Closed and Dense Elements in Semi Heyting Almost Distributive Lattices

G.C. Rao, M.V.Ratnamani, and Berhanu Assaye

Abstract

In this paper, we define the concept of a closed element and dense element in a Semi Heyting Almost Distributive Lattice (SHADL) L and derive some properties of closed elements and dense elements of L. We also observe that every SHADL is a pseudocomplemented ADL and that the set $L^{*}=$ $\left\{x^{*} / x \in L\right\}$ of all closed elements of an SHADL L, forms a Boolean algebra with the operation $\underline{\vee}$ defined as $x \underline{\vee} y=\left(x^{*} \wedge y^{*}\right)^{*}$ for every $x, y \in L^{*}$ where, $x^{*}=(x \rightarrow 0) \wedge m$.

1. Introduction

The concept of an Almost Distributive Lattice (ADL) was introduced by U. M. Swamy and G. C. Rao [10] as a common abstraction to most of the existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other. The concept of Heyting Almost Distributive Lattice (HADL) was introduced as a generalization of a Heyting algebra and many fundamental properties of HADLs were derived in our earlier paper [4]. Later, closed elements and dense elements in Heyting Almost Distributive Lattices (HADL) were studied by G. C. Rao and Berhanu Assaye in [5] and [6] respectively. The concept of a Semi Heyting Almost Distributive Lattice (SHADL) as a generalization of a Semi Heyting algebra was introduced in our earlier paper [7]. In this paper we study some properties of closed elements and dense elements of a SHADL. We also observe that every SHADL is a pseudocomplemented ADL and the set $L^{*}=\left\{x^{*} / x \in L\right\}$ of all closed elements of an SHADL L forms a Boolean algebra.

[^0]
2. Preliminaries

In this section we give some important definitions and results that are frequently used for ready reference.

Definition 2.1. [10] An algebra $(L, \vee, \wedge, 0)$ of type $(2,2,0)$ is called ADL if it satisfies the following axioms: for all $x, y, z \in L$
(1) $x \vee 0=x$
(2) $0 \wedge x=0$
(3) $(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)$
(4) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
(5) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
(6) $(x \vee y) \wedge y=y$

Definition 2.2. [10] Let L be a non-empty set. Fix $x_{0} \in L$. For any $x, y \in L$, define $x \wedge y=y, x \vee y=x$ if $x \neq x_{0}, x_{0} \wedge y=x_{0}$ and $x_{0} \vee y=y$. Then $\left(L, \vee, \wedge, x_{0}\right)$ is an ADL and it is called a discrete ADL. Alternately, discrete ADL is defined as an ADL $(L, \vee, \wedge, 0)$ in which every $x(\neq 0)$ is maximal.

If $(L, \vee, \wedge, 0)$ is an ADL. For any $x, y \in L$, define $x \leqslant y$ if and only if $x=x \wedge y$, or equivalently $x \vee y=y$, then \leqslant is a partial ordering on L.

Through out this section L stands for an $\operatorname{ADL}(L, \vee, \wedge, 0)$ unless otherwise specified. In the following theorem some important fundamental properties of an ADL are given.

Theorem 2.1. [9] For any $a, b, c \in L$, we have the following
(1) $a \vee b=a \Leftrightarrow a \wedge b=b$
(2) $a \vee b=b \Leftrightarrow a \wedge b=a$
(3) $a \wedge b=b \wedge a=a$ whenever $a \leqslant b$
(4) \wedge is associative in L
(5) $a \wedge b \wedge c=b \wedge a \wedge c$
(6) $(a \vee b) \wedge c=(b \vee a) \wedge c$
(7) $a \wedge b \leqslant b$ and $a \leqslant a \vee b$
(8) $a \wedge a=a$ and $a \vee a=a$
(9) $a \wedge 0=0$ and $0 \vee a=a$
(10) if $a \leqslant c$ and $b \leqslant c$, then $a \wedge b=b \wedge a$ and $a \vee b=b \vee a$.

Definition 2.3. [11] Let L be an ADL. A unary operation * on L is called a pseudocomplementation on L if, for any $x, y \in L$, the following conditions hold:
(1) $x \wedge y=0 \Leftrightarrow x^{*} \wedge y=y$
(2) $(x \vee y)^{*}=x^{*} \wedge y^{*}$
(3) $x \wedge x^{*}=0$

Definition 2.4. [4] Let $(L, \vee, \wedge, 0, m)$ be an ADL with a maximal element m. Suppose \rightarrow is a binary operation on L satisfying the following conditions for all $x, y, z \in L$.
(1) $x \rightarrow x=m$
(2) $(x \rightarrow y) \wedge y=y$
(3) $x \wedge(x \rightarrow y)=x \wedge y \wedge m$
(4) $x \rightarrow(y \wedge z)=(x \rightarrow y) \wedge(x \rightarrow z)$
(5) $(x \vee y) \rightarrow z=(x \rightarrow z) \wedge(y \rightarrow z)$

Then $(L, \vee, \wedge, \rightarrow, 0, m)$ is called a Heyting Almost Distributive Lattice (HADL).
Definition 2.5. [5] Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be a HADL. Define for any $x \in L$. $x^{*}=(x \rightarrow 0)$ and $L^{*}=\left\{x^{*} / x \in L\right\}$. Then an element of L^{*} is called a closed element of L. Also, for any $x, y \in L^{*}$. We define $x \underline{\vee} y=\left(x^{*} \wedge y^{*}\right)^{*}$.

