Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

Anti fuzzy ideal extension of Γ -semiring

M. Murali Krishna Rao and B. Venkateswarlu

ABSTRACT. In this paper the concept of anti fuzzy prime ideal, anti fuzzy semi prime ideal ,anti fuzzy ideal extension in a Γ -semiring have been introduced. We obtain a characterization of a prime ideal of a Γ -semiring in terms of anti fuzzy ideal extension of complement of its characteristic function.

1. Introduction

The notion of semiring was introduced by H. S. Vandiver [14] in 1934. The notion of Γ -ring was introduced by N. Nobusawa [10] as a generalization of ring in 1964. M. K. Sen [13] introduced the notion of Γ -semigroup in 1981. The notion of ternary algebraic system was introduced by Lehmer [5] in 1932, Lister [6] introduced ternary ring. Dutta & Kar [1] introduced the notion of ternary semiring which is a generalization of ternary ring and semiring. In1995, M. Murali Krishna Rao [7] introduced the notion of Γ -semiring which is a generalization of Γ -ring, ternary semiring and semiring. After the paper [7] published, many mathematicians obtained interesting results on Γ -semiring. L. A. Zadeh [16] introduced the notion of a fuzzy subset μ of a set X as a function from X into [0,1]. The concept of fuzzy subgroup was introduced by A. Rosenfeld [11]. In 2001, X. Y. Xie [15] introduced the notion of extension of fuzzy ideal in semigroups. In 2009, M. Shabir and Y. Nawaz [12] M. Khan and T. Asif [4] introduced the notion of an anti fuzzy ideal in semigroups. Zhan, Dudek, Jun contributed a lot of theory of fuzzy semiring. In 2011, T. K. Dutta et .al [2] introduced the notion of fuzzy ideal extension in a Γ -semiring. In this paper the concept of anti fuzzy prime ideal, anti fuzzy semiprime ideal, anti fuzzy ideal extension in a Γ -semiring have been introduced and obtained a characterization of a prime ideal of a Γ -semiring in terms of anti fuzzy ideal extension of complement of its characteristic function. Anti fuzzy prime

²⁰¹⁰ Mathematics Subject Classification. 16Y60; 16Y99; 03E72.

Key words and phrases. Γ -semiring, anti fuzzy prime ideal, anti fuzzy semi prime ideal, anti fuzzy ideal extension.

¹³⁵

ideal, anti fuzzy semi prime ideal and anti fuzzy k-ideal are preserved by anti fuzzy ideal extension.

2. Preliminaries

In this section we recall some of the fundamental concepts and definitions, which are necessary for this paper.

DEFINITION 2.1. A set R together with two associative binary operations called addition and multiplication (denoted by + and \cdot respectively) will be called a semiring provided

- (i). Addition is a commutative operation
- (ii). Multiplication distributes over addition both from the left and from the right .
- (iii). There exists $0 \in R$ such that x + 0 = x and $x \cdot 0 = 0 \cdot x = 0$ for each $x \in R$

DEFINITION 2.2. Let M and Γ be additive abelian groups. If there exists a mapping $M \times \Gamma \times M \to M$ (images to be denoted by $x \alpha y, x, y \in M, \alpha \in \Gamma$) satisfying the following conditions for all $x, y, z \in M, \alpha, \beta \in \Gamma$

(i). $x\alpha(y\beta z) = (x\alpha y)\beta z$

(ii). $x\alpha(y+z) = x\alpha y + x\alpha z$

- (iii). $x(\alpha + \beta)y = x\alpha y + x\beta z$
- (iv). $(x+y)\alpha z = x\alpha z + y\alpha z$

Then M is called a Γ -ring.

DEFINITION 2.3. Let (M, +) and $(\Gamma, +)$ be commutative semigroups. Then we call M as a Γ -semiring, if there exists a mapping $M \times \Gamma \times M \to M$ is written (x, α, y) as $x\alpha y$ such that it satisfies the following axioms for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$

(i). $x\alpha(y\beta z) = (x\alpha y)\beta z$ (ii). $x\alpha(y+z) = x\alpha y + x\alpha z$ (iii). $x(\alpha + \beta)y = x\alpha y + x\beta z$ (iv). $(x+y)\alpha z = x\alpha z + y\alpha z$

We illustrate the definition of Γ -semiring by the following examples.

