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COMMON FIXED POINT THEOREMS FOR PAIRS OF
SINGLE AND MULTIVALUED D-MAPS AND
TANGENTIAL MULTIVALUED MAPPINGS

SATISFYING CONTRACTIVE CONDITION OF
INTEGRAL INEQUALITY

R. A. Rashwan and H. A. Hammad

Abstract. In [2, 25] the others defined a tangential property which can be
used not only for a single mapping but also for a multi-valued mappings and
the concept of subcomatiblity of them. Motivated by the results in [2, 25] we
prove common fixed point theorems satisfying a contractive conditions for pairs

of single and multivalued used D-maps and tangential multivalued mappings
of integral inequality.

1. Introduction and Preliminaries

S.Banach proved a theorem which ensures under appropriate conditions, the
existence and uniqueness of fixed point, in 1922 ([3],[4]). His results is called Ba-
nach’s fixed point theorem. This theorem provides a method for solving a variety
of applied problems in mathematical Science and Engineering. Banach contraction
principle has been extended in many different directions, see [3, 24, 26-30], etc. In
1969, the Banach’s Contraction Mapping Principle extended nicely to set valued
or multivalued mappings, by Nadler [18]. Afterward, the study of fixed points for
multi-valued contractions using the Hausdorff metric was initiated by Markin [17].
the study of fixed points of a functions satisfying certain contractive conditions
has been at the center of vigorous research activity, because it has a wide range
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of application in different area such as, variational, linear inequalities, differential
equations, control theory, optimization and parameterize estimation problems.

In this paper, (X, d) denotes a metric space, CB(X), the class of all nonempty
bounded closed subsets of X and B(X), the class of all nonempty bounded subsets
of X, also R+ denotes the set of nonnegative real numbers. Sessa [23] introduced
the notion of weak commutativity which generalized the notion of commutativity.
Jungck [10] gave a generalization of weak commutativity by introducing the concept
of compatibility later on. In [11], the others introduced the concept of compatible
maps of type (A) to generalize weakly commuting maps. Pathak and Khan [21]
introduced the notion of compatible maps of type (B). to extending type (A). In
[19], the concept of compatible maps of type (P) was introduced and compared
with compatible and compatible maps of type (A). In 1998, Pathak, Cho, Kang
and Madharia [20] defined the notion of compatible maps of type (C) as another
extension of compatible maps of type (A). Jungck [9] generalized all the concepts of
compatibility by giving the notion of weak compatibility (subcompatibility). In [13],
the authors extended the concept of compatible maps to the setting of single and
multivlued maps by giving the notion of δ−compatible maps. In [12], the authors
extended the definition of weak compatibility to the setting of single and multival-
ued maps by introducing the concept of subcompatible maps. Djoudi and khemis
[5] introduced the notion of D−maps which is a generalization of δ−compatible
maps.

Let (X, d) be a metric space and let B(X) be the class of all nonempty
bounded subsets of X. For all A,B in B(X), define

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.
If A = {a}, we write δ(A,B) = δ(a,B). Also, if B = {b},
it yields that

δ(A,B) = d(a, b).

From the definition of δ(A,B), for all A,B,C in B(X)
it follows that

δ(A,B) = δ(B,A) > 0,

δ(A,B) 6 δ(A,C) + δ(C,B),

δ(A,B) = 0 iff A = B = {a}
DEFINITION 1.1 [2, 6] A sequence {An} of nonempty subsets of X is said

to be convergent to a subset A of X if: for each point a ∈ A is the limit of a
convergent sequence {an}, where an ∈ An for n ∈ N .

LEMMA 1.1 [2, 6, 7] If {An} and {Bn} are sequences in B(X)
converging to A and B in B(X), respectively, then the sequence
{δ(An, Bn)} converges to δ(A,B).
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LEMMA 1.2 [2, 7] Let {An} be a sequence in B(X) and y be
a point in X such that δ(An, y) → 0, Then the sequence {An} converges
to the set {y} in B(X).

DEFINITION 1.2 [2, 20] The self-maps f and g of a metric space X
are said to be weakly commuting if

d(fgx, gfx) 6 d(gx, fx) for all x ∈ X.