Definition 2.6. [6] Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be a HADL. Define $D_{L}=\left\{x \in L / x^{*}=0\right\}$. Then an element of D_{L} is called a dense element of L.

Definition 2.7. [8] An algebra $(L, \vee, \wedge, \rightarrow, 0,1)$ of type $(2,2,2,0,0)$ is called a Semi Heyting algebra if it satisfies the following:
(1) $(L, \vee, \wedge, 0,1)$ is a lattice with 0,1
(2) $x \wedge(x \rightarrow y)=x \wedge y$
(3) $x \wedge(y \rightarrow z)=x \wedge(x \wedge y \rightarrow x \wedge z)$
(4) $x \rightarrow x=1$ for all $x, y, z \in L$

3. Closed and Dense Elements in Semi Heyting Almost Distributive Lattices

We begin with the following definition of SHADL given in [7].
Definition 3.1. [7] Let $(L, \vee, \wedge, 0, m)$ be an ADL with a maximal element m. Suppose there exists a binary operation \rightarrow on L satisfying the following conditions:
(1) $(x \rightarrow x) \wedge m=m$
(2) $x \wedge(x \rightarrow y)=x \wedge y \wedge m$
(3) $x \wedge(y \rightarrow z)=x \wedge(x \wedge y \rightarrow x \wedge z)$
(4) $(x \rightarrow y) \wedge m=x \wedge m \rightarrow y \wedge m$ for all $x, y, z \in L$

Then $(L, \vee, \wedge, \rightarrow, 0, m)$ is a Semi Heyting ADL (SHADL).
The following theorem which is taken from [7] will be used frequently in this paper. Through out this section L denotes an SHADL.

Theorem 3.1. [7] For any $a, b, c, d, x \in L$ we have the following
(1) $m \rightarrow a=a \wedge m$
(2) $a \wedge b \wedge m \leqslant a \rightarrow b$
(3) $(a \rightarrow b) \wedge m \leqslant(a \rightarrow a \wedge b) \wedge m$
(4) $a \wedge m \leqslant[a \rightarrow(b \rightarrow a \wedge b)] \wedge m$
(5) $(a \rightarrow b) \wedge c=(a \wedge c \rightarrow b \wedge c) \wedge c$
(6) $[(a \wedge b) \rightarrow(c \wedge d)] \wedge x=[(b \wedge a) \rightarrow(d \wedge c)] \wedge x$
(7) $a \leqslant b$ and $a \leqslant c \Rightarrow a \wedge m \leqslant(b \rightarrow c) \wedge m$.

In this section we introduce the concepts of closed elements and dense elements in an SHADL analogous to those given in HADL.

In the following, we give the definitions of a closed element and dense element in an SHADL.

Definition 3.2. If $(L, \vee, \wedge, \rightarrow, 0, m)$ is an SHADL and $x \in L$, then we write $x^{*}=(x \rightarrow 0) \wedge m$. If $x^{*}=0$, then x is called a dense element of L and if $x=y^{*}$ for some $y \in L$, then x is called a closed element of L. We denote the set of closed (dense) elements of L by $L^{*}\left(D_{L}\right)$.

In the following lemma we prove the fundamental properties of closed elements and dense elements of L

Lemma 3.1. Let L be an SHADL and $a, b, c \in L$. Then
(1) $a \wedge(a \rightarrow b)^{*}=a \wedge b^{*}$.
(2) $a \wedge b=0 \Leftrightarrow a \wedge m \leqslant b^{*}$.
(3) $m^{*}=0$.
(4) $a^{*}=m \Leftrightarrow a=0$.
(5) $a \wedge b^{*}=0 \Rightarrow a \wedge m \leqslant b^{* *}$.
(6) $a \leqslant b \Rightarrow b^{*} \leqslant a^{*}, a^{* *} \leqslant b^{* *}$.
(7) $a \wedge b^{*}=a \wedge(a \wedge b)^{*}$.
(8) $(a \wedge b)^{*}=(b \wedge a)^{*}$. In particular, $(a \wedge m)^{*}=a^{*}$.
(9) $a \wedge a^{* *}=a \wedge m$ and $a^{* *} \wedge a=a$.
(10) $a^{*}=a^{* * *}$.
(11) $a \in L^{*}$ iff $a=a^{* *}$.
(12) $a \in D_{L}$ iff $a^{* *}=m$.
(13) $(a \vee b)^{*}=a^{*} \wedge b^{*}$.
(14) $b \wedge a=a \Rightarrow a \wedge b^{*}=0$.
(15) $a^{*} \wedge b^{*}=b^{*} \wedge a^{*}$.
(16) $a^{*} \vee b^{*}=b^{*} \vee a^{*}$.
(17) $a \wedge b=0 \Rightarrow a^{* *} \wedge b=0$.
(18) $(a \wedge b)^{* *} \leqslant a^{* *}$.
(19) $a^{* *} \wedge b^{* *}=(a \wedge b)^{* *}$.
(20) $a^{* *} \wedge(a \rightarrow b)^{* *}=a^{* *} \wedge b^{* *}$.
(21) If a is dense, then $(a \rightarrow b)^{*}=b^{*}$.
(22) If a and b are dense elements in L, then $a \rightarrow b$ is also dense.
(23) If $a \wedge b=0$, then $a^{*} \wedge b=b$.
(24) $(0 \rightarrow m) \wedge m=0$ if and only if $(0 \rightarrow a) \wedge m \leqslant a^{*}$ for all $a \in L$.