EXAMPLE 2.1. Every semiring M is a Γ -semiring with $\Gamma = M$ and ternary operation as the usual semiring multiplication.

EXAMPLE 2.2. Let M be the additive seingroup of all $m \times n$ matrices over the set of non negative rational numbers and Γ be the additive semigroup of all $n \times m$ matrices over the set of non negative integers, then with respect to usual matrix multiplication M is a Γ -semiring.

EXAMPLE 2.3. Let S be a semiring and Mp; q(S) denote the additive abelian semigroup of all $p \times q$ matrices with identity element whose entries are from S. Then Mp, q(S) is a Γ -semiring with $\Gamma = Mp, q(S)$ ternary operation is defined by $x\alpha z = x(\alpha')z$, with respect to usual matrix multiplication, where α' denote the transpose of the matrix α , for all x, y and $\alpha \in Mp, q(S)$.

EXAMPLE 2.4. Let X and Y be abelian semigroups with identity element. Let $M = Hom(X, Y), \Gamma = Hom(Y, X)$ and $\forall a, b \in M, \alpha \in \Gamma$. Define $a\alpha b$ be the usual composition map. Then M is a Γ -semiring.

DEFINITION 2.4. A Γ -semiring M is said to have zero element if there exists an element $0 \in M$ such that 0 + x = x = x + 0 and $0\alpha x = x\alpha 0 = 0, \forall x \in M$.

DEFINITION 2.5. A Γ -semiring M is said to be a commutative Γ -semiring if $x\alpha y = y\alpha x, \forall x, y \in M$ and $\alpha \in \Gamma$.

DEFINITION 2.6. A subset A of Γ -semiring M is a left (right) ideal of M if A is an additive semigroup of M and the set $M\Gamma A = \{x\alpha y \mid x \in M, \alpha \in \Gamma, y \in A\}(A\Gamma M)$ is contained in A. If A is both left and right ideals then A is an ideal of M.

DEFINITION 2.7. An ideal I of a Γ -semiring M is called a k-ideal, if $b \in M, a + b$ and $a \in I$ then $b \in I$.

DEFINITION 2.8. Let S be a nonempty set, a mapping $f: S \to [0, 1]$ is called a fuzzy subset of S.

DEFINITION 2.9. Let A be a nonempty subset of S. The characteristic function of A is a fuzzy subset of S is defined by

$$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A; \\ 0, & \text{if } x \notin A. \end{cases}$$

The complement of characteristic function is denoted by χ_A^c .

DEFINITION 2.10. Let f be a fuzzy subset of S, for $t \in [0, 1]$ the set $f_t = \{x \in S \mid f(x) \ge t\}$ is called level subset of S with respect to f.

DEFINITION 2.11. A fuzzy subset μ of a Γ -semiring M is called fuzzy left(right) of M if it satisfies

 $\mu(x+y) \ge \min\{\mu(x), \mu(y)\}, \mu(x\alpha y) \ge \mu(y)\{\mu(x\alpha y) \ge \mu(x)\}, \forall x, y \in M, \alpha \in \Gamma.$

If μ is a fuzzy left (right) ideal of Γ -semiring M then $\mu(0) \ge \mu(x), \forall x \in M$.

DEFINITION 2.12. A fuzzy subset f of Γ -semiring M is called fuzzy ideal of M, if $\forall x, y \in M, \alpha \in \Gamma$,

 $f(x+y) \ge \min\{f(x), f(y)\}, f(x\alpha y) \ge \max\{f(x), f(y)\}$

DEFINITION 2.13. A fuzzy subset μ of a Γ -semiring M is called an anti fuzzy ideal left (right) ideal of M if,

 $\mu(x+y) \leqslant \max\{\mu(x), \mu(y)\}, \mu(x\alpha y) \leqslant \mu(y)\{\mu(x\alpha y) \leqslant \mu(x)\}, \forall x, y \in M, \alpha \in \Gamma.$

If μ is an anti fuzzy left (right) ideal of Γ -semiring M then $\mu(0) \leq \mu(x), \forall x \in M$.

DEFINITION 2.14. A fuzzy subset μ of a Γ -semiring M is called an anti fuzzy ideal of M if μ is both an anti fuzzy left and anti fuzzy right ideal of M.