DEFINITION 1.3 [2, 10] The self-maps f and g of a metric space X
are said to be:
(1) compatible if

lim
n→∞

d (fgxn, gfxn) = 0,

(2) compatible of type (A) if

lim
n→∞

d(fgxn, g
2xn) = 0 and lim

n→∞
d(gfxn, f

2xn) = 0,

(3) compatible of type (B) if

lim
n→∞

d(fgxn, g
2xn) 6

1

2
[ lim
n→∞

d(fgxn, ft) + lim
n→∞

d(ft, f2xn)],

lim
n→∞

d(gfxn, f
2xn) 6

1

2
[ lim
n→∞

d(gfxn, gt) + lim
n→∞

d(gt, g2xn)],

(4) compatible of type (C) if
lim
n→∞

d(fgxn, g
2xn) 6 1

3 [ limn→∞
d(fgxn, ft)

+ lim
n→∞

d(ft, f2xn) + lim
n→∞

d(ft, g2xn)],

lim
n→∞

d(gfxn, f
2xn) 6 1

3 [ limn→∞
d(gfxn, gt)

+ lim
n→∞

d(gt, g2xn) + lim
n→∞

d(gt, f2xn)],

(5) compatible of type(P ) if

lim
n→∞

d(f2xn, g
2xn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X.

DEFINITION 1.4 [2, 16] The self-maps f and g of a metric space X are
called weakly compatible if fx = gx, x ∈ X implies fgx = gfx.

DEFINITION 1.5 [2, 17] The maps f : X → X and F : X → B(X) are
δ−compatible if

lim
n→∞

δ(Ffxn, fFxn) = 0,
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whenever {xn} is a sequence in X such that

Ffxn ∈ B(X), fxn → t,

and Fxn → {t} for some t ∈ X.

DEFINITION 1.6 [2, 18] the Maps f : X → X and F : X → B(X) are
subcompatible if they commute at coincidence points;
i.e., for each point u ∈ X such that

Fu = {fu}, we have Ffu = fFu.

DEFINITION 1.7 [2, 5] The maps f : X → X and F : X → B(X)
are said to be D-maps iff there exists a sequence {xn} in X such that
for some t ∈ X

lim
n→∞

fxn = t and lim
n→∞

Fxn = {t}.

DEFINITION 1.8 [25] Let f : X → X and T : X → CB(X) be a single and
multivalued mapping respectively:
1. A point x ∈ X is called a fixed point of f and T iff fx = x and x ∈ Tx,
the set of all fixed points of f and T is called F (f) and F (T ) respectively.
2. A point x ∈ X is said to be a coincidence point of f and T iff fx ∈ Tx,
the set of all coincidence points of f and T is denoted by C(f, T ).
3. A point x ∈ X is called a common fixed point of f and T iff x = fx ∈ Tx,
the set of all common fixed points of f and T is denoted by F (f, T ).

DEFINITION 1.9 [25, 12] The mappings f : X → X and A : X → CB(X)
are said to be weakly compatible if

fAx = Afx for all x ∈ C(f,A).

Definition 1.10 [25, 10] Let f : X → X and g :X → X .The pair (f, g)
satisfies property (E.A) if there exist the sequence {xn} in X such that

(1.1) lim
n→∞

fxn = lim
n→∞

g xn = z

for some z ∈ X.

DEFINITION 1.11 [25, 16] Let f, g, A,B : X → X. The pair (f, g) and
(A,B) satisfy a common property (E.A) if there exist sequences {xn} and {yn} in
X such that

(1.2) lim
n→∞

fxn = lim
n→∞

gxn = lim
n→∞

Ayn = lim
n→∞

Byn = z ∈ X.

REMARK 1.1 [25] If A = f , B = g and {xn}={yn} in (2), then we get the
definition of property (E.A).

DEFINITION 1.12 [25, 22] Let f, g : X → X. A point z ∈ X is said to be
a weak tangent point to (f, g) if there exists sequences {xn} and {yn} in X such
that

(1.3) lim
n→∞

fxn = lim
n→∞

gyn = z ∈ X.
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REMARK 1.2 [25] If {xn} = {yn} in (3), we get the definition of property
(E.A).

DEFINITION 1.13 [25, 22] Let f, g, A,B : X → X. The pair (f, g) is called
tangential with respect to the pair (A,B) if there exists sequences{xn} and {yn}
in X such that

(1.4) lim
n→∞

fxn = lim
n→∞

gyn = lim
n→∞

Axn = lim
n→∞

Byn = z ∈ X.

