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Abstract. In this paper, we define the concept of a closed element and dense
element in a Semi Heyting Almost Distributive Lattice (SHADL) L and derive

some properties of closed elements and dense elements of L. We also observe
that every SHADL is a pseudocomplemented ADL and that the set L∗ =
{x∗/x ∈ L} of all closed elements of an SHADL L, forms a Boolean algebra

with the operation ∨ defined as x ∨ y = (x∗ ∧ y∗)∗ for every x, y ∈ L∗ where,
x∗ = (x → 0) ∧m.

1. Introduction

The concept of an Almost Distributive Lattice (ADL) was introduced by U. M.
Swamy and G. C. Rao [10] as a common abstraction to most of the existing ring the-
oretic generalizations of a Boolean algebra on one hand and the class of distributive
lattices on the other. The concept of Heyting Almost Distributive Lattice (HADL)
was introduced as a generalization of a Heyting algebra and many fundamental
properties of HADLs were derived in our earlier paper [4]. Later, closed elements
and dense elements in Heyting Almost Distributive Lattices (HADL) were studied
by G. C. Rao and Berhanu Assaye in [5] and [6] respectively. The concept of a Semi
Heyting Almost Distributive Lattice (SHADL) as a generalization of a Semi Heyt-
ing algebra was introduced in our earlier paper [7]. In this paper we study some
properties of closed elements and dense elements of a SHADL. We also observe that
every SHADL is a pseudocomplemented ADL and the set L∗ = {x∗/x ∈ L} of all
closed elements of an SHADL L forms a Boolean algebra.
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2. Preliminaries

In this section we give some important definitions and results that are
frequently used for ready reference.

Definition 2.1. [10] An algebra (L,∨,∧, 0) of type (2, 2, 0) is called ADL if
it satisfies the following axioms: for all x, y, z ∈ L

(1) x ∨ 0 = x
(2) 0 ∧ x = 0
(3) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
(4) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(5) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
(6) (x ∨ y) ∧ y = y

Definition 2.2. [10] Let L be a non-empty set. Fix x0 ∈ L. For any x, y ∈ L,
define x∧ y = y, x∨ y = x if x ̸= x0, x0 ∧ y = x0 and x0 ∨ y = y. Then (L,∨,∧, x0)
is an ADL and it is called a discrete ADL. Alternately, discrete ADL is defined as
an ADL (L,∨,∧, 0) in which every x( ̸= 0) is maximal.

If (L,∨,∧, 0) is an ADL. For any x, y ∈ L, define x 6 y if and only if x = x∧y,
or equivalently x ∨ y = y, then 6 is a partial ordering on L.

Through out this section L stands for an ADL (L,∨,∧, 0) unless otherwise
specified. In the following theorem some important fundamental properties of an
ADL are given.

Theorem 2.1. [9] For any a, b, c ∈ L, we have the following

(1) a ∨ b = a ⇔ a ∧ b = b
(2) a ∨ b = b ⇔ a ∧ b = a
(3) a ∧ b = b ∧ a = a whenever a 6 b
(4) ∧ is associative in L
(5) a ∧ b ∧ c = b ∧ a ∧ c
(6) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(7) a ∧ b 6 b and a 6 a ∨ b
(8) a ∧ a = a and a ∨ a = a
(9) a ∧ 0 = 0 and 0 ∨ a = a
(10) if a 6 c and b 6 c, then a ∧ b = b ∧ a and a ∨ b = b ∨ a.

Definition 2.3. [11] Let L be an ADL. A unary operation ∗ on L is called a
pseudocomplementation on L if, for any x, y ∈ L, the following conditions hold:

(1) x ∧ y = 0 ⇔ x∗ ∧ y = y
(2) (x ∨ y)∗ = x∗ ∧ y∗

(3) x ∧ x∗ = 0

Definition 2.4. [4] Let (L,∨,∧, 0,m) be an ADL with a maximal element
m. Suppose → is a binary operation on L satisfying the following conditions for
all x, y, z ∈ L.

(1) x → x = m
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(2) (x → y) ∧ y = y
(3) x ∧ (x → y) = x ∧ y ∧m
(4) x → (y ∧ z) = (x → y) ∧ (x → z)
(5) (x ∨ y) → z = (x → z) ∧ (y → z)

Then (L,∨,∧,→, 0,m) is called a Heyting Almost Distributive Lattice (HADL).