DEFINITION 2.15. The complement of a fuzzy subset μ of a Γ -semiring M is denoted by μ^c and is defined as $\mu^c(x) = 1 - \mu(x), \forall x \in M$.

DEFINITION 2.16. A fuzzy ideal f of a Γ -semiring M with zero 0 is said to be a k-fuzzy ideal of M if f(x+y) = f(0) and $f(y) = f(0) \Rightarrow f(x) = f(0), \forall x, y \in M$.

DEFINITION 2.17. A fuzzy ideal f of a Γ -semiring M is said to be a fuzzy k-ideal of M if $f(x) \ge \min\{f(x+y), f(y)\}, \forall x, y \in M$.

DEFINITION 2.18. Let M be a Γ -semiring. A fuzzy ideal μ of M is said to be an anti fuzzy-k-ideal of M if $\mu(x) \leq max\{\mu(x+y), \mu(y)\}$.

DEFINITION 2.19. Let M be a Γ -semiring. Let μ be an anti fuzzy ideal of Γ -semiring M, for any $t \in [0, 1], \mu_t$ is defined by $\mu_t = \{x \in M \mid \mu(x) \leq t\}$ then μ_t is called an anti level subset.

3. Main results:

In this section the concept of anti fuzzy prime ideal, anti fuzzy semi prime ideal, anti fuzzy ideal extension in a Γ -semiring have been introduced.

DEFINITION 3.1. Let μ be a fuzzy subset of a Γ -semiring M and $x \in M$. Then the fuzzy subset $\langle x, \mu \rangle : M \to [0, 1]$ is defined by $\langle x, \mu \rangle(y) = \sup_{\alpha \in \Gamma} \mu(x \alpha y)$, for all $y \in M$, is called an extension of μ by x.

DEFINITION 3.2. Let μ be a fuzzy subset of a Γ -semiring M. Then μ is called an anti fuzzy prime ideal if $\mu(x\alpha y) = \min\{\mu(x), \mu(y)\}$, for all $x, y \in M, \alpha \in \Gamma$.

DEFINITION 3.3. Let μ be an anti fuzzy ideal of a Γ -semiring M. Then μ is called an anti fuzzy semi prime ideal if $\mu(x) \leq \mu(x\alpha x)$, for all $x \in M$.

DEFINITION 3.4. Let μ be a fuzzy subset of a Γ -semiring M. We define anti support $\mu = \{x \in M \mid \mu(x) < 1\}.$

DEFINITION 3.5. Let M be a Γ -semiring $A \subseteq M.x \in M$. We define

$$\langle x, A \rangle = \{ y \in M \mid x \alpha y \in A, \forall \alpha \in \Gamma \}.$$

THEOREM 3.1. Let A be a non empty subset of a Γ -semiring M. If a fuzzy subset μ in M such that

$$\mu(x) = \begin{cases} 0, & \text{if } x \in A \\ 1, & \text{if } x \notin A \end{cases}$$

Then μ is an anti fuzzy ideal of M if and only if A is an ideal of M.

PROOF. Suppose μ is an anti fuzzy ideal of Γ -semiring M.

Let $x, y \in A$. $\Rightarrow \mu(x) = 0, \mu(y) = 0, \mu(x + y) \leq max\{\mu(x), \mu(y)\} = 0$ $\Rightarrow x + y \in A.$ Let $x, y \in M, \alpha \in \Gamma$. $\Rightarrow \mu(x\alpha y) \leq min\{\mu(x), \mu(y)\} = 0$ $\Rightarrow x\alpha y \in A.$ Hence A is an ideal of Γ -semiring M.