DEFINITION 1.14 [25] Let f, g : X → X, and A,B : X → CB(X).
The pair (f, g) is called tangential with respect to the pair (A,B) if there exists

two sequences{xn} and {yn} in X such that

(1.5) lim
n→∞

fxn = lim
n→∞

gyn = z,

for some z ∈ X, then

(1.6) z ∈ lim
n→∞

Axn = lim
n→∞

Byn ∈ CB(X)

EXAMPLE 1.1 [25] Let (R+, d) be a metric space with usual metric d,
f, g : R+ → R+ and A,B : R+ → CB(R+) mappings defined by

fx = x+ 1, gx = x+ 2, Ax=[x
2

2 , x2

2 + 1], and Bx = [x2 + 1, x2 + 2]
for all x ∈ R+.
Since there exists two sequences xn=2+ 1

n and yn=1+ 1
n such that

lim
n→∞

fxn = lim
n→∞

gyn = 3 and 3 ∈ [2, 3] = lim
n→∞

Axn = lim
n→∞

Byn.

Thus the pair (f, g) is tangential with respect to the pair (A,B).

DEFINITION 1.15 [25] Let f : X → X. and A : X → CB(X). The map-
ping f is called tangential with respect to the pair A if there exists two sequences
{xn} and {yn} in X such that

(1.7) lim
n→∞

fxn = lim
n→∞

fyn = z

for some z ∈ X, then

(1.8) z ∈ lim
n→∞

Axn = lim
n→∞

Ayn ∈ CB(X).

EXAMPLE 1.2 [25] Let (R+, d) be a metric space with usual metric d,
f : R+ → R+ and A : R+ → CB(R+) mappings defined by

fx = x+ 1 and Ax = [x2 + 1, x2 + 2].

Since there exists two sequences xn=1+ 1
n and yn=1− 1

n such that

lim
n→∞

fxn = lim
n→∞

fyn = 2 and 2 ∈ [2, 3] = lim
n→∞

Axn = lim
n→∞

Ayn,

therefore the mapping f is tangential with respect to the mapping A.

DEFINITION 1.16 [8] A function ϕ : [0,∞) → [0,∞) is said to be contrac-
tive modulus if ϕ(t) < t for t > 0.
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DEFINITION 1.17 [8] A real valued function ϕ defined on Xis said to be
upper semi continuous if

lim sup
n→∞

ϕ(tn) 6 ϕ(t),

for every sequence {tn} ∈ X with tn → t as n → ∞.

2. Main Results

THEOREM 2.1 Let S, T : X → X and P,Q : X → CB(X) satisfy

(
d(Sx,Qy)∫

0

φ(t)dt )r + (
d(Px,Ty)∫

0

φ(t)dt)r

(2.1) 6 ϕ((

max{d(Px,Qy),d(Px,Sx),d(Qy,Ty),
d(Px,Ty)+d(Qy,Sx)

2 }∫
0

φ(t)dt)r)

for all x, y ∈ X ,where r > 1, ϕ : R+ → R+ is an upper semi-continuous contractive
modulus and φ : R+ → R+ is a Lebesgue integrable mapping which is a summable
nonnegative and such that

(2.2)

ϵ∫
0

φ(t)dt > 0,

for each ϵ > 0. If the following conditions (a)-(d) holds:
(a) there exists a point z ∈ S(X) ∩ T (X) which is a weak tangent point
to (S, T ),
(b) (S, T ) is tangential with respect to (P,Q),
(c) S2a = Sa, T 2b = Tb and PSa = QTb for a ∈ C(S, P ) and b ∈ C(T,Q),
(d) the pairs (S, P ) and (T,Q) are weakly compatible.
Then S, T, P and Q have a unique common fixed point in X.

Proof . It is clearly from z ∈ S(X) ∩ T (X) that z = Su = Tv
for some u, v ∈ X.
Using that a point z is a weak tangent point to (S, T ), there exists
two sequences{xn} and {yn} in X such that

(2.3) lim
n→∞

Sxn = lim
n→∞

Tyn = z.

Since the pair (S, T ) is tangential with respect to (P,Q) and (2.3), we get

(2.4) z ∈ lim
n→∞

Pxn = lim
n→∞

Qyn ∈ CB(X).

