COMMON FIXED POINT THEOREMS FOR PAIRS OF SINGLE AND MULTIVALUED D-MAPS AND TANGENTIAL MULTIVALUED MAPPINGS SATISFYING CONTRACTIVE CONDITION OF INTEGRAL INEQUALITY

R. A. Rashwan and H. A. Hammad

Abstract

In $[2,25]$ the others defined a tangential property which can be used not only for a single mapping but also for a multi-valued mappings and the concept of subcomatiblity of them. Motivated by the results in [2, 25] we prove common fixed point theorems satisfying a contractive conditions for pairs of single and multivalued used D-maps and tangential multivalued mappings of integral inequality.

1. Introduction and Preliminaries

S.Banach proved a theorem which ensures under appropriate conditions, the existence and uniqueness of fixed point, in 1922 ([3],[4]). His results is called Banach's fixed point theorem. This theorem provides a method for solving a variety of applied problems in mathematical Science and Engineering. Banach contraction principle has been extended in many different directions, see [3, 24, 26-30], etc. In 1969, the Banach's Contraction Mapping Principle extended nicely to set valued or multivalued mappings, by Nadler [18]. Afterward, the study of fixed points for multi-valued contractions using the Hausdorff metric was initiated by Markin [17]. the study of fixed points of a functions satisfying certain contractive conditions has been at the center of vigorous research activity, because it has a wide range

[^0]of application in different area such as, variational, linear inequalities, differential equations, control theory, optimization and parameterize estimation problems.

In this paper, (X, d) denotes a metric space, $C B(X)$, the class of all nonempty bounded closed subsets of X and $B(X)$, the class of all nonempty bounded subsets of X, also \mathbb{R}_{+}denotes the set of nonnegative real numbers. Sessa [23] introduced the notion of weak commutativity which generalized the notion of commutativity. Jungck [10] gave a generalization of weak commutativity by introducing the concept of compatibility later on. In [11], the others introduced the concept of compatible maps of type (A) to generalize weakly commuting maps. Pathak and Khan [21] introduced the notion of compatible maps of type (B). to extending type (A). In [19], the concept of compatible maps of type (P) was introduced and compared with compatible and compatible maps of type (A). In 1998, Pathak, Cho, Kang and Madharia [20] defined the notion of compatible maps of type (C) as another extension of compatible maps of type (A). Jungck [9] generalized all the concepts of compatibility by giving the notion of weak compatibility (subcompatibility). In [13], the authors extended the concept of compatible maps to the setting of single and multivlued maps by giving the notion of δ-compatible maps. In [12], the authors extended the definition of weak compatibility to the setting of single and multivalued maps by introducing the concept of subcompatible maps. Djoudi and khemis [5] introduced the notion of D-maps which is a generalization of δ-compatible maps.

Let (X, d) be a metric space and let $B(X)$ be the class of all nonempty
bounded subsets of X. For all A, B in $B(X)$, define

$$
\delta(A, B)=\sup \{d(a, b): a \in A, b \in B\} .
$$

If $A=\{a\}$, we write $\delta(A, B)=\delta(a, B)$. Also, if $B=\{b\}$,
it yields that

$$
\delta(A, B)=d(a, b)
$$

From the definition of $\delta(A, B)$, for all A, B, C in $B(X)$
it follows that

$$
\begin{gathered}
\delta(A, B)=\delta(B, A)>0, \\
\delta(A, B) \leqslant \delta(A, C)+\delta(C, B), \\
\delta(A, B)=0 \text { iff } A=B=\{a\}
\end{gathered}
$$

DEFINITION $1.1[2,6]$ A sequence $\left\{A_{n}\right\}$ of nonempty subsets of X is said to be convergent to a subset A of X if: for each point $a \in A$ is the limit of a convergent sequence $\left\{a_{n}\right\}$, where $a_{n} \in A_{n}$ for $n \in N$.

LEMMA $1.1[2,6,7]$ If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are sequences in $B(X)$ converging to A and B in $B(X)$, respectively, then the sequence $\left\{\delta\left(A_{n}, B_{n}\right)\right\}$ converges to $\delta(A, B)$.

LEMMA $1.2[2,7]$ Let $\left\{A_{n}\right\}$ be a sequence in $B(X)$ and y be a point in X such that $\delta\left(A_{n}, y\right) \rightarrow 0$, Then the sequence $\left\{A_{n}\right\}$ converges to the set $\{y\}$ in $B(X)$.