Conversely let $x, y \in M, \alpha \in \Gamma, A$ be an ideal of M. Case(1): If $x, y \in A, \mu(x) = 0, \mu(y) = 0, \mu(x + y) = 0, x\alpha y \in A \Rightarrow \mu(x\alpha y) = 0$, then $\mu(x + y) \leq max\{\mu(x), \mu(y)\}, \mu(x\alpha y) \leq min\{\mu(x), \mu(y)\}$ Case(2): If $x, y \notin A$ then $x + y \notin A.\mu(x) = 1, \mu(y) = 1, \mu(x + y) = 1, x\alpha y \in A \Rightarrow \mu(x\alpha y) = 0$ then $\mu(x + y) \leq max\{\mu(x), \mu(y)\}, \mu(x\alpha y) \leq min\{\mu(x), \mu(y)\}$ Case(3): If $x \in A, y \notin A$ then $x + y \in A, \mu(x) = 0, \mu(y) = 1, \mu(x + y) = 1, x\alpha y \in A \Rightarrow \mu(x\alpha y) = 0$ then $\mu(x + y) \leq max\{\mu(x), \mu(y)\}, \mu(x\alpha y) \leq min\{\mu(x), \mu(y)\}$ Case(4): If $y \in A, x \notin A$ then $x + y \notin A, \mu(x) = 1, \mu(y) = 0, \mu(x + y) = 0, x\alpha y \in A \Rightarrow \mu(x\alpha y) = 0$ then $\mu(x + y) \leq max\{\mu(x), \mu(y)\}, \mu(x\alpha y) \leq min\{\mu(x), \mu(y)\}$ Therefore μ is an anti fuzzy ideal of M.

THEOREM 3.2. Let μ be an anti fuzzy ideal of a commutative Γ -semiring M. Then the following are equivalent

(1). μ is an anti fuzzy semi prime ideal

(2). $\mu(x) = \mu(x\alpha x)$ for all $x \in M, \alpha \in \Gamma$

PROOF. (2) \Rightarrow (1) is obvious. Suppose μ is an anti fuzzy semi prime ideal. By definition 3.3, we have $\mu(x) \leq \mu(x\alpha x)$ for all $x \in M, \alpha \in \Gamma$, since μ is an anti fuzzy ideal of a Γ -semiring M. $\mu(x\alpha x) = \mu(x)$. Hence $\mu(x) = \mu(x\alpha x)$ for all $x \in M, \alpha \in \Gamma$. Hence the theorem. \Box

The following proof of the theorem is a straight forward verification.

THEOREM 3.3. Let μ be a non empty fuzzy subset of Γ -semiring M. Then μ is an anti fuzzy prime ideal of a Γ -semiring M if and only if μ_t is a prime ideal of a Γ -semiring M for any $t \in Im(\mu)$ where μ_t is defined by $\mu_t = \{x \in M \mid \mu(x) \leq t\}$.

THEOREM 3.4. Let μ be an anti fuzzy right ideal of a Γ -semiring M. Then $\langle x, \mu \rangle$ is an anti fuzzy right ideal of M.

PROOF. Let $z, y \in M, \alpha \in \Gamma$. Then

$$\begin{split} \langle x, \mu \rangle (y+z) &= \sup_{\alpha \in \Gamma} \mu \big(x \alpha (y+z) \big) \\ &= \sup_{\alpha \in \Gamma} \mu (x \alpha y + x \alpha z) \big) \\ &\leqslant \sup_{\alpha \in \Gamma} \max \{ \mu (x \alpha y), \mu (x \alpha y) \} \\ &= \max \left\{ \sup_{\alpha \in \Gamma} \mu (x \alpha y), \sup_{\alpha \in \Gamma} \mu (x \alpha y) \right\} \\ &= \max \left\{ \langle x, \mu \rangle y, \langle x, \mu \rangle z \right\} \\ &\leqslant \max_{\beta \in \Gamma} \mu \big(x \beta (y \alpha z) \big) \\ &\leqslant \sup_{\beta \in \Gamma} \mu \big(x \beta y \big) = \langle x, \mu \rangle y. \end{split}$$

Hence $\langle x, \mu \rangle$ is an anti fuzzy right ideal of Γ -semiring M.

COROLLARY 3.1. Let μ be an anti fuzzy ideal of a commutative Γ -semiring Mand $x \in M$. Then the extension $\langle x, \mu \rangle$ is an anti fuzzy ideal of Γ -semiring M.

THEOREM 3.5. Let μ be an anti fuzzy prime ideal of a Γ -semiring M and $x \in M$. Then $\langle x, \mu \rangle$ is an anti fuzzy prime ideal of M.