In particular, $(0 \rightarrow m) \wedge m=0$ if and only if $(0 \rightarrow a) \wedge m=0$ for all dense elements a of L.
(25) $a^{*} \leqslant(0 \rightarrow a) \wedge m$. In particular $a^{*} \leqslant\left(0 \rightarrow a^{* *}\right) \wedge m$.
(26) $a \wedge m \leqslant\left(0 \rightarrow a^{*}\right) \wedge m$.
(27) $\left(a \rightarrow a^{*}\right) \wedge m \leqslant a^{*} \leqslant\left(a^{* *} \rightarrow a\right) \wedge m$.
(28) If $a^{*} \leqslant 0 \rightarrow a^{*}$, then $\left(a \rightarrow a^{*}\right) \wedge m=a^{*}$.
(29) $a \wedge m \leqslant\left(a^{* *} \rightarrow a\right) \wedge m$
(30) $a \wedge m \leqslant\left(a \rightarrow a^{* *}\right) \wedge m$.
(31) $\left(a^{* *} \rightarrow a^{*}\right) \wedge m \leqslant a^{*} \leqslant\left(a \rightarrow a^{* *}\right) \wedge m$.
(32) $\left(a \vee a^{*}\right) \wedge m \leqslant\left(a \rightarrow a^{* *}\right) \wedge m$. Hence $\left(a \rightarrow a^{* *}\right) \in D(L)$.
(33) $c \leqslant a \Rightarrow c \wedge\left(a \rightarrow b^{*}\right)=c \wedge b^{*}$.
(34) $a \wedge m \leqslant\left(0 \rightarrow a^{* *}\right) \wedge m$ if and only if $a \wedge m \leqslant(0 \rightarrow a) \wedge m$.
(35) $b \wedge\left(a \rightarrow b^{*}\right) \wedge m=b \wedge a^{*}$.
(36) If a is dense or if $a^{*} \leqslant b^{*}$, then $\left(a \rightarrow b^{*}\right) \wedge m \leqslant b^{*}$.
(37) If $a \wedge b=0$, then $(a \rightarrow b) \wedge m \leqslant a^{*}$.
(38) $\left(a^{*} \vee b^{*}\right)^{* *}=(a \wedge b)^{*}=a^{*} \underline{\vee} b^{*}$ where $a \underline{\vee} b=\left(a^{*} \wedge b^{*}\right)^{*}$.
(39) $a \in L^{*} \Rightarrow a^{*} \underline{\vee} a=m$.

Proof. (1) $a \wedge(a \rightarrow b)^{*}=a \wedge[(a \rightarrow b) \rightarrow 0] \wedge m$
$=a \wedge[a \wedge(a \rightarrow b) \rightarrow 0] \wedge m$
$=a \wedge[a \wedge b \wedge m \rightarrow 0] \wedge m$
$=a \wedge(b \wedge m \rightarrow 0) \wedge m$
$=a \wedge(b \rightarrow 0) \wedge m$
$=a \wedge b^{*}$.
(2) If $a \wedge b=0$, then $a \wedge b^{*}=a \wedge(b \rightarrow 0) \wedge m$
$=a \wedge(a \wedge b \rightarrow 0) \wedge m$
$=a \wedge(0 \rightarrow 0) \wedge m$
$=a \wedge m$.
Thus $a \wedge m \leqslant b^{*}$.
Conversely, $a \wedge m \leqslant b^{*} \Rightarrow a \wedge b^{*}=a \wedge m$ $\Rightarrow a \wedge b=a \wedge m \wedge b=a \wedge b^{*} \wedge b=0$.
(3) $m^{*}=(m \rightarrow 0) \wedge m=m \wedge(m \rightarrow 0) \wedge m=m \wedge 0 \wedge m=0$.
(4) If $a^{*}=m$, then $a=m \wedge a=a^{*} \wedge a=0$.

Conversely, assume that $a=0$, then $a^{*}=(a \rightarrow 0) \wedge m$ $=(0 \rightarrow 0) \wedge m=m$.
(5) If $a \wedge b^{*}=0$ then $a \wedge b^{* *}=a \wedge m$ (by (2) above) and hence, $a \wedge m \leqslant b^{* *}$.
(6) Suppose $a \leqslant b$. Then $a \wedge b^{*} \leqslant b \wedge b^{*}=0$. Thus $b^{*} \leqslant a^{*}$ (by (2) above) and hence $a^{* *} \leqslant b^{* *}$.
(7) $a \wedge b^{*}=a \wedge(b \rightarrow 0) \wedge m=a \wedge(a \wedge b \rightarrow 0) \wedge m=a \wedge(a \wedge b)^{*}$.
(8) $(a \wedge b)^{*}=((a \wedge b) \rightarrow 0) \wedge m=((b \wedge a) \rightarrow 0) \wedge m=(b \wedge a)^{*}$.
(9) $a \wedge a^{* *}=a \wedge\left(a^{*} \rightarrow 0\right) \wedge m=a \wedge\left(a \wedge a^{*} \rightarrow 0\right) \wedge m=a \wedge m$.

Now, $a^{* *} \wedge a=a \wedge a^{* *} \wedge a=a \wedge m \wedge a=a$.
(10) By (2) above, we get that $a^{*} \wedge a^{* *}=0 \Rightarrow a^{*} \leqslant a^{* * *}$.