Definition 2.5. [5] Let (L,∨,∧,→, 0,m) be a HADL. Define for any x ∈ L.
x∗ = (x → 0) and L∗ = {x∗/ x ∈ L}. Then an element of L∗ is called a closed
element of L. Also, for any x, y ∈ L∗. We define x∨y = (x∗ ∧ y∗)∗.

Definition 2.6. [6] Let (L,∨,∧,→, 0,m) be a HADL. Define
DL = {x ∈ L/ x∗ = 0}. Then an element of DL is called a dense element of L.

Definition 2.7. [8] An algebra (L,∨,∧,→, 0, 1) of type (2, 2, 2, 0, 0) is called
a Semi Heyting algebra if it satisfies the following:

(1) (L,∨,∧, 0, 1) is a lattice with 0, 1
(2) x ∧ (x → y) = x ∧ y
(3) x ∧ (y → z) = x ∧ (x ∧ y → x ∧ z)
(4) x → x = 1 for all x, y, z ∈ L

3. Closed and Dense Elements in Semi Heyting Almost Distributive
Lattices

We begin with the following definition of SHADL given in [7].

Definition 3.1. [7] Let (L,∨,∧, 0,m) be an ADL with a maximal element m.
Suppose there exists a binary operation → on L satisfying the following conditions:

(1) (x → x) ∧m = m
(2) x ∧ (x → y) = x ∧ y ∧m
(3) x ∧ (y → z) = x ∧ (x ∧ y → x ∧ z)
(4) (x → y) ∧m = x ∧m → y ∧m for all x, y, z ∈ L

Then (L,∨,∧,→, 0,m) is a Semi Heyting ADL (SHADL).

The following theorem which is taken from [7] will be used frequently in
this paper. Through out this section L denotes an SHADL.

Theorem 3.1. [7] For any a, b, c, d, x ∈ L we have the following

(1) m → a = a ∧m
(2) a ∧ b ∧m 6 a → b
(3) (a → b) ∧m 6 (a → a ∧ b) ∧m
(4) a ∧m 6 [a → (b → a ∧ b)] ∧m
(5) (a → b) ∧ c = (a ∧ c → b ∧ c) ∧ c
(6) [(a ∧ b) → (c ∧ d)] ∧ x = [(b ∧ a) → (d ∧ c)] ∧ x
(7) a 6 b and a 6 c ⇒ a ∧m 6 (b → c) ∧m.

In this section we introduce the concepts of closed elements and dense
elements in an SHADL analogous to those given in HADL.
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In the following, we give the definitions of a closed element and dense
element in an SHADL.

Definition 3.2. If (L,∨,∧,→, 0,m) is an SHADL and x ∈ L, then we write
x∗ = (x → 0) ∧m. If x∗ = 0, then x is called a dense element of L and if x = y∗

for some y ∈ L, then x is called a closed element of L. We denote the set of closed
(dense) elements of L by L∗(DL).

In the following lemma we prove the fundamental properties of closed
elements and dense elements of L

Lemma 3.1. Let L be an SHADL and a, b, c ∈ L. Then

(1) a ∧ (a → b)∗ = a ∧ b∗.
(2) a ∧ b = 0 ⇔ a ∧m 6 b∗.
(3) m∗ = 0.
(4) a∗ = m ⇔ a = 0.
(5) a ∧ b∗ = 0 ⇒ a ∧m 6 b∗∗.
(6) a 6 b ⇒ b∗ 6 a∗, a∗∗ 6 b∗∗.
(7) a ∧ b∗ = a ∧ (a ∧ b)∗.
(8) (a ∧ b)∗ = (b ∧ a)∗. In particular, (a ∧m)∗ = a∗.
(9) a ∧ a∗∗ = a ∧m and a∗∗ ∧ a = a.
(10) a∗ = a∗∗∗.
(11) a ∈ L∗ iff a = a∗∗.
(12) a ∈ DL iff a∗∗ = m.
(13) (a ∨ b)∗ = a∗ ∧ b∗.
(14) b ∧ a = a ⇒ a ∧ b∗ = 0.
(15) a∗ ∧ b∗ = b∗ ∧ a∗.
(16) a∗ ∨ b∗ = b∗ ∨ a∗.
(17) a ∧ b = 0 ⇒ a∗∗ ∧ b = 0.
(18) (a ∧ b)∗∗ 6 a∗∗.
(19) a∗∗ ∧ b∗∗ = (a ∧ b)∗∗.
(20) a∗∗ ∧ (a → b)∗∗ = a∗∗ ∧ b∗∗.
(21) If a is dense, then (a → b)∗ = b∗.
(22) If a and b are dense elements in L, then a → b is also dense.
(23) If a ∧ b = 0, then a∗ ∧ b = b.
(24) (0 → m) ∧m = 0 if and only if (0 → a) ∧m 6 a∗ for all a ∈ L.