PROOF. Let
$$x, y \in M, \beta \in \Gamma$$
. Then
 $\langle x, \mu \rangle (y\beta z) = \sup_{\alpha \in \Gamma} \mu (x\alpha(y\beta z))$
 $= \sup_{\alpha \in \Gamma} \min \{\mu(x), \mu(y\beta z)\}$
 $= \sup_{\alpha \in \Gamma} \min \{\mu(x), \min \{\mu(y), \mu(z)\}\}$
 $= \sup_{\alpha \in \Gamma} \min \{\min \{\mu(x), \mu(y)\}, \min \{\mu(x), \mu(z)\}\}$
 $= \sup_{\alpha \in \Gamma} \min \{\min \{\mu(x\alpha y), \mu(x\alpha z)\},$
 $= \min \{\sup_{\alpha \in \Gamma} \mu(x\alpha y), \sup_{\alpha \in \Gamma} \mu(x\alpha z)\},$
 $= \min \{\langle x, \mu \rangle y, \langle x, \mu \rangle z\}.$

Hence $\langle x, \mu \rangle$ is an anti fuzzy prime ideal of Γ -semiring M.

THEOREM 3.6. Let μ be a fuzzy subset of a commutative Γ -semiring M and $x \in M$ such that the extension $\langle x, \mu \rangle = \mu$ for every $x \in M$. Then μ is a constant function.

PROOF. Let μ be a fuzzy subset of a commutative Γ -semiring M and $x, y \in M$.

$$\begin{split} \mu(x) &= \langle y, \mu \rangle x \\ &= \sup_{\alpha \in \Gamma} \mu(y \alpha x) \\ &= \sup_{\alpha \in \Gamma} \mu(x \alpha y) \\ &= \langle x, \mu \rangle y = \mu(y) . \end{split}$$

Hence $\mu(x) = \mu(y)$. Therefore μ is a constant fuzzy function.

THEOREM 3.7. Let μ be a fuzzy subset of a commutative Γ -semiring M. Then for every $t \in Im(\mu), \langle x, \mu_t \rangle = \langle x, \mu \rangle_t$ for every $x \in M$.

Proof.

Let
$$y \in \langle x, \mu \rangle_t \Leftrightarrow \langle x, \mu \rangle y \leqslant t$$

 $\Leftrightarrow \sup_{\alpha \in \Gamma} \mu(x \alpha y) \leqslant t$
 $\Leftrightarrow \mu(x \alpha y) \leqslant t$
 $\Leftrightarrow x \alpha y \in \mu_t$
 $\Leftrightarrow y \in \langle x, \mu_t \rangle$, by definition 3.5.

Hence the theorem.

THEOREM 3.8. Let μ be an anti fuzzy semi prime ideal of a commutative Γ -semiring M and $x \in M$. Then $\langle x, \mu \rangle$ is an anti fuzzy semi prime ideal of a Γ -semiring M.

PROOF. Let μ be an anti fuzzy semi prime ideal of a Γ -semiring M and $x, y \in M, \beta \in \Gamma$. By corollary 3.1, the extension $\langle x, \mu \rangle$ is an anti fuzzy ideal of M. Then

$$\begin{aligned} \langle x, \mu \rangle (y\beta y) &= \sup_{\alpha \in \Gamma} \mu(x\alpha y\beta y) \\ &\geqslant \sup_{\alpha \in \Gamma} \mu(x\alpha y\beta y\alpha x) \\ &= \sup_{\alpha \in \Gamma} \mu(x\alpha y\beta x\alpha y) \\ &\geqslant \sup_{\alpha \in \Gamma} \mu(x\alpha y) \\ &\geqslant \sup_{\alpha \in \Gamma} \mu(x\alpha y) \\ &= \langle x, \mu \rangle y \end{aligned}$$

Hence $\langle x, \mu \rangle$ is an anti fuzzy semi prime ideal of a Γ -semiring M.

THEOREM 3.9. Let M be a commutative Γ -semiring $\{S_i\}_{i\in I}x$ a non empty family of semi prime ideals of M and $A = \{\cap S_i\}_{i\in I} \neq \phi$ then $\langle x, \chi_A^C \rangle$ is an anti fuzzy semi prime ideal of M, for all $x \in M$ where χ_A^C is the complement of characteristic function of A.