DEFINITION $1.2[2,20]$ The self-maps f and g of a metric space X are said to be weakly commuting if

$$
d(f g x, g f x) \leqslant d(g x, f x) \text { for all } x \in X .
$$

DEFINITION $1.3[2,10]$ The self-maps f and g of a metric space X are said to be:
(1) compatible if

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0,
$$

(2) compatible of type (A) if

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g^{2} x_{n}\right)=0 \text { and } \lim _{n \rightarrow \infty} d\left(g f x_{n}, f^{2} x_{n}\right)=0
$$

(3) compatible of type (B) if

$$
\begin{aligned}
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g^{2} x_{n}\right) & \leqslant \frac{1}{2}\left[\lim _{n \rightarrow \infty} d\left(f g x_{n}, f t\right)+\lim _{n \rightarrow \infty} d\left(f t, f^{2} x_{n}\right)\right], \\
\lim _{n \rightarrow \infty} d\left(g f x_{n}, f^{2} x_{n}\right) & \leqslant \frac{1}{2}\left[\lim _{n \rightarrow \infty} d\left(g f x_{n}, g t\right)+\lim _{n \rightarrow \infty} d\left(g t, g^{2} x_{n}\right)\right]
\end{aligned}
$$

(4) compatible of type (C) if

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d\left(f g x_{n}, g^{2} x_{n}\right) \leqslant \frac{1}{3}\left[\lim _{n \rightarrow \infty} d\left(f g x_{n}, f t\right)\right. \\
&\left.+\lim _{n \rightarrow \infty} d\left(f t, f^{2} x_{n}\right)+\lim _{n \rightarrow \infty} d\left(f t, g^{2} x_{n}\right)\right], \\
& \lim _{n \rightarrow \infty} d\left(g f x_{n}, f^{2} x_{n}\right) \leqslant \frac{1}{3}\left[\lim _{n \rightarrow \infty} d\left(g f x_{n}, g t\right)\right. \\
&\left.+\lim _{n \rightarrow \infty} d\left(g t, g^{2} x_{n}\right)+\lim _{n \rightarrow \infty} d\left(g t, f^{2} x_{n}\right)\right],
\end{aligned}
$$

(5) compatible of type (P) if

$$
\lim _{n \rightarrow \infty} d\left(f^{2} x_{n}, g^{2} x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t
$$

for some $t \in X$.
DEFINITION $1.4[2,16]$ The self-maps f and g of a metric space X are called weakly compatible if $f x=g x, x \in X$ implies $f g x=g f x$.

DEFINITION $1.5[2,17]$ The maps $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are δ-compatible if

$$
\lim _{n \rightarrow \infty} \delta\left(F f x_{n}, f F x_{n}\right)=0,
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
F f x_{n} \in B(X), f x_{n} \rightarrow t
$$

and $F x_{n} \rightarrow\{t\}$ for some $t \in X$.
DEFINITION $1.6[2,18]$ the Maps $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are subcompatible if they commute at coincidence points; i.e., for each point $u \in X$ such that

$$
F u=\{f u\}, \text { we have } F f u=f F u .
$$

DEFINITION $1.7[2,5]$ The maps $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are said to be D-maps iff there exists a sequence $\left\{x_{n}\right\}$ in X such that for some $t \in X$

$$
\lim _{n \rightarrow \infty} f x_{n}=t \text { and } \lim _{n \rightarrow \infty} F x_{n}=\{t\}
$$

DEFINITION 1.8 [25] Let $f: X \rightarrow X$ and $T: X \rightarrow C B(X)$ be a single and multivalued mapping respectively:

1. A point $x \in X$ is called a fixed point of f and T iff $f x=x$ and $x \in T x$, the set of all fixed points of f and T is called $F(f)$ and $F(T)$ respectively. 2. A point $x \in X$ is said to be a coincidence point of f and T iff $f x \in T x$, the set of all coincidence points of f and T is denoted by $C(f, T)$.
2. A point $x \in X$ is called a common fixed point of f and T iff $x=f x \in T x$, the set of all common fixed points of f and T is denoted by $F(f, T)$.

DEFINITION $1.9[25,12]$ The mappings $f: X \rightarrow X$ and $A: X \rightarrow C B(X)$ are said to be weakly compatible if

$$
f A x=A f x \text { for all } x \in C(f, A) .
$$

Definition $1.10[25,10]$ Let $f: X \rightarrow X$ and $g: X \rightarrow X$. The pair (f, g) satisfies property (E.A) if there exist the sequence $\left\{x_{n}\right\}$ in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z \tag{1.1}
\end{equation*}
$$

for some $z \in X$.
DEFINITION $1.11[25,16]$ Let $f, g, A, B: X \rightarrow X$. The pair (f, g) and (A, B) satisfy a common property (E.A) if there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=\lim _{n \rightarrow \infty} A y_{n}=\lim _{n \rightarrow \infty} B y_{n}=z \in X \tag{1.2}
\end{equation*}
$$

REMARK 1.1 [25] If $A=f, B=g$ and $\left\{x_{n}\right\}=\left\{y_{n}\right\}$ in (2), then we get the definition of property (E.A).