Also, $a \wedge m \leqslant a^{* *} \Rightarrow a^{* * *} \leqslant(a \wedge m)^{*}=a^{*}($ by (8))
Therefore, $a^{*}=a^{* * *}$.
(11) Follows from (10) above.
(12) $a \in D_{L} \Rightarrow a^{*}=0 \Rightarrow a^{* *}=0^{*}=m$.

Conversely, if $a^{* *}=m \Rightarrow a^{*}=a^{* * *}=m^{*}=0 \Rightarrow a \in D_{L}$.
(13) $(a \vee b) \wedge\left(a^{*} \wedge b^{*}\right)=\left(a \wedge a^{*} \wedge b^{*}\right) \vee\left(b \wedge a^{*} \wedge b^{*}\right)=0$.
$\Rightarrow a^{*} \wedge b^{*} \leqslant(a \vee b)^{*}$
Also, $a \wedge m \leqslant(a \vee b) \wedge m$ and $b \wedge m \leqslant(a \vee b) \wedge m$
$\Rightarrow[(a \vee b) \wedge m]^{*} \leqslant(a \wedge m)^{*}$ and $[(a \vee b) \wedge m]^{*} \leqslant(b \wedge m)^{*}$
$\Rightarrow(a \vee b)^{*} \leqslant a^{*}$ and $(a \vee b)^{*} \leqslant b^{*}$

Therefore, $(a \vee b)^{*} \leqslant a^{*} \wedge b^{*}$.
Hence, $(a \vee b)^{*}=a^{*} \wedge b^{*}$.
(14) Suppose $b \wedge a=a$, then $a \wedge b^{*}=b \wedge a \wedge b^{*}=a \wedge b \wedge b^{*}=0$.
(15) $a^{*} \wedge b^{*}=a^{*} \wedge b^{*} \wedge m=b^{*} \wedge a^{*} \wedge m=b^{*} \wedge a^{*}$.
(16) $a^{*} \vee b^{*}=\left(a^{*} \wedge m\right) \vee\left(b^{*} \wedge m\right)=\left(a^{*} \vee b^{*}\right) \wedge m=\left(b^{*} \vee a^{*}\right) \wedge m=b^{*} \vee a^{*}$.
(17) $a \wedge b=0 \Rightarrow b \wedge m \leqslant a^{*} \Rightarrow a^{* *} \leqslant b^{*} \Rightarrow a^{* *} \wedge b \leqslant b^{*} \wedge b=0$.
(18) $(a \wedge b)^{* *}=(b \wedge a)^{* *} \leqslant a^{* *}$ from (6).
(19) From (18) we get $(a \wedge b)^{* *} \leqslant a^{* *}$ and $(a \wedge b)^{* *} \leqslant b^{* *}$
and hence, $(a \wedge b)^{* *} \leqslant a^{* *} \wedge b^{* *}$.
Now, by (17) above, $a \wedge b \wedge(a \wedge b)^{*}=0 \Rightarrow a^{* *} \wedge b \wedge(a \wedge b)^{*}=0$
$\Rightarrow b \wedge a^{* *} \wedge(a \wedge b)^{*}=0$
$\Rightarrow b^{* *} \wedge a^{* *} \wedge(a \wedge b)^{*}=0$
$\Rightarrow a^{* *} \wedge b^{* *} \wedge(a \wedge b)^{*}=0$
$\Rightarrow a^{* *} \wedge b^{* *} \leqslant(a \wedge b)^{* *}$
Therefore, $(a \wedge b)^{* *}=a^{* *} \wedge b^{* *}$.
(20) $a^{* *} \wedge(a \rightarrow b)^{* *}=[a \wedge(a \rightarrow b)]^{* *}=(a \wedge b \wedge m)^{* *}=(a \wedge b)^{* *}=a^{* *} \wedge b^{* *}$.
(21) a is dense $\Rightarrow a^{*}=0 \Rightarrow a^{* *}=0^{*}=m$.

Thus $(a \rightarrow b)^{* *}=m \wedge(a \rightarrow b)^{* *}=a^{* *} \wedge(a \rightarrow b)^{* *}$
$=a^{* *} \wedge b^{* *}$
$=m \wedge b^{* *}$
$=b^{* *}$ and hence
$(a \rightarrow b)^{*}=(a \rightarrow b)^{* * *}=b^{* * *}=b^{*}$.
(22) Suppose a and b are dense elements of L. Then by (20) we get
$(a \rightarrow b)^{* *}=a^{* *} \wedge(a \rightarrow b)^{* *}=a^{* *} \wedge b^{* *}=m$
Therefore, $a \rightarrow b$ is also a dense element of L.
(23) Suppose $a \wedge b=0$. Then, $a^{*} \wedge b=(a \rightarrow 0) \wedge m \wedge b$
$=(a \rightarrow 0) \wedge b$
$=(b \wedge a \rightarrow 0) \wedge b$
$=(0 \rightarrow 0) \wedge b$
$=m \wedge b$
$=b$.
(24) $(0 \rightarrow m) \wedge m=0 \Rightarrow a \wedge(0 \rightarrow m) \wedge m=0$
$\Rightarrow a \wedge(0 \rightarrow(a \wedge m)) \wedge m=0$
$\Rightarrow a \wedge(0 \rightarrow a) \wedge m=0$
$\Rightarrow(0 \rightarrow a) \wedge m \leqslant a^{*}$.
Conversely, assume that $(0 \rightarrow a) \wedge m \leqslant a^{*}$, for all $a \in L$.
When $a=m$, we get $(0 \rightarrow m) \wedge m \leqslant m^{*}=0$.
If a is dense element of L then $a^{*}=0$ and hence the result follows.
(25) $a^{*} \wedge(0 \rightarrow a) \wedge m=a^{*} \wedge\left(0 \rightarrow a^{*} \wedge a\right) \wedge m$
$=a^{*} \wedge(0 \rightarrow 0) \wedge m$
$=a^{*} \wedge m=a^{*}$.
Therefore, $a^{*} \leqslant(0 \rightarrow a) \wedge m$.
On replacing a by $a^{* *}$ in this, we get the rest.
(26) $a \wedge m \wedge\left(0 \rightarrow a^{*}\right) \wedge m=a \wedge\left(0 \rightarrow a^{*}\right) \wedge m$
$=a \wedge\left(0 \rightarrow a \wedge a^{*}\right) \wedge m$
$=a \wedge(0 \rightarrow 0) \wedge m=a \wedge m$.
Therefore, $a \wedge m \leqslant\left(0 \rightarrow a^{*}\right) \wedge m$.
(27) From (3) of Theorem 3.1, we get $\left(a \rightarrow a^{*}\right) \wedge m \leqslant a^{*}$.