PROOF. Let $x \in M, \alpha \in \Gamma$ then $x\alpha x \in A \Rightarrow x\alpha x \in S_i$ for all $i \in I \Rightarrow x \in S_i$ for all $i \in I \Rightarrow x \in A$. Hence A is a semi prime ideal of a Γ -semiring M. By theorem 3.1, χ_A^c is an anti fuzzy semi prime ideal of a Γ -semiring M. Therefore by theorem 3.8, $\langle x, \chi_A^c \rangle$ is an anti fuzzy semi prime ideal of a Γ -semiring M. \Box

THEOREM 3.10. Let μ be an anti fuzzy prime ideal of a Γ -semiring M and $x \in M$ such that $\mu(x) = \sup_{y \in M} \mu(y)$. Then $\langle x, \mu \rangle = \mu$.

PROOF. Let μ be an anti fuzzy prime ideal of a Γ -semiring M and $x \in M$ such that $\mu(x) = \sup_{y \in M} \mu(y)$.

Let
$$z \in M \Rightarrow \mu(x) \ge \mu(z)$$

 $\Rightarrow \min\{\mu(x), \mu(z)\} = \mu(z)$
 $\Rightarrow \sup_{\alpha \in \Gamma} \mu(x\alpha z) = \mu(z), \forall z \in M$
 $\Rightarrow \langle x, \mu \rangle z = \mu(z).$

Therefore $\langle x, \mu \rangle = \mu$.

THEOREM 3.11. Let μ be an anti fuzzy ideal of a commutative Γ -semiring M and $x \in M$. Then we have the following

(i). $\mu \supseteq \langle x, \mu \rangle$ (ii). $\langle (x\alpha)^n x, \mu \rangle \supseteq \langle (x\alpha)^{n+1} x, \mu \rangle, \forall x \in M, \alpha \in \Gamma$. (iii). If $\mu(x) < 1$ then anti supp $\langle x, \mu \rangle = M$. Proof.

(i). Let
$$y \in M$$
. Then $\langle x, \mu \rangle(y) = \sup_{\alpha \in \Gamma} \mu(x \alpha y) \leq \mu(y)$. Hence $\mu \supseteq \langle x, \mu \rangle$.
(ii). $\langle (x\alpha)^{n+1}x, \mu \rangle y = \sup_{\beta \in \Gamma} \mu(x\alpha)^{n+1}x\beta y) \leq \sup_{\alpha \in \Gamma} \mu(x\alpha)^n x\beta y$.
Hence $\langle (x\alpha)^n x, \mu \rangle \supseteq \langle (x\alpha)^{n+1}x, \mu \rangle$, for all $x \in M$.

(iii). Let $y \in M$. We have $\langle x, \mu \rangle(y) = \sup_{\alpha \in \Gamma} \mu(x\alpha y) \leq \mu(x) < 1$, for all $y \in M$. $\Rightarrow y \in \text{anti supp } \langle x, \mu \rangle$, by definition 3.4. Hence anti supp $\langle x, \mu \rangle = M$.

THEOREM 3.12. Let μ be an anti fuzzy prime ideal of a commutative Γ -semiring M. If μ is not constant then μ is not a minimal anti fuzzy prime ideal of a commutative Γ -semiring M.

PROOF. By theorems 3.5, 3.11, for each $x \in M$, $\langle x, \mu \rangle$ is an anti fuzzy prime ideal of M and $\langle x, \mu \rangle \subseteq \mu$. Since μ is not constant fuzzy subset by theorem 3.6, there exists $y \in M$ such that $\langle y, \mu \rangle$ is a proper subset of μ . Hence μ is not a minimal anti fuzzy prime ideal of a commutative Γ -semiring M.

THEOREM 3.13. I is a prime ideal of Γ -semiring M if and only if χ_I^c is an anti fuzzy prime ideal of Γ -semiring M.