DEFINITION $1.12[25,22]$ Let $f, g: X \rightarrow X$. A point $z \in X$ is said to be a weak tangent point to (f, g) if there exists sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g y_{n}=z \in X \tag{1.3}
\end{equation*}
$$

REMARK 1.2 [25] If $\left\{x_{n}\right\}=\left\{y_{n}\right\}$ in (3), we get the definition of property (E.A).

DEFINITION $1.13[25,22]$ Let $f, g, A, B: X \rightarrow X$. The pair (f, g) is called tangential with respect to the pair (A, B) if there exists sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g y_{n}=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B y_{n}=z \in X \tag{1.4}
\end{equation*}
$$

DEFINITION 1.14 [25] Let $f, g: X \rightarrow X$, and $A, B: X \rightarrow C B(X)$.
The pair (f, g) is called tangential with respect to the pair (A, B) if there exists two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g y_{n}=z, \tag{1.5}
\end{equation*}
$$

for some $z \in X$, then

$$
\begin{equation*}
z \in \lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B y_{n} \in C B(X) \tag{1.6}
\end{equation*}
$$

EXAMPLE $1.1[25]$ Let $\left(\mathbb{R}_{+}, d\right)$ be a metric space with usual metric d,
$f, g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$and $A, B: \mathbb{R}_{+} \rightarrow C B\left(\mathbb{R}_{+}\right)$mappings defined by
$f x=x+1, g x=x+2, A x=\left[\frac{x^{2}}{2}, \frac{x^{2}}{2}+1\right]$, and $B x=\left[x^{2}+1, x^{2}+2\right]$
for all $x \in \mathbb{R}_{+}$.
Since there exists two sequences $x_{n}=2+\frac{1}{n}$ and $y_{n}=1+\frac{1}{n}$ such that
$\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g y_{n}=3$ and $3 \in[2,3]=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B y_{n}$.
Thus the pair (f, g) is tangential with respect to the pair (A, B).
DEFINITION 1.15 [25] Let $f: X \rightarrow X$. and $A: X \rightarrow C B(X)$. The mapping f is called tangential with respect to the pair A if there exists two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} f y_{n}=z \tag{1.7}
\end{equation*}
$$

for some $z \in X$, then

$$
\begin{equation*}
z \in \lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} A y_{n} \in C B(X) \tag{1.8}
\end{equation*}
$$

EXAMPLE $1.2[25]$ Let $\left(\mathbb{R}_{+}, d\right)$ be a metric space with usual metric d,
$f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$and $A: \mathbb{R}_{+} \rightarrow C B\left(\mathbb{R}_{+}\right)$mappings defined by

$$
f x=x+1 \text { and } A x=\left[x^{2}+1, x^{2}+2\right] .
$$

Since there exists two sequences $x_{n}=1+\frac{1}{n}$ and $y_{n}=1-\frac{1}{n}$ such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} f y_{n}=2 \text { and } 2 \in[2,3]=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} A y_{n}
$$

therefore the mapping f is tangential with respect to the mapping A.
DEFINITION 1.16 [8] A function $\phi:[0, \infty) \rightarrow[0, \infty)$ is said to be contractive modulus if $\phi(t)<t$ for $t>0$.

DEFINITION 1.17 [8] A real valued function ϕ defined on X is said to be upper semi continuous if

$$
\limsup _{n \rightarrow \infty} \phi\left(t_{n}\right) \leqslant \phi(t)
$$

for every sequence $\left\{t_{n}\right\} \in X$ with $t_{n} \rightarrow t$ as $n \rightarrow \infty$.

2. Main Results

THEOREM 2.1 Let $S, T: X \rightarrow X$ and $P, Q: X \rightarrow C B(X)$ satisfy

$$
\begin{align*}
& \left(\int_{0}^{d(S x, Q y)} \varphi(t) d t\right)^{r}+\left(\int_{0}^{d(P x, T y)} \varphi(t) d t\right)^{r} \\
& \quad \leqslant \phi\left(\left(\quad \int_{0}^{\max \left\{d(P x, Q y), d(P x, S x), d(Q y, T y), \frac{d(P x, T y)+d(Q y, S x)}{2}\right\}} \varphi(t) d t\right)^{r}\right)
\end{align*}
$$