In particular, (0 → m) ∧ m = 0 if and only if (0 → a) ∧ m = 0 for all
dense elements a of L.

(25) a∗ 6 (0 → a) ∧m. In particular a∗ 6 (0 → a∗∗) ∧m.
(26) a ∧m 6 (0 → a∗) ∧m.
(27) (a → a∗) ∧m 6 a∗ 6 (a∗∗ → a) ∧m.
(28) If a∗ 6 0 → a∗, then (a → a∗) ∧m = a∗.
(29) a ∧m 6 (a∗∗ → a) ∧m
(30) a ∧m 6 (a → a∗∗) ∧m.
(31) (a∗∗ → a∗) ∧m 6 a∗ 6 (a → a∗∗) ∧m.
(32) (a ∨ a∗) ∧m 6 (a → a∗∗) ∧m. Hence (a → a∗∗) ∈ D(L).
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(33) c 6 a ⇒ c ∧ (a → b∗) = c ∧ b∗.
(34) a ∧m 6 (0 → a∗∗) ∧m if and only if a ∧m 6 (0 → a) ∧m.
(35) b ∧ (a → b∗) ∧m = b ∧ a∗.
(36) If a is dense or if a∗ 6 b∗, then (a → b∗) ∧m 6 b∗.
(37) If a ∧ b = 0, then (a → b) ∧m 6 a∗.
(38) (a∗ ∨ b∗)∗∗ = (a ∧ b)∗ = a∗∨b∗ where a∨b = (a∗ ∧ b∗)∗.
(39) a ∈ L∗ ⇒ a∗∨a = m.

Proof. (1) a ∧ (a → b)∗ = a ∧ [(a → b) → 0] ∧m
= a ∧ [a ∧ (a → b) → 0] ∧m
= a ∧ [a ∧ b ∧m → 0] ∧m
= a ∧ (b ∧m → 0) ∧m
= a ∧ (b → 0) ∧m
= a ∧ b∗.

(2) If a ∧ b = 0, then a ∧ b∗ = a ∧ (b → 0) ∧m
= a ∧ (a ∧ b → 0) ∧m
= a ∧ (0 → 0) ∧m
= a ∧m.
Thus a ∧m 6 b∗.
Conversely, a ∧m 6 b∗ ⇒ a ∧ b∗ = a ∧m
⇒ a ∧ b = a ∧m ∧ b = a ∧ b∗ ∧ b = 0.

(3) m∗ = (m → 0) ∧m = m ∧ (m → 0) ∧m = m ∧ 0 ∧m = 0.
(4) If a∗ = m, then a = m ∧ a = a∗ ∧ a = 0.

Conversely, assume that a = 0, then a∗ = (a → 0) ∧m
= (0 → 0) ∧m = m.

(5) If a ∧ b∗ = 0 then a ∧ b∗∗ = a ∧m (by (2) above)
and hence, a ∧m 6 b∗∗.

(6) Suppose a 6 b. Then a∧ b∗ 6 b∧ b∗ = 0. Thus b∗ 6 a∗ (by (2) above) and
hence a∗∗ 6 b∗∗.

(7) a ∧ b∗ = a ∧ (b → 0) ∧m = a ∧ (a ∧ b → 0) ∧m = a ∧ (a ∧ b)∗.
(8) (a ∧ b)∗ = ((a ∧ b) → 0) ∧m = ((b ∧ a) → 0) ∧m = (b ∧ a)∗.
(9) a ∧ a∗∗ = a ∧ (a∗ → 0) ∧m = a ∧ (a ∧ a∗ → 0) ∧m = a ∧m.