Using the fact z = Su = Tv, (2.3) and (2.4), we have

(2.5) z = Su = Tv = lim
n→∞

Sxn = lim
n→∞

Tyn ∈ lim
n→∞

Pxn = lim
n→∞

Qyn.
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We show that z ∈ Qv. if not, then condition (2.1) implies

(
d(Sxn,Qv)∫

0

φ(t)dt)r + (
d(Pxn,Tv)∫

0

φ(t)dt)r

(2.6) 6 ϕ((

max{d(Pxn,Qv),d(Pxn,Sxn),d(Qv,Tv),
d(Pxn,Tv)+d(Qv,Sxn)

2 }∫
0

φ(t)dt)r)

Taking the limit as n → ∞, we have

(2.7) (

d(z,Qv)∫
0

φ(t)dt)r 6 ϕ((

max{d(z,Qv),0,d(Qv,z),
d(Qv,z)

2 }∫
0

φ(t)dt)r)

(2.8) =⇒ (

d(z,Qv)∫
0

φ(t)dt)r 6 ϕ((

d(z,Qv)∫
0

φ(t)dt)r) < (

d(z,Qv)∫
0

φ(t)dt)r

which is a contradiction. Therefore z ∈ Qv.
Again, we claim that z ∈ Pu. if not, then condition (2.1) implies

(
d(Su,Qyn)∫

0

φ(t)dt)r + (
d(Pu,Tyn)∫

0

φ(t)dt)r

(2.9) 6 ϕ((

max{d(Pu,Qyn),d(Pu,Su),d(Qyn,Tyn),
d(Pu,Tyn)+d(Qyn,Su)

2 }∫
0

φ(t)dt)r)

Letting n → ∞, we get

(2.10) (

d(Pu,z)∫
0

φ(t)dt)r 6 ϕ((

max{d(Pu,z),d(Pu,z),0,
d(Pu,z)

2 }∫
0

φ(t)dt)r)

(2.11) =⇒ (

d(Pu,z)∫
0

φ(t)dt)r 6 ϕ((

d(Pu,z)∫
0

φ(t)dt )r) <

d(Pu,z)∫
0

φ(t)dt,

which is a contradiction.Thus z ∈ Pu.
Now we conclude z = Tv ∈ Qv and z = Su ∈ Pu.It follows from
v ∈ C(T,Q), u ∈ C(S, P ) that S2u = Su, T 2v = Tv and PSu = QTv.
Hence z = Tv = T 2v = Tz , z = Su = S2u = Sz
and PSu = QTv =⇒ Pz = Qz.
Since the pair (T,Q) is weakly compatible, TQv = QTv.
Thus z ∈ Qv =⇒ Tz ∈ TQv = QTv = Qz = Pz.
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Similarly, we can prove that Sz ∈ Pz.
Consequently, z = Sz = Tz ∈ Qz ∈ Pz.
Therefore S, T, P and Q have a common fixed point in X .
The uniqueness of the common fixed point follows easily from conditions (2.1)
Therefore S, T, P and Q have a unique common fixed point in X .

Putting r = 1 in Theorem 2.1, we obtain the following Corollary:

COROLLARY 2.1 Let S, T : X → X and P,Q : X → CB(X) satisfy

d(Sx,Qy)∫
0

φ(t)dt+
d(Px,Ty)∫

0

φ(t)dt

(2.12) 6 ϕ(

max{d(Px,Qy),d(Px,Sx),d(Qy,Ty),
d(Px,Ty)+d(Qy,Sx)

2 }∫
0

φ(t)dt),

for all x, y ∈ X , where ϕ : R+ → R+ is an upper semi continuous
contractive modulus and φ : R+ → R+ is a Lebesgue integrable mapping
which is a summable nonnegative and such that

ϵ∫
0

φ(t)dt > 0

for each ϵ > 0. If the following conditions (a)-(d) holds:
(a) there exists a point z ∈ S(X) ∩ T (X) which is a weak tangent point
to (S, T ),
(b) (S, T ) is tangential with respect to (P,Q),
(c) S2a = Sa, T 2b = Tb and PSa = QTb for a ∈ C(S, P ) and b ∈ C(T,Q),
(d) the pairs (S, P ) and (T,Q) are weakly compatible.
Then S, T, P andQ have a unique common fixed point in X.

If φ(t) = 1 in Corollary 2.1, we get the following Corollary

Corollary 2.2 Let S, T : X → X and P,Q : X → CB(X) satisfy

d(Sx,Qy) + d(Px, Ty)

(2.13) 6 ϕ(max{d(Px,Qy), d(Px, Sx), d(Qy, Ty),
d(Px,Ty)+d(Qy,Sx)

2
,

for all x, y ∈ X where ϕ : R+ → R+ is an upper semi continuous-contractive
modulus If the following conditions (a)-(d) holds:
(a) there exists a point z ∈ S(X) ∩ T (X) which is a weak tangent point
to (S, T ),
(b) (S, T ) is tangential with respect to (P,Q),
(c) S2a = Sa, T 2b = Tb and PSa = QTb for a ∈ C(S, P ) and b ∈ C(T,Q),
(d) the pairs (S, P ) and (T,Q) are weakly compatible.
Then S, T, P, andQ have a unique common fixed point in X.
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If φ(t) = 1, S = T and P = Q in Corollary 2.1, we have the following Corollary:

Corollary 2.3 Let S : X → X and P : X → CB(X) satisfy

d(Sx, Py) + d(Px, Sy)

(2.14) 6 ϕ(max{d(Px, Py), d(Px, Sx), d(Py, Sy),
d(Px,Sy)+d(Py,Sx)

2
}),

for all x, y ∈ X where ϕ : R+ → R+ is an upper semi continuous
contractive modulus If the following conditions (a)-(d) holds:
(a) there exists a sequence {xn} in X such that lim

n→∞
Sxn ∈ X,

(b) S is tangential with respect to P ,
(c) S2a = Sa for a ∈ C(S, P ),
(d) the pairs (S, P ) is weakly compatible.
Then S and P have a unique common fixed point in X.

Now, we can rewrite the contractive condition of the Theorem 2.1 in the sense
of D−maps to obtain the following Theorem:

THEOREM 2.2 Let S, T be self-maps of a metric space (X, d)
and let P,Q be maps from X into B(X) satisfying the following conditions:

(1) S and T are surjective,

(2) (
d(Sx,Qy)∫

0

φ(t)dt)r + (
d(Px,Ty)∫

0

φ(t)dt )r

(2.15) 6 ϕ((

max{d(Px,Qy),d(Px,Sx),d(Qy,Ty),
d(Px,Ty)+d(Qy,Sx)

2 }∫
0

φ(t)dt)r),

for all x, y ∈ X, where r > 1, ϕ : R+ → R+ is an upper semi continuous
contractive modulus and φ : R+ → R+ is a Lebesgue integrable mapping
which is a summable nonnegative

and such that
ϵ∫
0

φ(t)dt > 0, for each ϵ > 0.

If either
(3) S and P are subcompatible D−maps; T and Q are subcompatible, or
(4) T and Q are subcompatible D−maps; S and P are subcompatible.
Then, S, T, P and Q have a unique common fixed point t ∈ X such that

Pt = Qt = {Tt} = {St} = {t}.
Proof : Suppose that S and P are D−maps, then, there is a sequence
{xn} in X such that lim

n→∞
Sxn = t and lim

n→∞
Pxn = {t} for some t ∈ X.

By condition (1), there exist points u, v in X such that t = Su = Tv.
First, we show that Qv = {Tv} = {t}. then, by (2.15) we get
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(
d(Sxn,Qv)∫

0

φ(t)dt)r + (
d(Pxn,Tv)∫

0

φ(t)dt)r

(2.16) 6 ϕ((

max{d(Pxn,Qv),d(Pxn,Sxn),d(Qv,Tv),
d(Pxn,Tv)+d(Qv,Sxn)

2 }∫
0

φ(t)dt)r).

Taking the limit as n → ∞, one obtains

(2.17) (

d(Tv,Qv)∫
0

φ(t)dt)r 6 ϕ((

max{d(Tv,Qv),0,d(Qv,Tv),
d(Qv,Tv)

2 }∫
0

φ(t)dt)r)

(2.18) =⇒ (

d(Tv,Qv)∫
0

φ(t)dt)r 6 ϕ((

d(Tv,Qv)∫
0

φ(t)dt)r) < (

d(Tv,Qv)∫
0

φ(t)dt)r,

a contradiction implies that Qv = {Tv} = {t}.
Since the pair (T,Q) is subcompatible, then QTv = TQv, i.e., Qt = Tt
We claim that Qt = {Tt} = {t}. if not, then by condition (2.15) we have

(
d(Sxn,Qt)∫

0

φ(t)dt)r + (
d(Pxn,T t)∫

0

φ(t)dt)r

(2.19) 6 ϕ((

max{d(Pxn,Qt),d(Pxn,Sxn),d(Qt,Tt),
d(Pxn,Tt)+d(Qt,Sxn)

2 }∫
0

φ(t)dt)r)

when n → ∞ we obtain,

(2.20)

(

d(t,Qt)∫
0

φ(t)dt)r + (

d(t,Qt)∫
0

φ(t)dt )r 6 ϕ((

max{d(t,Qt),0,0,
d(t,Qt)+d(Qt,t)

2 }∫
0

φ(t)dt)r)

(2.21) =⇒ 2(

d(t,Qt)∫
0

φ(t)dt)r 6 ϕ((

d(t,Qt)∫
0

φ(t)dt )r) < (

d(t,Qt)∫
0

φ(t)dt)r

which is a contradiction. Hence,

(2.22) Qt = {Tt} = {t}.