for all $x, y \in X$, where $r \geqslant 1, \phi: R_{+} \rightarrow R_{+}$is an upper semi-continuous contractive modulus and $\varphi: R_{+} \rightarrow R_{+}$is a Lebesgue integrable mapping which is a summable nonnegative and such that

$$
\begin{equation*}
\int_{0}^{\epsilon} \varphi(t) d t>0 \tag{2.2}
\end{equation*}
$$

for each $\epsilon>0$. If the following conditions (a)-(d) holds:
(a) there exists a point $z \in S(X) \cap T(X)$ which is a weak tangent point to (S, T),
(b) (S, T) is tangential with respect to (P, Q),
(c) $S^{2} a=S a, T^{2} b=T b$ and $P S a=Q T b$ for $a \in C(S, P)$ and $b \in C(T, Q)$,
(d) the pairs (S, P) and (T, Q) are weakly compatible.

Then S, T, P and Q have a unique common fixed point in X.
Proof. It is clearly from $z \in S(X) \cap T(X)$ that $z=S u=T v$ for some $u, v \in X$.
Using that a point z is a weak tangent point to (S, T), there exists two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T y_{n}=z \tag{2.3}
\end{equation*}
$$

Since the pair (S, T) is tangential with respect to (P, Q) and (2.3), we get

$$
\begin{equation*}
z \in \lim _{n \rightarrow \infty} P x_{n}=\lim _{n \rightarrow \infty} Q y_{n} \in C B(X) \tag{2.4}
\end{equation*}
$$

Using the fact $z=S u=T v,(2.3)$ and (2.4), we have

$$
\begin{equation*}
z=S u=T v=\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T y_{n} \in \lim _{n \rightarrow \infty} P x_{n}=\lim _{n \rightarrow \infty} Q y_{n} \tag{2.5}
\end{equation*}
$$

We show that $z \in Q v$. if not, then condition (2.1) implies

$$
\begin{align*}
& \left(\int_{0}^{d\left(S x_{n}, Q v\right)} \varphi(t) d t\right)^{r}+\left(\int_{0}^{d\left(P x_{n}, T v\right)} \varphi(t) d t\right)^{r} \\
& \quad \max \left\{d\left(P x_{n}, Q v\right), d\left(P x_{n}, S x_{n}\right), d(Q v, T v), \frac{d\left(P x_{n}, T v\right)+d\left(Q v, S x_{n}\right)}{2}\right\} \\
& \quad \leqslant \phi\left(\left(\int_{0} \varphi(t) d t\right)^{r}\right) \tag{2.6}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$, we have

$$
\left.\begin{array}{c}
\left(\int_{0}^{d(z, Q v)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\left(\int_{0}^{\max \left\{d(z, Q v), 0, d(Q v, z), \frac{d(Q v, z)}{2}\right\}} \varphi\right.\right. \\
\left.\Longrightarrow\left(\int_{0}^{d(z, Q v)} \varphi(t) d t\right)^{r}\right) \tag{2.8}\\
\Longrightarrow
\end{array} \int_{0}^{d(z, Q v)} \varphi t\right)^{r} \leqslant \phi\left(\left(\int_{0}^{d(z, Q v)} \varphi(t) d t\right)^{r}\right)<\left(\int_{0}^{d} \varphi(t) d t\right)^{r} .
$$

which is a contradiction. Therefore $z \in Q v$.
Again, we claim that $z \in P u$. if not, then condition (2.1) implies

$$
\begin{align*}
& \left(\int_{0}^{d\left(S u, Q y_{n}\right)} \varphi(t) d t\right)^{r}+\left(\int_{0}^{d\left(P u, T y_{n}\right)} \varphi(t) d t\right)^{r} \\
& \max \left\{d\left(P u, Q y_{n}\right), d(P u, S u), d\left(Q y_{n}, T y_{n}\right), \frac{d\left(P u, T y_{n}\right)+d\left(Q y_{n}, S u\right)}{2}\right\} \\
& \leqslant \phi((\tag{2.9}\\
& \left.\left.\int_{0}^{2} \varphi(t) d t\right)^{r}\right)
\end{align*}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{align*}
& \left(\int_{0}^{d(P u, z)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\left(\int_{0}^{\max \left\{d(P u, z), d(P u, z), 0, \frac{d(P u, z)}{2}\right\}} \varphi(t) d t\right)^{r}\right) \tag{2.10}\\
& \quad \Longrightarrow\left(\int_{0}^{d(P u, z)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\left(\int_{0}^{d(P u, z)} \varphi(t) d t\right)^{r}\right)<\int_{0}^{d(P u, z)} \varphi(t) d t,
\end{align*}
$$

which is a contradiction. Thus $z \in P u$.
Now we conclude $z=T v \in Q v$ and $z=S u \in P u$.It follows from $v \in C(T, Q), u \in C(S, P)$ that $S^{2} u=S u, T^{2} v=T v$ and $P S u=Q T v$.
Hence $z=T v=T^{2} v=T z, z=S u=S^{2} u=S z$
and $P S u=Q T v \Longrightarrow P z=Q z$.
Since the pair (T, Q) is weakly compatible, $T Q v=Q T v$.
Thus $z \in Q v \Longrightarrow T z \in T Q v=Q T v=Q z=P z$.