Now, $a^{*} \wedge\left(a^{* *} \rightarrow a\right) \wedge m=a^{*} \wedge\left(\left(a^{*} \wedge a^{* *}\right) \rightarrow\left(a^{*} \wedge a\right)\right) \wedge m$
$=a^{*} \wedge(0 \rightarrow 0) \wedge m$
$=a^{*} \wedge m=a^{*}$.
(28) Suppose $a^{*} \leqslant\left(0 \rightarrow a^{*}\right)$. Then
$a^{*} \wedge\left(a \rightarrow a^{*}\right) \wedge m=a^{*} \wedge\left(a^{*} \wedge a \rightarrow a^{*}\right) \wedge m$
$=a^{*} \wedge\left(0 \rightarrow a^{*}\right) \wedge m$
$=a^{*} \wedge m=a^{*}$.
Therefore, $a^{*} \leqslant\left(a \rightarrow a^{*}\right) \wedge m$. and hence by (27) above, we get $\left(a \rightarrow a^{*}\right) \wedge m=a^{*}$.
(29) $a \wedge m \wedge\left(a^{* *} \rightarrow a\right) \wedge m=a \wedge\left(a \wedge a^{* *} \rightarrow a\right) \wedge m=a \wedge(a \wedge m \rightarrow a) \wedge m=$ $a \wedge(a \rightarrow a) \wedge m=a \wedge m$ and hence, $a \wedge m \leqslant\left(a^{* *} \rightarrow a\right) \wedge m$.
(30) Follows from (4) of Theorem 3.1, by taking $b=a^{*}$.
(31) Since $a \wedge\left(a^{* *} \rightarrow a^{*}\right) \wedge m \leqslant a^{* *} \wedge\left(a^{* *} \rightarrow a^{*}\right) \wedge m=a^{* *} \wedge a^{*} \wedge m=0$ $\Rightarrow\left(a^{* *} \rightarrow a^{*}\right) \wedge m \leqslant a^{*}$. Now,
$a^{*} \wedge\left(a \rightarrow a^{* *}\right) \wedge m=a^{*} \wedge\left(a^{*} \wedge a \rightarrow a^{*} \wedge a^{* *}\right) \wedge m$
$=a^{*} \wedge(0 \rightarrow 0) \wedge m$
$=a^{*} \wedge m=a^{*}$.
Therefore, $a^{*} \leqslant\left(a \rightarrow a^{* *}\right) \wedge m$.
(32) Consider $\left(a \vee a^{*}\right) \wedge\left(a \rightarrow a^{* *}\right) \wedge m=\left[a \wedge\left(a \rightarrow a^{* *}\right)\right] \vee\left[a^{*} \wedge\left(a \rightarrow a^{* *}\right)\right] \wedge m$ $=(a \wedge m) \vee\left(a^{*} \wedge m\right)$
$=\left(a \vee a^{*}\right) \wedge m$.
Therefore, $\left(a \vee a^{*}\right) \wedge m \leqslant\left(a \rightarrow a^{* *}\right) \wedge m$.
Since $a \vee a^{*} \in D_{L}$, we get $a \rightarrow a^{* *} \in D_{L}$
(33) $c \wedge\left(a \rightarrow b^{*}\right)=c \wedge\left(c \wedge a \rightarrow c \wedge b^{*}\right)=c \wedge\left(c \rightarrow c \wedge b^{*}\right)=c \wedge\left(c \rightarrow b^{*}\right)=c \wedge b^{*}$.
(34) $a \wedge\left(0 \rightarrow a^{* *}\right) \wedge m=a \wedge\left(0 \rightarrow a \wedge a^{* *}\right) \wedge m=a \wedge(0 \rightarrow a) \wedge m$ and hence we get $a \wedge m \leqslant\left(0 \rightarrow a^{* *}\right) \wedge m$ iff $a \wedge m \leqslant(0 \rightarrow a) \wedge m$.
(35) $b \wedge\left(a \rightarrow b^{*}\right) \wedge m=b \wedge\left(b \wedge a \rightarrow b \wedge b^{*}\right) \wedge m$ $=b \wedge(b \wedge a \rightarrow 0) \wedge m$ $=b \wedge(a \rightarrow 0) \wedge m=b \wedge a^{*}$.
(36) By 35 above, $b \wedge\left(a \rightarrow b^{*}\right) \wedge m=b \wedge a^{*}$. If a is dense then $b \wedge a^{*}=0$ or if $a^{*} \leqslant b^{*}$, then $b \wedge a^{*}=0$. Thus $b \wedge\left(a \rightarrow b^{*}\right) \wedge m=0$.
Hence $\left(a \rightarrow b^{*}\right) \wedge m \leqslant b^{*}$.
(37) Since $a \wedge(a \rightarrow b)=a \wedge b \wedge m=0$, we get $(a \rightarrow b) \wedge m \leqslant a^{*}$.
(38) $\left(a^{*} \vee b^{*}\right)^{* *}=\left[\left(a^{*} \vee b^{*}\right)^{*}\right]^{*}=\left[a^{* *} \wedge b^{* *}\right]^{*}=a^{*} \underline{\vee} b^{*}$.
(39) $a^{*} \underline{\vee} a=\left(a^{* *} \wedge a^{*}\right)^{*}=0^{*}=m$.