Next, we claim that Pu = {Su} = {t}. If not, then, by (23) we get
(letting x = u and y = t in (23))
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(
d(Su,Qt)∫

0

φ(t)dt)r + (
d(Pu,Tt)∫

0

φ(t)dt )r

(2.23) 6 ϕ((

max{d(Pu,Qt),d(Pu,Su),d(Qt,Tt),
d(Pu,Tt)+d(Qt,Su)

2 }∫
0

φ(t)dt)r)

(2.24) =⇒ (

d(Pu,t)∫
0

φ(t)dt)r 6 ϕ((

max{d(Pu,t),d(Pu,t),0,
d(Pu,t)

2 }∫
0

φ(t)dt)r)

(2.25) =⇒ ( int
d(Pu,t)
0 φ(t)dt)r 6 ((

d(Pu,t)∫
0

φ(t)dt)r) < (

d(Pu,t)∫
0

φ(t)dt)r,

which is a contradiction again. Thus Pu = {Su} = {t}.
Since the pair (P, S) is subcompatible, then PSu = {SPu},i.e., Pt = {St}.
Suppose that St ̸= t, then, the use of (2.15) gives (letting x = y = t in (2.15))

(
d(St,Qt)∫

0

φ(t)dt)r + (
d(Pt,T t)∫

0

φ(t)dt)r

6 ϕ((

max{d(Pt,Qt),d(Pt,St),d(Qt,T t),
d(Pt,Tt)+d(Qt,St)

2 }∫
0

φ(t)dt)r)

2(

d(St,t)∫
0

φ(t)dt)r 6 ϕ((

max{d(t,St),0,0,
d(St,t)+d(t,St)

2 }∫
0

φ(t)dt)r)

(2.26) 2(

d(St,t)∫
0

φ(t)dt)r 6 ϕ(

d(St,t)∫
0

φ(t)dt)r < (

d(St,t)∫
0

φ(t)dt)r,

this contradiction implies that St = t and hence

(2.27) Pt = {St} = {t}.
From (2.22) and (2.27), we have

Qt = Pt = {St} = {Tt} = {t}
Then, S, T, P and Q have a common fixed point. The uniqueness of the

common fixed point follows easily from condition (2). We get the same conclusion
if we consider (4) instead of (3).

if we put S = T and r = 1 in Theorem 2.2, we get the following Corollary:
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COROLLARY 2.4 Let (X, d) be a metric space and let S : X → X; P,Q :
X → B(X) be maps. Suppose that

(1) S is surjective,

(2) (
d(Sx,Qy)∫

0

φ(t)dt)r + (
d(Px,Sy)∫

0

φ(t)dt )r

6 ϕ((

max{d(Px,Qy),d(Px,Sx),d(Qy,Sy),
d(Px,Sy)+d(Qy,Sx)

2 }∫
0

φ(t)dt)r),

for all x, y ∈ X, and φ, ϕ are as in Theorem 2.2 If either,
(III) S and P are subcompatible D-maps; S and Q are subcompatible, or
(IV) S and Q are subcompatible D-maps; S and P are subcompatible.
Then S, P and Q have a unique common fixed point t ∈ X such that

Pt = Qt = {St} = {t}.
Now, we generalize Theorem 2.2 by giving the following Theorem:

THEOREM 2.3 Let S, T be self−maps of a metric space (X, d) and
let Pn, where n = 1, 2, 3, ... be maps from X into B(X) satisfying the following

conditions: (1) S and T are surjective,

(2) (
d(Sx,Pn+1y)∫

0

φ(t)dt)r + (
d(Pnx,Ty)∫

0

φ(t)dt)r

6 ϕ((

max{d(Pnx,Pn+1y),d(Pnx,Sx),d(Pn+1y,Ty),
d(Pnx,Ty)+d(Pn+1y,Sx)

2 }∫
0

φ(t)dt)r)

for all x, y ∈ X, and φ, ϕ and r are as in Theorem 2.2. If either, (3) S and
P1 are subcompatible D-maps; T and P2 are subcompatible, or (4) T and P2 are
subcompatible D-maps; S and P1are subcompatible. Then, S, T and Pn have a
unique common fixed point t ∈ X such that

Pnt = {Tt} = {St} = {t}. for n = 1, 2, 3, ...........
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