Similarly, we can prove that $S z \in P z$.
Consequently, $z=S z=T z \in Q z \in P z$.
Therefore S, T, P and Q have a common fixed point in X.
The uniqueness of the common fixed point follows easily from conditions (2.1) Therefore S, T, P and Q have a unique common fixed point in X.

Putting $r=1$ in Theorem 2.1, we obtain the following Corollary:
COROLLARY 2.1 Let $S, T: X \rightarrow X$ and $P, Q: X \rightarrow C B(X)$ satisfy

$$
\begin{align*}
& \int_{0}^{d(S x, Q y)} \varphi(t) d t+\int_{0}^{d(P x, T y)} \varphi(t) d t \\
& 2) \quad \max \left\{d(P x, Q y), d(P x, S x), d(Q y, T y), \frac{d(P x, T y)+d(Q y, S x)}{2}\right\} \\
& \left.2 \int_{0} \quad \varphi(t) d t\right), \tag{2.12}
\end{align*}
$$

for all $x, y \in X$, where $\phi: R_{+} \rightarrow R_{+}$is an upper semi continuous contractive modulus and $\varphi: R_{+} \rightarrow R_{+}$is a Lebesgue integrable mapping which is a summable nonnegative and such that

$$
\int_{0}^{\epsilon} \varphi(t) d t>0
$$

for each $\epsilon>0$. If the following conditions (a)-(d) holds:
(a) there exists a point $z \in S(X) \cap T(X)$ which is a weak tangent point
to (S, T),
(b) (S, T) is tangential with respect to (P, Q),
(c) $S^{2} a=S a, T^{2} b=T b$ and $P S a=Q T b$ for $a \in C(S, P)$ and $b \in C(T, Q)$,
(d) the pairs (S, P) and (T, Q) are weakly compatible.

Then S, T, P and Q have a unique common fixed point in X.
If $\varphi(t)=1$ in Corollary 2.1, we get the following Corollary
Corollary 2.2 Let $S, T: X \rightarrow X$ and $P, Q: X \rightarrow C B(X)$ satisfy
$d(S x, Q y)+d(P x, T y)$

$$
\begin{equation*}
\leqslant \phi\left(\operatorname { m a x } \left\{d(P x, Q y), d(P x, S x), d(Q y, T y), \frac{d(P x, T y)+d(Q y, S x)}{2}\right.\right. \tag{2.13}
\end{equation*}
$$

for all $x, y \in X$ where $\phi: R_{+} \rightarrow R_{+}$is an upper semi continuous-contractive modulus If the following conditions (a)-(d) holds:
(a) there exists a point $z \in S(X) \cap T(X)$ which is a weak tangent point to (S, T),
(b) (S, T) is tangential with respect to (P, Q),
(c) $S^{2} a=S a, T^{2} b=T b$ and $P S a=Q T b$ for $a \in C(S, P)$ and $b \in C(T, Q)$,
(d) the pairs (S, P) and (T, Q) are weakly compatible.

Then S, T, P, and Q have a unique common fixed point in X.

If $\varphi(t)=1, S=T$ and $P=Q$ in Corollary 2.1, we have the following Corollary:
Corollary 2.3 Let $S: X \rightarrow X$ and $P: X \rightarrow C B(X)$ satisfy
$d(S x, P y)+d(P x, S y)$

$$
\begin{equation*}
\leqslant \phi\left(\max \left\{d(P x, P y), d(P x, S x), d(P y, S y), \frac{d(P x, S y)+d(P y, S x)}{2}\right\}\right) \tag{2.14}
\end{equation*}
$$

for all $x, y \in X$ where $\phi: R_{+} \rightarrow R_{+}$is an upper semi continuous contractive modulus If the following conditions (a)-(d) holds:
(a) there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} S x_{n} \in X$,
(b) S is tangential with respect to P,
(c) $S^{2} a=S a$ for $a \in C(S, P)$,
(d) the pairs (S, P) is weakly compatible.