TheOrem 3.2. Let L be an SHADL and let $a, b \in L$ with $a \wedge m \leqslant b \wedge m$. For $c, d \in[a \wedge m, b \wedge m]$, define $c \rightarrow^{a b} d=(c \rightarrow d) \wedge b \wedge m$. Then the algebra $L_{0}=\left([a \wedge m, b \wedge m], \vee, \wedge, \rightarrow^{a b}, a \wedge m, b \wedge m\right)$ is a Semi Heyting algebra. Further more, if L is a HADL. Then L_{0} is also a Heyting algebra.

Proof. Let $c, d, e \in[a \wedge m, b \wedge m]$.
First we note that $c \rightarrow^{a b} d \in[a \wedge m, b \wedge m]$
Since $a \wedge m \leqslant c \wedge m, a \wedge m \leqslant d \wedge m$, we get $a \wedge m \leqslant(c \rightarrow d) \wedge m$ and hence $c \rightarrow^{a b} d \in[a \wedge m, b \wedge m]$.
$c \wedge\left(c \rightarrow{ }^{a b} d\right)=c \wedge(c \rightarrow d) \wedge b \wedge m$
$=c \wedge d \wedge b \wedge m$
$=c \wedge d$.
$e \wedge\left(c \rightarrow^{a b} d\right)=e \wedge(c \rightarrow d) \wedge b \wedge m$
$=e \wedge(e \wedge c \rightarrow e \wedge d) \wedge b \wedge m$
$=e \wedge\left(e \wedge c \rightarrow^{a b} e \wedge d\right)$. Finally,
$\left(c \rightarrow{ }^{a b} c\right)=(c \rightarrow c) \wedge b \wedge m$
$=m \wedge b \wedge m$
$=b \wedge m$.
Hence L_{0} is a semi Heyting algebra.
Now, suppose L is a HADL. Then
$c \wedge d \leqslant c \Rightarrow(c \rightarrow c) \leqslant c \wedge d \rightarrow c$
$\Rightarrow m \leqslant c \wedge d \rightarrow c$
$\Rightarrow c \wedge d \rightarrow c=m$
Therefore $c \wedge d \rightarrow{ }^{a b} c=(c \wedge d \rightarrow c) \wedge b \wedge m=b \wedge m$.
Hence L_{0} is a Heyting algebra.
Theorem 3.3. Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be an SHADL. For $x \in L$, define $x^{*}=(x \rightarrow 0) \wedge m$. Then $*$ is a pseudocomplementation on L.

Proof. Clearly, $a \wedge b=0$ iff $a^{*} \wedge b=b, a \wedge a^{*}=0$ and from (13) of lemma 3.4, we get that $*$ is a pseudocomplementation on L.

THEOREM 3.4. Let L be an SHADL and $a, b \in L$ such that $a \wedge m \leqslant b \wedge m$. For $c \in[a \wedge m, b \wedge m]$, define $c^{* a b}=(c \rightarrow a) \wedge b \wedge m$. Then the algebra $([a \wedge m, b \wedge$ $m], \vee, \wedge, * a b, a \wedge m, b \wedge m)$ is a pseudocomplemented lattice.

Proof. It is enough to verify that $x \wedge y=a \wedge m \Leftrightarrow x \leqslant y^{* a b}$ for all $x, y \in[a \wedge m, b \wedge m]$
Let $c \in[a \wedge m, b \wedge m]$, Since $a \wedge m \leqslant c \wedge m$ we have $a \wedge m \leqslant(c \rightarrow a) \wedge m$ $\Rightarrow a \wedge b \wedge m \leqslant(c \rightarrow a) \wedge b \wedge m \Rightarrow a \wedge m \leqslant(c \rightarrow a) \wedge b \wedge m \leqslant b \wedge m$.
Therefore, $c^{* a b} \in[a \wedge m, b \wedge m]$.
Let $x, y \in[a \wedge m, b \wedge m]$
Assume that $x \wedge y=a \wedge m$. Then $y^{* a b}=(y \rightarrow a) \wedge b \wedge m$
$x \wedge y^{* a b}=x \wedge(y \rightarrow a) \wedge b \wedge m=x \wedge(y \rightarrow a) \wedge m=x \wedge(x \wedge y \rightarrow a) \wedge m$ $=x \wedge(a \rightarrow a) \wedge m=x$.
Therefore, $x \leqslant y^{* a b}$
Conversely, Suppose $x \leqslant y^{* a b} \Rightarrow x=x \wedge(y \rightarrow a) \wedge b \wedge m$.
Now $y \wedge x=y \wedge x \wedge(y \rightarrow a) \wedge b \wedge m=x \wedge y \wedge a \wedge b \wedge m=a \wedge m$.
Therefore, $([a \wedge m, b \wedge m], \vee, \wedge, * a b, a \wedge m, b \wedge m)$ is a pseudocomplemented lattice.