PROOF. Suppose I is a prime ideal of Γ -semiring M and χ_I^c is the characteristic function of I. By theorem 3.1, χ_I^c is an anti fuzzy ideal of Γ -semiring M. Let $x, y \in M, \alpha \in \Gamma$ and $x\alpha y \in I$. Then $\chi_I^c(x\alpha y) = 0$. Since I is a prime ideal of Γ -semiring M. We have $x \in I$ or $y \in I, \Rightarrow \chi_I^c(x) = 0$ or $\chi_I^c(y) = 0$. Hence $\chi_I^c(x\alpha y) = \min\{\chi_1^c(x), \chi_1^c(y)\} = 0$. Let $x\alpha y \notin I$. Since I is a prime ideal of Γ -semiring M. We have $x \notin I$ and $y \notin I$. $\chi_I^c(x) = 1, \chi_1^c(y)\} = 1, \chi_1^c(x\alpha y) = 1$. Hence $\chi_I^c(x\alpha y) = \min\{\chi_I^c(x), \chi_I^c(y)\}$ Hence χ_I^c is an anti fuzzy prime ideal of Γ -semiring M.

Conversely χ_I^c is an anti fuzzy prime ideal of Γ -semiring M. Then χ_I is an fuzzy ideal of Γ -semiring $M \Rightarrow I$ is an ideal of Γ -semiring M. Let $x, y \in M, \alpha \in \Gamma$ such that $x \alpha y \in I$. Then $\chi_1^c(x \alpha y) = 0$. Suppose $x \notin I$ and $y \notin I, \chi_1^c(x \alpha y) = min\{\chi_1^c(x), \chi_1^c(y)\} = min\{1, 1\} = 1$. This is a contradiction to our assumption. Hence $x \in I$ or $y \in I$. Thus I is a prime ideal of Γ -semiring M.

THEOREM 3.14. Let μ be an anti fuzzy ideal of a commutative Γ -semiring M. If for $y \in M, \mu(y)$ is not minimal in $\mu(M)$ and $\langle x, \mu \rangle = \mu$ then μ is an anti fuzzy prime ideal of a commutative Γ -semiring M.

PROOF. Let $a, b \in M, \alpha \in \Gamma$ then $\mu(a\alpha b) \leq \mu(a)$ and $\mu(a\alpha b) \leq \mu(b)$. Case(1): Let $\mu(a)$ be minimal in $\mu(M)$. $\Rightarrow \mu(a\alpha b) = \mu(a)$ and $\mu(a\alpha b) = \mu(a) = min\{\mu(a), \mu(b)\}$ Case(2): Neither $\mu(a)$ nor $\mu(b)$ is a minimal in $\mu(M)$ then by hypothesis $\langle a, \mu \rangle = \mu$

and
$$\langle b, \mu \rangle = \mu$$
. Hence $\langle a, \mu \rangle(b) = \mu(b)$ and $\langle b, \mu \rangle(a) = \mu(a)$
 $\Rightarrow \sup_{\alpha \in \Gamma} \mu(a\alpha b) = \mu(b)$ and $\sup_{\alpha \in \Gamma} \mu(b\alpha a) = \mu(a)$
 $\Rightarrow \mu(b) \ge \mu(a\alpha b)$ and $\mu(a) \ge \mu(b\alpha a) = \mu(a\alpha b)$
 $\min\{\mu(a), \mu(b)\} \ge \mu(a\alpha b) \le \min\{\mu(a), \mu(b)\}.$

Hence $\mu(a\alpha b) = min\{\mu(a), \mu(b)\}$. Therefore μ is an anti fuzzy prime ideal of a commutative Γ -semiring M.

THEOREM 3.15. I is a prime ideal of a Γ -semiring M if and only if $\langle x, \chi_1^c \rangle = \chi_1^c$ for $x \in M$ with $x \notin I$, where χ_1^c is the complement of the characteristic function of I.

PROOF. Let I be a prime ideal of a commutative Γ -semiring M. By theorem 3.13, χ_1^c is an anti fuzzy prime ideal of Γ -semiring M for $x \in M$ with $x \notin I$, we have $\chi_1^c(x) = 1 = \sup_{x \in M} \chi_1^c(x)$. Hence theorem 3.10, $\langle x, \chi_1^c \rangle = \chi_1^c$.

Conversely suppose that $\langle x, \chi_1^c \rangle = \chi_1^c$ for $x \in M$ with $x \notin I$. We have χ_1^c is an anti fuzzy ideal of Γ -semiring M. Let $y \in M$ such that $\chi_1^c(y)$ is not minimal in $\chi_1^c(M)$ then $\chi_1^c(y) = 1 \Rightarrow y \notin I$. Hence, if $\langle y, \chi_1^c \rangle = \chi_1^c$ by theorem 3.14, χ_1^c is an anti fuzzy prime ideal of Γ -semiring M.