Then S and P have a unique common fixed point in X.
Now, we can rewrite the contractive condition of the Theorem 2.1 in the sense of D-maps to obtain the following Theorem:

THEOREM 2.2 Let S, T be self-maps of a metric space (X, d) and let P, Q be maps from X into $B(X)$ satisfying the following conditions:
(1) S and T are surjective,

for all $x, y \in X$, where $r \geqslant 1, \phi: R_{+} \rightarrow R_{+}$is an upper semi continuous contractive modulus and $\varphi: R_{+} \rightarrow R_{+}$is a Lebesgue integrable mapping which is a summable nonnegative
and such that $\int_{0}^{\epsilon} \varphi(t) d t>0$, for each $\epsilon>0$.
If either
(3) S and P are subcompatible D-maps; T and Q are subcompatible, or
(4) T and Q are subcompatible D-maps; S and P are subcompatible.

Then, S, T, P and Q have a unique common fixed point $t \in X$ such that

$$
P t=Q t=\{T t\}=\{S t\}=\{t\}
$$

Proof : Suppose that S and P are D-maps, then, there is a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} S x_{n}=t$ and $\lim _{n \rightarrow \infty} P x_{n}=\{t\}$ for some $t \in X$. By condition (1), there exist points u, v in X such that $t=S u=T v$. First, we show that $Q v=\{T v\}=\{t\}$. then, by (2.15) we get

Taking the limit as $n \rightarrow \infty$, one obtains

$$
\begin{gather*}
\left.\int_{0}^{d(T v, Q v)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\left(\int_{0}^{\max \left\{d(T v, Q v), 0, d(Q v, T v), \frac{d(Q v, T v)}{2}\right\}}\right)\right. \tag{2.17}\\
\left.\Longrightarrow\left(\int_{0}^{d(T v, Q v)} \varphi(t) d t\right)^{r}\right) \\
\Longrightarrow(t) d t)^{r} \leqslant \phi\left(\left(\int_{0}^{d(T v, Q v)} \varphi(t) d t\right)^{r}\right)<\left(\int_{0}^{d(T v, Q v)} \varphi(t) d t\right)^{r}
\end{gather*}
$$

a contradiction implies that $Q v=\{T v\}=\{t\}$.
Since the pair (T, Q) is subcompatible, then $Q T v=T Q v$, i.e., $Q t=T t$
We claim that $Q t=\{T t\}=\{t\}$. if not, then by condition (2.15) we have

$$
\left.\left.\begin{array}{l}
\left(\int_{0}^{d\left(S x_{n}, Q t\right)} \varphi(t) d t\right)^{r}+\left(\int_{0}^{d\left(P x_{n}, T t\right)} \varphi(t) d t\right)^{r} \\
9) \quad \max \left\{d\left(P x_{n}, Q t\right), d\left(P x_{n}, S x_{n}\right), d(Q t, T t), \frac{d\left(P x_{n}, T t\right)+d\left(Q t, S x_{n}\right)}{2}\right\} \\
\quad \leqslant \phi((
\end{array} \int_{0} \varphi(t) d t\right)^{r}\right) .
$$

when $n \rightarrow \infty$ we obtain,

$$
\begin{align*}
& \left(\int_{0}^{d(t, Q t)} \varphi(t) d t\right)^{r}+\left(\int_{0}^{d(t, Q t)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\left(\int_{0}^{\max \left\{d(t, Q t), 0,0, \frac{d(t, Q t)+d(Q t, t)}{2}\right\}}\right.\right. \tag{2.20}\\
& 21) \quad \Longrightarrow 2\left(\int_{0}^{d(t, Q t)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\left(\int_{0}^{d(t, Q t)} \varphi(t) d t\right)^{r}\right)<\left(\int_{0}^{r} \varphi(t) d t\right)^{r} \tag{2.21}
\end{align*}
$$

which is a contradiction. Hence,

$$
\begin{equation*}
Q t=\{T t\}=\{t\} \tag{2.22}
\end{equation*}
$$

Next, we claim that $P u=\{S u\}=\{t\}$. If not, then, by (23) we get (letting $x=u$ and $y=t$ in (23))

$$
\begin{align*}
& \left(\int_{0}^{d(S u, Q t)} \varphi(t) d t\right)^{r}+\left(\int_{0}^{d(P u, T t)} \varphi(t) d t\right)^{r} \\
& \max \left\{d(P u, Q t), d(P u, S u), d(Q t, T t), \frac{d(P u, T t)+d(Q t, S u)}{2}\right\} \tag{2.23}\\
& \Longrightarrow\left(\int_{0}^{d(P u, t)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\left(\int_{0}^{\max \left\{d(P u, t), d(P u, t), 0, \frac{d(P u, t)}{2}\right\}} \varphi(t) d t\right)^{r}\right) \tag{2.24}\\
& \Longrightarrow\left(i n t_{0}^{d(P u, t)} \varphi(t) d t\right)^{r} \leqslant\left(\left(\int_{0}^{d(P u, t)} \varphi(t) d t\right)^{r}\right)<\left(\int_{0}^{d(P u, t)} \varphi(t) d t\right)^{r},
\end{align*}
$$