Corollary 3.1. Let L be an SHADL. Then the algebra $\left([0, m], \vee, \wedge,{ }^{*}, 0, m\right)$, where $c^{*}=(c \rightarrow 0) \wedge m$ for $c \in[0, m]$, is a pseudocomplemented lattice.

Corollary 3.2. Let L be an SHADL. Then the following are equivalent.
(1) L is a lattice.
(2) L is a Semi Heyting algebra
(3) L is a psuedocomplemented lattice
(4) L is a distributive lattice
(5) L is a modular lattice

The proof of the following theorem can be verified routinely.
Theorem 3.5. Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be an SHADL. Then $\left(L^{*}, \underline{\vee}, \wedge, *, 0, m\right)$ is a Boolean algebra. Where $x \bigvee y=\left(x^{*} \wedge y^{*}\right)^{*}$ for any $x, y \in L^{*}$.

We know that a Boolean algebra is a Heyting algebra in which $a \rightarrow b=a^{*} \vee b$. On the other hand, in a SHADL, we have the following.

Theorem 3.6. Let L be an SHADL. Then, for $a, b \in L,(a \rightarrow b)^{* *} \leqslant a^{*} \underline{\bigvee} b^{* *}$.
Proof. $(a \rightarrow b)^{* *}=\left(a^{* *} \underline{\vee} a^{*}\right) \wedge(a \rightarrow b)^{* *}$ $=\left[a^{* *} \wedge(a \rightarrow b)^{* *}\right] \underline{\vee}\left[a^{*} \wedge(a \rightarrow b)^{* *}\right]$
$=[a \wedge(a \rightarrow b)]^{* *} \underline{\vee}\left[a^{*} \wedge(a \rightarrow b)^{* *}\right]$
$=\left[a^{* *} \wedge b^{* *}\right] \underline{\vee}\left[a^{*} \wedge(a \rightarrow b)^{* *}\right]$
$=\left[\left(a^{* *} \wedge b^{* *}\right) \underline{\vee} a^{*}\right] \wedge\left[\left(a^{* *} \wedge b^{* *}\right) \underline{\vee}(a \rightarrow b)^{* *}\right]$
$\leqslant\left[a^{*} \underline{\vee}\left(a^{* *} \wedge b^{* *}\right)\right]$
$=\left(a^{*} \underline{\vee} a^{* *}\right) \wedge\left(a^{*} \underline{\vee} b^{* *}\right)$
$=m \wedge\left(a^{*} \underline{\vee} b^{* *}\right)$
$=a^{*} \underline{\vee} b^{* *}$.
Therefore $(a \rightarrow b)^{* *} \leqslant a^{*} \underline{\vee} b^{* *}$.
In the following theorems we derive some important properties of SHADL involving the operation $*$.

Theorem 3.7. Let L be an SHADL and $a, b \in L$. Then $\left(a \vee a^{*}\right) \wedge(a \rightarrow b) \wedge m \leqslant\left(a^{*} \vee b\right) \wedge m$.

Proof. $\left(a \vee a^{*}\right) \wedge(a \rightarrow b) \wedge m=\left[[a \wedge(a \rightarrow b)] \vee\left[a^{*} \wedge(a \rightarrow b)\right]\right] \wedge m$ $=\left[(a \wedge b \wedge m) \vee\left(a^{*} \wedge(a \rightarrow b)\right)\right] \wedge m$
$=\left[(a \wedge b \wedge m) \vee a^{*}\right] \wedge[(a \wedge b \wedge m) \vee(a \rightarrow b)] \wedge m$
$\leqslant\left[a^{*} \vee(a \wedge b \wedge m)\right]$
$=\left(a^{*} \vee a\right) \wedge\left(a^{*} \vee(b \wedge m)\right)$
$\leqslant\left(a^{*} \vee b\right) \wedge m$.
Theorem 3.8. Let L be an SHADL and $a, b, c \in L$. Then
(1) $a^{* *} \wedge(a \rightarrow b)^{*}=a^{* *} \wedge b^{*}$.
(2) $a^{* *} \wedge(b \rightarrow c)^{*}=a^{* *} \wedge(a \wedge b \rightarrow a \wedge c)^{*}$.
(3) $b^{*} \wedge(a \rightarrow b) \wedge m=b^{*} \wedge a^{*}$.