THEOREM 3.16. Let μ be an anti fuzzy k- ideal of a commutative Γ -semiring M and $z \in M$. Then $\langle z, \mu \rangle$ is an anti fuzzy k- ideal of a commutative Γ -semiring M.

PROOF. Let μ be an anti fuzzy k- ideal of a commutative Γ -semiring M and $x, y, z \in M, \alpha \in \Gamma$. Since μ is an anti fuzzy k- ideal of a commutative Γ -semiring M. By corollary 3.1, the extension $\langle z, \mu \rangle$ is an anti fuzzy ideal of M.

We have
$$\mu(x) \leq \max\{\mu(x+y), \mu(y)\}$$
, for all $x, y \in M$
 $\Rightarrow \mu(z\alpha x) \leq \max\{\mu(z\alpha x + z\alpha y), \mu(z\alpha y)\}$, for all $x, y \in M, \alpha \in \Gamma$
 $\Rightarrow \sup_{\alpha \in \Gamma} \mu(z\alpha x) \leq \max\left\{\sup_{\alpha \in \Gamma} \mu(z\alpha x + z\alpha y), \sup_{\alpha \in \Gamma} \mu(z\alpha y)\right\}$
 $\Rightarrow \langle z, \mu \rangle(x) \leq \max\{\langle z, \mu \rangle(x+y), \langle z, \mu \rangle(y)\}.$

Therefore $\langle z, \mu \rangle$ is an anti fuzzy k-ideal of a commutative Γ -semiring M.

References

- Dutta TK and Kar S., On regular ternary semirings, Advances in algebra proc. of the ICM Satellite conference in algebra and related topics, world sci. publ., Singapore; 2003; 205-213.
- [2] Dutta TK, Sardar SK, Goswami S., Fuzzy ideal extension in a Γ-semiring, Int. Math. Forum, 6(18)(2011), 857-866.
- [3] Jun Y, Hong SM, and Meng J., Fuzzy interlior ideals in semigroups, Ind. J. of Pure Appl. Math., 26(9)(1995), 859-863.
- [4] Khan M, and Asif T., Characterization of semigroups by their anti fuzzy ideals, J. of Math. Reasearch, 2(3)(2010), 134-143.
- [5] Lehmer H., A ternary analogue of Abelian Groups, American J. of Math., 59(1932), 329-338.
- [6] Lister G., Ternary rings, Trans. of American Math. Soc., 154(1971), 37-55.

- [7] Murali Krishna Rao M., Γ-semirings-I, Southeast Asian Bull. of Math., 19(1)(1995), 49-54.
- [8] Murali Krishna Rao M., Γ-semirings-II, Southeast Asian Bull. of Math., 21(3)(1997), 281-287.
- [9] Murali Krishna Rao M., The Jacobson radical of Γ-semiring, Southeast Asian Bull. of Math., 23(1999), 127-134.
- [10] Nobusawa N., On a generalization of the Ring Theory, Osaka J. Math., 1(1994), 81-89.
- [11] Rosenfeld A., Fuzzy groups, J. Math. Appl., 1971; 35; 512-517.
- [12] Shabir M, and Nawaz Y., Semigroups characterised by the properties of their anti fuzzy ideals, J. of Advanced Research in pure math., 3(2009), 42-59.
- [13] Sen MK., $On \Gamma$ -semigroup, Proc. of International Conference of algebra and its application, Decker Publication, New York, 1981 (pp. 301-308).
- [14] Vandiver HS., Note on a Single Type of Algebra in which the cancellation law of addition does not hold, Bull. Amer. Math., 40(1934), 914-920.
- [15] Xie XY., Fuzzy ideals extension of semigroups, Soochow J. Math., 27(2001), 125-138.
- [16] Zadeh LA., Fuzzy Sets, Information control, 8(1965), 338-353.

Received by editors 06.07.2014; available online 29.12.2014.

Department of Mathematics, GIT, GITAM University, Visakhapatnam- 530 045, A.P., INDIA

E-mail address: mmkr@gitam.edu

Department of Mathematics, GIT, GITAM University, Visakhapatnam- 530 045, A.P., INDIA

E-mail address: bvlmaths@gmail.com