Now, a∗∗ ∧ a = a ∧ a∗∗ ∧ a = a ∧m ∧ a = a.
(10) By (2) above, we get that a∗ ∧ a∗∗ = 0 ⇒ a∗ 6 a∗∗∗.

Also, a ∧m 6 a∗∗ ⇒ a∗∗∗ 6 (a ∧m)∗ = a∗ (by (8))
Therefore, a∗ = a∗∗∗.

(11) Follows from (10) above.
(12) a ∈ DL ⇒ a∗ = 0 ⇒ a∗∗ = 0∗ = m.

Conversely, if a∗∗ = m ⇒ a∗ = a∗∗∗ = m∗ = 0 ⇒ a ∈ DL.
(13) (a ∨ b) ∧ (a∗ ∧ b∗) = (a ∧ a∗ ∧ b∗) ∨ (b ∧ a∗ ∧ b∗) = 0.

⇒ a∗ ∧ b∗ 6 (a ∨ b)∗

Also, a ∧m 6 (a ∨ b) ∧m and b ∧m 6 (a ∨ b) ∧m
⇒ [(a ∨ b) ∧m]∗ 6 (a ∧m)∗ and [(a ∨ b) ∧m]∗ 6 (b ∧m)∗

⇒ (a ∨ b)∗ 6 a∗ and (a ∨ b)∗ 6 b∗
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Therefore, (a ∨ b)∗ 6 a∗ ∧ b∗.
Hence, (a ∨ b)∗ = a∗ ∧ b∗.

(14) Suppose b ∧ a = a, then a ∧ b∗ = b ∧ a ∧ b∗ = a ∧ b ∧ b∗ = 0.
(15) a∗ ∧ b∗ = a∗ ∧ b∗ ∧m = b∗ ∧ a∗ ∧m = b∗ ∧ a∗.
(16) a∗ ∨ b∗ = (a∗ ∧m) ∨ (b∗ ∧m) = (a∗ ∨ b∗) ∧m = (b∗ ∨ a∗) ∧m = b∗ ∨ a∗.
(17) a ∧ b = 0 ⇒ b ∧m 6 a∗ ⇒ a∗∗ 6 b∗ ⇒ a∗∗ ∧ b 6 b∗ ∧ b = 0.
(18) (a ∧ b)∗∗ = (b ∧ a)∗∗ 6 a∗∗ from (6).
(19) From (18) we get (a ∧ b)∗∗ 6 a∗∗ and (a ∧ b)∗∗ 6 b∗∗

and hence, (a ∧ b)∗∗ 6 a∗∗ ∧ b∗∗.
Now, by (17) above, a ∧ b ∧ (a ∧ b)∗ = 0 ⇒ a∗∗ ∧ b ∧ (a ∧ b)∗ = 0
⇒ b ∧ a∗∗ ∧ (a ∧ b)∗ = 0
⇒ b∗∗ ∧ a∗∗ ∧ (a ∧ b)∗ = 0
⇒ a∗∗ ∧ b∗∗ ∧ (a ∧ b)∗ = 0
⇒ a∗∗ ∧ b∗∗ 6 (a ∧ b)∗∗

Therefore, (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.
(20) a∗∗ ∧ (a → b)∗∗ = [a ∧ (a → b)]∗∗ = (a ∧ b ∧m)∗∗ = (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.
(21) a is dense ⇒ a∗ = 0 ⇒ a∗∗ = 0∗ = m.

Thus (a → b)∗∗ = m ∧ (a → b)∗∗ = a∗∗ ∧ (a → b)∗∗

= a∗∗ ∧ b∗∗

= m ∧ b∗∗

= b∗∗ and hence
(a → b)∗ = (a → b)∗∗∗ = b∗∗∗ = b∗.

(22) Suppose a and b are dense elements of L. Then by (20) we get
(a → b)∗∗ = a∗∗ ∧ (a → b)∗∗ = a∗∗ ∧ b∗∗ = m
Therefore, a → b is also a dense element of L.

(23) Suppose a ∧ b = 0. Then, a∗ ∧ b = (a → 0) ∧m ∧ b
= (a → 0) ∧ b
= (b ∧ a → 0) ∧ b
= (0 → 0) ∧ b
= m ∧ b
= b.

