩ = µ. Hence ⟨a, µ⟩(b) = µ(b) and ⟨b, µ⟩(a) = µ(a)

⇒ sup
α∈Γ

µ(aαb) = µ(b) and sup
α∈Γ

µ(bαa) = µ(a)

⇒ µ(b) > µ(aαb) and µ(a) > µ(bαa) = µ(aαb)

min{µ(a), µ(b)} > µ(aαb) 6 min{µ(a), µ(b)}.

Hence µ(aαb) = min{µ(a), µ(b)}. Therefore µ is an anti fuzzy prime ideal of a
commutative Γ−semiring M. �

Theorem 3.15. I is a prime ideal of a Γ−semiring M if and only if ⟨x, χc
1⟩ =

χc
1 for x ∈ M with x /∈ I, where χc

1 is the complement of the characteristic function
of I.

Proof. Let I be a prime ideal of a commutative Γ−semiring M. By theorem
3.13, χc

1 is an anti fuzzy prime ideal of Γ−semiring M for x ∈ M with x /∈ I, we
have χc

1(x) = 1 = sup
x∈M

χc
1(x). Hence theorem 3.10, ⟨x, χc

1⟩ = χc
1.

Conversely suppose that ⟨x, χc
1⟩ = χc

1 for x ∈ M with x /∈ I. We have χc
1 is an

anti fuzzy ideal of Γ−semiring M. Let y ∈ M such that χc
1(y) is not minimal in

χc
1(M) then χc

1(y) = 1 ⇒ y /∈ I. Hence, if ⟨y, χc
1⟩ = χc

1 by theorem 3.14, χc
1 is an

anti fuzzy prime ideal of Γ−semiring M. �

Theorem 3.16. Let µ be an anti fuzzy k− ideal of a commutative Γ−semiring
M and z ∈ M. Then ⟨z, µ⟩ is an anti fuzzy k− ideal of a commutative Γ−semiring
M.

Proof. Let µ be an anti fuzzy k− ideal of a commutative Γ−semiring M and
x, y, z ∈ M,α ∈ Γ. Since µ is an anti fuzzy k− ideal of a commutative Γ−semiring
M. By corollary 3.1, the extension ⟨z, µ⟩ is an anti fuzzy ideal of M.

We have µ(x) 6 max{µ(x+ y), µ(y)}, for all x, y ∈ M

⇒µ(zαx) 6 max{µ(zαx+ zαy), µ(zαy)}, for all x, y ∈ M,α ∈ Γ

⇒ sup
α∈Γ

µ(zαx) 6 max

{
sup
α∈Γ

µ(zαx+ zαy), sup
α∈Γ

µ(zαy)

}
⇒⟨z, µ⟩(x) 6 max{⟨z, µ⟩(x+ y), ⟨z, µ⟩(y)}.

Therefore ⟨z, µ⟩ is an anti fuzzy k−ideal of a commutative Γ−semiring M. �

References

[1] Dutta TK and Kar S., On regular ternary semirings, Advances in algebra proc. of the ICM
Satellite conference in algebra and related topics, world sci. publ., Singapore; 2003; 205-213.

[2] Dutta TK, Sardar SK, Goswami S., Fuzzy ideal extension in a Γ−semiring, Int. Math.
Forum, 6(18)(2011), 857-866.

[3] Jun Y, Hong SM, and Meng J., Fuzzy interlior ideals in semigroups , Ind. J. of Pure Appl.
Math., 26(9)(1995), 859-863.

[4] Khan M, and Asif T., Characterization of semigroups by their anti fuzzy ideals, J. of Math.
Reasearch, 2(3)(2010), 134-143.

[5] Lehmer H., A ternary analogue of Abelian Groups, American J. of Math., 59(1932), 329-338.
[6] Lister G. , Ternary rings, Trans. of American Math. Soc., 154(1971), 37-55.



144 M. M. KRISHNA RAO AND B. VENKATESWARLU

[7] Murali Krishna Rao M., Γ−semirings-I, Southeast Asian Bull. of Math., 19(1)(1995), 49-54.
[8] Murali Krishna Rao M., Γ−semirings-II, Southeast Asian Bull. of Math., 21(3)(1997),

281-287.
[9] Murali Krishna Rao M., The Jacobson radical of Γ−semiring, Southeast Asian Bull. of

Math., 23(1999), 127-134.
[10] Nobusawa N., On a generalization of the Ring Theory, Osaka J. Math., 1(1994), 81-89.
[11] Rosenfeld A., Fuzzy groups, J. Math. Appl., 1971; 35; 512-517.

[12] Shabir M, and Nawaz Y ., Semigroups characterised by the properties of their anti fuzzy
ideals, J. of Advanced Research in pure math., 3(2009), 42-59.

[13] Sen MK., On Γ−semigroup, Proc. of International Conference of algebra and its application,
Decker Publicaiton, New York, 1981 (pp. 301-308).

[14] Vandiver HS., Note on a Single Type of Algebra in which the cancellation law of addition
does not hold, Bull. Amer. Math., 40(1934), 914-920.

[15] Xie XY., Fuzzy ideals extension of semigroups, Soochow J. Math., 27(2001), 125-138.
[16] Zadeh LA., Fuzzy Sets, Information control, 8(1965), 338-353.

Received by editors 06.07.2014; available online 29.12.2014.

Department of Mathematics, GIT, GITAM University, Visakhapatnam- 530 045, A.P.,
INDIA

E-mail address: mmkr@gitam.edu

Department of Mathematics, GIT, GITAM University, Visakhapatnam- 530 045, A.P.,
INDIA

E-mail address: bvlmaths@gmail.com