which is a contradiction again. Thus $P u=\{S u\}=\{t\}$.
Since the pair (P, S) is subcompatible, then $P S u=\{S P u\}$,i.e., $P t=\{S t\}$.
Suppose that $S t \neq t$, then, the use of (2.15) gives (letting $x=y=t$ in (2.15))

$$
\begin{aligned}
& \left(\int_{0}^{d(S t, Q t)} \varphi(t) d t\right)^{r}+\left(\int_{0}^{d(P t, T t)} \varphi(t) d t\right)^{r} \\
& \quad \leqslant \phi\left(\left(\int_{0}^{\max \left\{d(P t, Q t), d(P t, S t), d(Q t, T t), \frac{d(P t, T t)+d(Q t, S t)}{2}\right\}} \max _{\max \left\{d(t, S t), 0,0, \frac{d(S t, t)+d(t, S t)}{2}\right\}} \varphi(t) d t\right)^{r}\right) \\
& \left.2\left(\int_{0}^{d(S t, t)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\left(\int_{0}\right) \varphi(t) d t\right)^{r}\right) \\
& 6) \quad 2\left(\int_{0}^{d(S t, t)} \varphi(t) d t\right)^{r} \leqslant \phi\left(\int_{0}^{d(S t, t)} \varphi(t) d t\right)^{r}<\left(\int_{0}^{d(S t, t)} \varphi(t) d t\right)^{r},
\end{aligned}
$$

this contradiction implies that $S t=t$ and hence

$$
\begin{equation*}
P t=\{S t\}=\{t\} . \tag{2.27}
\end{equation*}
$$

From (2.22) and (2.27), we have

$$
Q t=P t=\{S t\}=\{T t\}=\{t\}
$$

Then, S, T, P and Q have a common fixed point. The uniqueness of the common fixed point follows easily from condition (2). We get the same conclusion if we consider (4) instead of (3).
if we put $S=T$ and $r=1$ in Theorem 2.2, we get the following Corollary:

COROLLARY 2.4 Let (X, d) be a metric space and let $S: X \rightarrow X ; P, Q$: $X \rightarrow B(X)$ be maps. Suppose that
(1) S is surjective,
(2) $\left(\int_{0}^{d(S x, Q y)} \varphi(t) d t\right)^{r}+\left(\int_{0}^{d(P x, S y)} \varphi(t) d t\right)^{r}$

$$
\max \left\{d(P x, Q y), d(P x, S x), d(Q y, S y), \frac{d(P x, S y)+d(Q y, S x)}{2}\right\}
$$

$$
\leqslant \phi\left(\left(\quad \int_{0}^{r} \varphi(t) d t\right)^{r}\right)
$$

for all $x, y \in X$, and φ, ϕ are as in Theorem 2.2 If either,
(III) S and P are subcompatible D-maps; S and Q are subcompatible, or
(IV) S and Q are subcompatible D-maps; S and P are subcompatible.

Then S, P and Q have a unique common fixed point $t \in X$ such that

$$
P t=Q t=\{S t\}=\{t\} .
$$

Now, we generalize Theorem 2.2 by giving the following Theorem:

THEOREM 2.3 Let S, T be self-maps of a metric space (X, d) and let P_{n}, where $n=1,2,3, \ldots$ be maps from X into $B(X)$ satisfying the following conditions: (1) S and T are surjective,