(24) (0 → m) ∧m = 0 ⇒ a ∧ (0 → m) ∧m = 0
⇒ a ∧ (0 → (a ∧m)) ∧m = 0
⇒ a ∧ (0 → a) ∧m = 0
⇒ (0 → a) ∧m 6 a∗.
Conversely, assume that (0 → a) ∧m 6 a∗, for all a ∈ L.
When a = m, we get (0 → m) ∧m 6 m∗ = 0.
If a is dense element of L then a∗ = 0 and hence the result follows.

(25) a∗ ∧ (0 → a) ∧m = a∗ ∧ (0 → a∗ ∧ a) ∧m
= a∗ ∧ (0 → 0) ∧m
= a∗ ∧m = a∗.
Therefore, a∗ 6 (0 → a) ∧m.
On replacing a by a∗∗ in this, we get the rest.

(26) a ∧m ∧ (0 → a∗) ∧m = a ∧ (0 → a∗) ∧m
= a ∧ (0 → a ∧ a∗) ∧m
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= a ∧ (0 → 0) ∧m = a ∧m.
Therefore, a ∧m 6 (0 → a∗) ∧m.

(27) From (3) of Theorem 3.1, we get (a → a∗) ∧m 6 a∗.
Now, a∗ ∧ (a∗∗ → a) ∧m = a∗ ∧ ((a∗ ∧ a∗∗) → (a∗ ∧ a)) ∧m
= a∗ ∧ (0 → 0) ∧m
= a∗ ∧m = a∗.

(28) Suppose a∗ 6 (0 → a∗). Then
a∗ ∧ (a → a∗) ∧m = a∗ ∧ (a∗ ∧ a → a∗) ∧m
= a∗ ∧ (0 → a∗) ∧m
= a∗ ∧m = a∗.
Therefore, a∗ 6 (a → a∗) ∧m. and hence by (27) above, we get
(a → a∗) ∧m = a∗.

(29) a ∧m ∧ (a∗∗ → a) ∧m = a ∧ (a ∧ a∗∗ → a) ∧m = a ∧ (a ∧m → a) ∧m =
a ∧ (a → a) ∧m = a ∧m and hence, a ∧m 6 (a∗∗ → a) ∧m.

(30) Follows from (4) of Theorem 3.1, by taking b = a∗.
(31) Since a ∧ (a∗∗ → a∗) ∧m 6 a∗∗ ∧ (a∗∗ → a∗) ∧m = a∗∗ ∧ a∗ ∧m = 0

⇒ (a∗∗ → a∗) ∧m 6 a∗. Now,
a∗ ∧ (a → a∗∗) ∧m = a∗ ∧ (a∗ ∧ a → a∗ ∧ a∗∗) ∧m
= a∗ ∧ (0 → 0) ∧m
= a∗ ∧m = a∗.
Therefore, a∗ 6 (a → a∗∗) ∧m.

(32) Consider (a∨ a∗)∧ (a → a∗∗)∧m = [a∧ (a → a∗∗)]∨ [a∗ ∧ (a → a∗∗)]∧m
= (a ∧m) ∨ (a∗ ∧m)
= (a ∨ a∗) ∧m.
Therefore, (a ∨ a∗) ∧m 6 (a → a∗∗) ∧m.
Since a ∨ a∗ ∈ DL, we get a → a∗∗ ∈ DL

(33) c∧(a → b∗) = c∧(c∧a → c∧b∗) = c∧(c → c∧b∗) = c∧(c → b∗) = c∧b∗.
(34) a ∧ (0 → a∗∗) ∧m = a ∧ (0 → a ∧ a∗∗) ∧m = a ∧ (0 → a) ∧m and hence

we get a ∧m 6 (0 → a∗∗) ∧m iff a ∧m 6 (0 → a) ∧m.
(35) b ∧ (a → b∗) ∧m = b ∧ (b ∧ a → b ∧ b∗) ∧m

= b ∧ (b ∧ a → 0) ∧m
= b ∧ (a → 0) ∧m = b ∧ a∗.

(36) By 35 above, b ∧ (a → b∗) ∧m = b ∧ a∗. If a is dense then b ∧ a∗ = 0 or if
a∗ 6 b∗, then b ∧ a∗ = 0. Thus b ∧ (a → b∗) ∧m = 0.
Hence (a → b∗) ∧m 6 b∗.

(37) Since a ∧ (a → b) = a ∧ b ∧m = 0, we get (a → b) ∧m 6 a∗.
(38) (a∗ ∨ b∗)∗∗ = [(a∗ ∨ b∗)∗]∗ = [a∗∗ ∧ b∗∗]∗ = a∗∨b∗.
(39) a∗∨a = (a∗∗ ∧ a∗)∗ = 0∗ = m.

�

Theorem 3.2. Let L be an SHADL and let a, b ∈ L with a ∧ m 6 b ∧ m.
For c, d ∈ [a ∧ m, b ∧ m], define c →ab d = (c → d) ∧ b ∧ m. Then the algebra
L0 = ([a ∧ m, b ∧ m],∨,∧,→ab, a ∧ m, b ∧ m) is a Semi Heyting algebra. Further
more, if L is a HADL. Then L0 is also a Heyting algebra.
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Proof. Let c, d, e ∈ [a ∧m, b ∧m].
First we note that c →ab d ∈ [a ∧m, b ∧m]
Since a ∧ m 6 c ∧ m, a ∧ m 6 d ∧ m, we get a ∧ m 6 (c → d) ∧ m and hence
c →ab d ∈ [a ∧m, b ∧m].
c ∧ (c →ab d) = c ∧ (c → d) ∧ b ∧m
= c ∧ d ∧ b ∧m
= c ∧ d.
e ∧ (c →ab d) = e ∧ (c → d) ∧ b ∧m
= e ∧ (e ∧ c → e ∧ d) ∧ b ∧m
= e ∧ (e ∧ c →ab e ∧ d). Finally,
(c →ab c) = (c → c) ∧ b ∧m
= m ∧ b ∧m
= b ∧m.
Hence L0 is a semi Heyting algebra.
Now, suppose L is a HADL. Then
c ∧ d 6 c ⇒ (c → c) 6 c ∧ d → c
⇒ m 6 c ∧ d → c
⇒ c ∧ d → c = m
Therefore c ∧ d →ab c = (c ∧ d → c) ∧ b ∧m = b ∧m.
Hence L0 is a Heyting algebra. �

Theorem 3.3. Let (L,∨,∧,→, 0,m) be an SHADL. For x ∈ L, define
x∗ = (x → 0) ∧m. Then ∗ is a pseudocomplementation on L.

Proof. Clearly, a∧ b = 0 iff a∗∧ b = b, a∧a∗ = 0 and from (13) of lemma 3.4,
we get that ∗ is a pseudocomplementation on L. �

Theorem 3.4. Let L be an SHADL and a, b ∈ L such that a∧m 6 b∧m. For
c ∈ [a ∧ m, b ∧ m], define c∗ab = (c → a) ∧ b ∧ m. Then the algebra ([a ∧ m, b ∧
m],∨,∧,∗ab , a ∧m, b ∧m) is a pseudocomplemented lattice.

Proof. It is enough to verify that x ∧ y = a ∧m ⇔ x 6 y∗ab for all
x, y ∈ [a ∧m, b ∧m]
Let c ∈ [a ∧m, b ∧m], Since a ∧m 6 c ∧m we have a ∧m 6 (c → a) ∧m
⇒ a ∧ b ∧m 6 (c → a) ∧ b ∧m ⇒ a ∧m 6 (c → a) ∧ b ∧m 6 b ∧m.
Therefore, c∗ab ∈ [a ∧m, b ∧m].
Let x, y ∈ [a ∧m, b ∧m]
Assume that x ∧ y = a ∧m. Then y∗ab = (y → a) ∧ b ∧m
x ∧ y∗ab = x ∧ (y → a) ∧ b ∧m = x ∧ (y → a) ∧m = x ∧ (x ∧ y → a) ∧m
= x ∧ (a → a) ∧m = x.
Therefore, x 6 y∗ab

Conversely, Suppose x 6 y∗ab ⇒ x = x ∧ (y → a) ∧ b ∧m.
Now y ∧ x = y ∧ x ∧ (y → a) ∧ b ∧m = x ∧ y ∧ a ∧ b ∧m = a ∧m.