for all $x, y \in X$, and φ, ϕ and r are as in Theorem 2.2. If either, (3) S and P_{1} are subcompatible D-maps; T and P_{2} are subcompatible, or (4) T and P_{2} are subcompatible D-maps; S and P_{1} are subcompatible. Then, S, T and P_{n} have a unique common fixed point $t \in X$ such that
$P_{n} t=\{T t\}=\{S t\}=\{t\}$. for $n=1,2,3, \ldots \ldots \ldots .$.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund Mathb, 3 (1922), 133-181.
[2] H. Bouhadjera and A. Djoudi, Common fixed point theorems for pairs of single and multivalued D-maps satisfying an integral type, Annales Mathematicae et Informaticae, 35 (2008), 43-59.
[3] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531-536.
[4] R. Caccioppoli, Un teorema generale sull esistenza di elementi uniti in un a trasformazione funzionale, Rend Accad Lincei, 11 (1930), 794-799.
[5] A. Djoudi and R. Khemis, Fixed points for set and single valued maps without continuity, Demonstratio Math.,38(3) (2005), 739-751.
[6] B. Fisher, Common fixed points of mappings and set-valued mappings, Rostock. Math. Kolloq., 18 (1981), 69-77.
[7] B. Fisher and S. Sessa, Two common fixed point theorems for weakly commuting mappings, Period. Math. Hungar., 20(3) (1989), 207-218.
[8] V. Gupta, A. Saini, R. Kumar, common fixed points for weakly compatible Maps in 2-metric space, Int. J. of Math. Archive,3(10) (2012), 3670-3675.
[9] J. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far. East J. Math. Sci., 4(2) (1996), 199-215.
[10] J. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci.9(4) (1986), 771-779.
[11] J. Jungck, P. P. Murthy and Y. J. Cho Compatible mappings of type (A) and common fixed points,Math. Japon.,38(2) (1993), 381-390.
[12] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math.,29(3) (1998), 227-238.
[13] G. Jungck and B. E. Rhoades,Some fixed point theorems for compatible maps. Internat. J. Math. Math. Sci.,16(3) (1993), 417-428.
[14] T. Kamaran, Coincidence and fixed points for hybrid strict contractions, J Math Anal Appl., 299 (2004), 235-241.
[15] T. Kamaran, Multivalued f-weakly Picard mappings, Int. J. Phys. Sci., 67 (2007), 2289-2296.
[16] Y. Liu, J. Wu, Z. Li, Common fixed points of single-valued and multi-valued maps, Int. J. Math. Math. Sci., 19 (2005), 3045-3055.
[17] J.T. Markin, Continuous dependence of fixed point sets, Proc. Am. Math. Soc.,38 (1973), 545-547.
[18] S.J. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475-488.
[19] H.K. Pathak, Y.J. Cho, S.M. Kang and B.S. Lee, Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, Matem-atiche (Catania),50(1) (1995), 15-33.
[20] H.K. Pathak, Y.J. Cho, S.M. Kang and B. Madharia, Compatible mappings of type (C) and common fixed point theorems of Gregus type, Demonstratio Math.,31(3)(1998), 499-518.
[21] H.K. Pathak and M.S. Khan, Compatible mappings of type (B) and common fixed point theorems of Gregus type, Czechoslovak Math. J.,45(4) (1995), 685-698.
[22] H.K. Pathak and N. Shahzad, Gregus type fixed point results for tangential mappings satisfying contractive conditions of integral type, Bull. Belg. Math. So.c Simon. Stevin., 16 (2009), 277-288.
[23] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., 32(46) (1982), 149-153.
[24] N. Shahzad,Invariant approximation and R-subweakly commuting maps, J. Math. Anal. Appl.,257 (2001), 39-45.
[25] W. Sintunavarat and P. Kumam, Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type, J. of Inequalities and App., 3 (2011).
[26] W. Sintunavarat and P. Kumam, Coincidence and common fixed points for hybrid strict contractions without the weaklycommuting condition, Appl. Math. Lett., 22 (2009) 1877-1881.
[27] W. Sintunavarat and P. Kumam, Gregus-type common fixed point theorems for tangential multi- valued mappings of integral type in metric spaces, Int. J. Math. Math. Sci., 26 (1983), 385-391.
[28] W. Sintunavarat and P. Kumam, Common fixed point theorems for hybrid generalized multivalued contraction mappings, Appl. Math. Lett.,25(1) (2012), 52-57.
[29] W. Sintunavarat and P. Kumam, Common xed point theorem for cyclic generalized multivalued contraction mappings, Appl. Math. Lett.,25(11) (2012), 1849-1855.
[30] P. Vijayaraju, B.E. Rhoades and R. Mohanraj, A fixed point theorem for a pair of mapps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 15 (2005), 2359-2364.

Received by editors 18.09.2013; Revised version 14.04.2014.
Available online 01.12.2014.
Department of Mathematics, Faculty of Science, Assuit University, Assuit 71516, EgYpt

E-mail address: rr_rashwan54@yahoo.com
Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt

E-mail address: h_elmagd89@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 47H10.
 Key words and phrases. Weakly compatible mappings, Property (E.A), Common property (E.A), Weak tangle point, Pair-wise tangential property, Commuting and weakly commuting maps, compatible and compatible maps of type (A), (B), (C) and (P), δ - compatible maps, subcompatible maps, D- maps, integral type, common fixed point theorems, metric space .