Therefore, ([a ∧ m, b ∧ m],∨,∧,∗ab , a ∧ m, b ∧ m) is a pseudocomplemented
lattice. �
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Corollary 3.1. Let L be an SHADL. Then the algebra ([0,m],∨,∧,∗ , 0,m),
where c∗ = (c → 0) ∧m for c ∈ [0,m], is a pseudocomplemented lattice.

Corollary 3.2. Let L be an SHADL. Then the following are equivalent.

(1) L is a lattice.
(2) L is a Semi Heyting algebra
(3) L is a psuedocomplemented lattice
(4) L is a distributive lattice
(5) L is a modular lattice

The proof of the following theorem can be verified routinely.

Theorem 3.5. Let (L,∨,∧,→, 0,m) be an SHADL. Then (L∗,∨,∧, ∗, 0,m) is
a Boolean algebra. Where x ∨ y = (x∗ ∧ y∗)∗ for any x, y ∈ L∗.

We know that a Boolean algebra is a Heyting algebra in which a → b = a∗ ∨ b.
On the other hand, in a SHADL, we have the following.

Theorem 3.6. Let L be an SHADL. Then, for a, b ∈ L, (a → b)∗∗ 6 a∗∨ b∗∗.

Proof. (a → b)∗∗ = (a∗∗∨ a∗) ∧ (a → b)∗∗

= [a∗∗ ∧ (a → b)∗∗]∨ [a∗ ∧ (a → b)∗∗]
= [a ∧ (a → b)]∗∗∨ [a∗ ∧ (a → b)∗∗]
= [a∗∗ ∧ b∗∗]∨ [a∗ ∧ (a → b)∗∗]
= [(a∗∗ ∧ b∗∗)∨ a∗] ∧ [(a∗∗ ∧ b∗∗)∨ (a → b)∗∗]
6 [a∗∨ (a∗∗ ∧ b∗∗)]
= (a∗∨ a∗∗) ∧ (a∗∨ b∗∗)
= m ∧ (a∗∨ b∗∗)
= a∗∨ b∗∗.
Therefore (a → b)∗∗ 6 a∗∨ b∗∗. �

In the following theorems we derive some important properties of SHADL
involving the operation ∗.

Theorem 3.7. Let L be an SHADL and a, b ∈ L. Then
(a ∨ a∗) ∧ (a → b) ∧m 6 (a∗ ∨ b) ∧m.

Proof. (a ∨ a∗) ∧ (a → b) ∧m = [[a ∧ (a → b)] ∨ [a∗ ∧ (a → b)]] ∧m
= [(a ∧ b ∧m) ∨ (a∗ ∧ (a → b))] ∧m
= [(a ∧ b ∧m) ∨ a∗] ∧ [(a ∧ b ∧m) ∨ (a → b)] ∧m
6 [a∗ ∨ (a ∧ b ∧m)]
= (a∗ ∨ a) ∧ (a∗ ∨ (b ∧m))
6 (a∗ ∨ b) ∧m. �

Theorem 3.8. Let L be an SHADL and a, b, c ∈ L. Then

(1) a∗∗ ∧ (a → b)∗ = a∗∗ ∧ b∗.
(2) a∗∗ ∧ (b → c)∗ = a∗∗ ∧ (a ∧ b → a ∧ c)∗.
(3) b∗ ∧ (a → b) ∧m = b∗ ∧ a∗.
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Proof. (1) a∗∨(a → b)∗ = (a∗∗ ∧ (a → b)∗∗)∗ = (a ∧ (a → b))∗

= (a ∧ b ∧m)∗

= (a ∧ b)∗ = a∗∨b∗.
Therefore, a∗∗ ∧ (a → b)∗ = a∗∗ ∧ b∗.

(2) a∗∨(b → c)∗ = [a∧(b → c)]∗ = [a∧(a∧b → a∧c)]∗ = a∗∨(a∧b → a∧c)∗.
Therefore, a∗∗ ∧ (b → c)∗ = a∗∗ ∧ (a ∧ b → a ∧ c)∗.

(3) b∗ ∧ (a → b) ∧m = b∗ ∧ (b∗ ∧ a → b∗ ∧ b) ∧m = b∗ ∧ (b∗ ∧ a → 0) ∧m
= b∗ ∧ (a → 0) ∧m = b∗ ∧ a∗.

�

Theorem 3.9. Let (L,∨,∧,→, 0,m) be an SHADL. Then for any element
x ∈ L there exists d ∈ DL such that x = x∗∗ ∧ d.

Proof. Let d = (x ∨ x∗), then d∗ = (x ∨ x∗)∗ = x∗ ∧ x∗∗ = 0.
Therefore d ∈ DL. Now,
x∗∗ ∧ d = x∗∗ ∧ (x ∨ x∗) = [ (x∗∗ ∧ x) ∨ (x∗∗ ∧ x∗) ] = x ∨ 0 = x

�

Corollary 3.3. Let (L,∨,∧,→, 0,m) be an SHADL and x, y ∈ L such that
x∗∗ = y∗∗. Then there exists d ∈ DL such that x ∧ d = y ∧ d.

Proof. Let x, y ∈ L, by above theorem there exists d1, d2 ∈ DL such that
x = x∗∗ ∧ d1, y = y∗∗ ∧ d2.
Let d = d1 ∧ d2, then d is a dense element of L. Now, consider
x∧d∧m = x∗∗∧d1∧d2∧m = y∗∗∧d1∧d2∧m = y∧d∧m and hence x∧d = y∧d. �

Corollary 3.4. Let (L,∨,∧,→, 0,m) be an SHADL and x be an element of L.
Then x is dense if and only if there is an element y of L such that x∧m = y∗∗ → y.

Proof. Suppose x is a dense element of L. Then
x∗∗ → x = m → x = x ∧m.
Conversely, assume that x ∧ m = y∗∗ → y for some y ∈ L. First we show that
y∗∗ → y is a dense element.
We know that y∗∗ ∧ (y∗∗ → y) = y∗∗ ∧ y ∧m = y ∧m.
Now, y∗∗ = (y ∧m)∗∗ = [y∗∗ ∧ (y∗∗ → y)]∗∗ = y∗∗ ∧ (y∗∗ → y)∗∗

⇒ y∗∗ 6 (y∗∗ → y)∗∗ ⇒ (y∗∗ → y)∗ 6 y∗. Also, by Lemma 3.4 (27),
y∗ 6 (y∗∗ → y) ∧m ⇒ (y∗∗ → y)∗ 6 y∗∗

Therefore (y∗∗ → y)∗ = 0 and hence y∗∗ → y is a dense element.
Thus x ∧m is a dense element of L and hence x is a dense element of L. �

If (L,∨,∧,→, 0,m) and (L′,∨,∧,→, 0′,m′) are two SHADLs. Then a
mapping α : L → L′ is said to be a homomorphism of L into L′ if for any x, y ∈ L
the following hold.

(1) α(x ∧ y) = α(x) ∧ α(y)
(2) α(x ∨ y) = α(x) ∨ α(y)
(3) α(x → y) = α(x) → α(y)
(4) α(0) = 0′
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Further if α : L → L′ is a homomorphism, then {x ∈ L/α(x) = m′} is
called the kernel of α and is denoted by kerα.

Finally, we conclude this paper with the following.

Theorem 3.10. Let (L,∨,∧,→, 0,m) be an SHADL and α : L → L∗ be defined
by α(x) = x∗∗ for all x ∈ L and suppose x, y ∈ L. Then

(1) α is isotone.
(2) α(x ∧ y) = α(x) ∧ α(y)
(3) α(x ∨ y) = α(x)∨α(y)
(4) ker(α) = DL

Proof. Let x, y ∈ L

(1) Assume x 6 y ⇒ x∗∗ 6 y∗∗ ⇒ α(x) 6 α(y)
(2) α(x ∧ y) = (x ∧ y)∗∗ = x∗∗ ∧ y∗∗ = α(x) ∧ α(y)
(3) α(x ∨ y) = (x ∨ y)∗∗ = (x∗ ∧ y∗)∗ = x∗∗∨ y∗∗ = α(x)∨α(y)
(4) Let x ∈ ker(α) ⇒ α(x) = m ⇒ x∗∗ = m ⇒ x∗ = 0 ⇒ x ∈ DL.

Conversely, assume that x ∈ DL ⇒ x∗ = 0 ⇒ x∗∗ = m
⇒ α(x) = m ⇒ x ∈ ker(α).
Hence ker(α) = DL.

�
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