Proof. (1) $a^{*} \underline{\vee}(a \rightarrow b)^{*}=\left(a^{* *} \wedge(a \rightarrow b)^{* *}\right)^{*}=(a \wedge(a \rightarrow b))^{*}$

$$
\begin{aligned}
& =(a \wedge b \wedge m)^{*} \\
& =(a \wedge b)^{*}=a^{*} \underline{\vee} b^{*} .
\end{aligned}
$$

$$
\text { Therefore, } a^{* *} \wedge(a \rightarrow b)^{*}=a^{* *} \wedge b^{*}
$$

(2) $a^{*} \underline{\vee}(b \rightarrow c)^{*}=[a \wedge(b \rightarrow c)]^{*}=[a \wedge(a \wedge b \rightarrow a \wedge c)]^{*}=a^{*} \underline{\vee}(a \wedge b \rightarrow a \wedge c)^{*}$. Therefore, $a^{* *} \wedge(b \rightarrow c)^{*}=a^{* *} \wedge(a \wedge b \rightarrow a \wedge c)^{*}$.
(3) $b^{*} \wedge(a \rightarrow b) \wedge m=b^{*} \wedge\left(b^{*} \wedge a \rightarrow b^{*} \wedge b\right) \wedge m=b^{*} \wedge\left(b^{*} \wedge a \rightarrow 0\right) \wedge m$ $=b^{*} \wedge(a \rightarrow 0) \wedge m=b^{*} \wedge a^{*}$.

Theorem 3.9. Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be an SHADL. Then for any element $x \in L$ there exists $d \in D_{L}$ such that $x=x^{* *} \wedge d$.

Proof. Let $d=\left(x \vee x^{*}\right)$, then $d^{*}=\left(x \vee x^{*}\right)^{*}=x^{*} \wedge x^{* *}=0$.
Therefore $d \in D_{L}$. Now,
$x^{* *} \wedge d=x^{* *} \wedge\left(x \vee x^{*}\right)=\left[\left(x^{* *} \wedge x\right) \vee\left(x^{* *} \wedge x^{*}\right)\right]=x \vee 0=x$

Corollary 3.3. Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be an SHADL and $x, y \in L$ such that $x^{* *}=y^{* *}$. Then there exists $d \in D_{L}$ such that $x \wedge d=y \wedge d$.

Proof. Let $x, y \in L$, by above theorem there exists $d_{1}, d_{2} \in D_{L}$ such that $x=x^{* *} \wedge d_{1}, y=y^{* *} \wedge d_{2}$.
Let $d=d_{1} \wedge d_{2}$, then d is a dense element of L. Now, consider $x \wedge d \wedge m=x^{* *} \wedge d_{1} \wedge d_{2} \wedge m=y^{* *} \wedge d_{1} \wedge d_{2} \wedge m=y \wedge d \wedge m$ and hence $x \wedge d=y \wedge d$.

Corollary 3.4. Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be an $S H A D L$ and x be an element of L. Then x is dense if and only if there is an element y of L such that $x \wedge m=y^{* *} \rightarrow y$.

Proof. Suppose x is a dense element of L. Then
$x^{* *} \rightarrow x=m \rightarrow x=x \wedge m$.
Conversely, assume that $x \wedge m=y^{* *} \rightarrow y$ for some $y \in L$. First we show that $y^{* *} \rightarrow y$ is a dense element.
We know that $y^{* *} \wedge\left(y^{* *} \rightarrow y\right)=y^{* *} \wedge y \wedge m=y \wedge m$.
Now, $y^{* *}=(y \wedge m)^{* *}=\left[y^{* *} \wedge\left(y^{* *} \rightarrow y\right)\right]^{* *}=y^{* *} \wedge\left(y^{* *} \rightarrow y\right)^{* *}$
$\Rightarrow y^{* *} \leqslant\left(y^{* *} \rightarrow y\right)^{* *} \Rightarrow\left(y^{* *} \rightarrow y\right)^{*} \leqslant y^{*}$. Also, by Lemma 3.4 (27),
$y^{*} \leqslant\left(y^{* *} \rightarrow y\right) \wedge m \Rightarrow\left(y^{* *} \rightarrow y\right)^{*} \leqslant y^{* *}$
Therefore $\left(y^{* *} \rightarrow y\right)^{*}=0$ and hence $y^{* *} \rightarrow y$ is a dense element.
Thus $x \wedge m$ is a dense element of L and hence x is a dense element of L.
If $(L, \vee, \wedge, \rightarrow, 0, m)$ and $\left(L^{\prime}, \vee, \wedge, \rightarrow, 0^{\prime}, m^{\prime}\right)$ are two SHADLs. Then a mapping $\alpha: L \rightarrow L^{\prime}$ is said to be a homomorphism of L into L^{\prime} if for any $x, y \in L$ the following hold.
(1) $\alpha(x \wedge y)=\alpha(x) \wedge \alpha(y)$
(2) $\alpha(x \vee y)=\alpha(x) \vee \alpha(y)$
(3) $\alpha(x \rightarrow y)=\alpha(x) \rightarrow \alpha(y)$
(4) $\alpha(0)=0^{\prime}$

Further if $\alpha: L \rightarrow L^{\prime}$ is a homomorphism, then $\left\{x \in L / \alpha(x)=m^{\prime}\right\}$ is called the kernel of α and is denoted by ker α.

Finally, we conclude this paper with the following.
Theorem 3.10. Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be an SHADL and $\alpha: L \rightarrow L^{*}$ be defined by $\alpha(x)=x^{* *}$ for all $x \in L$ and suppose $x, y \in L$. Then
(1) α is isotone.
(2) $\alpha(x \wedge y)=\alpha(x) \wedge \alpha(y)$
(3) $\alpha(x \vee y)=\alpha(x) \underline{\vee} \alpha(y)$
(4) $\operatorname{ker}(\alpha)=D_{L}$

Proof. Let $x, y \in L$
(1) Assume $x \leqslant y \Rightarrow x^{* *} \leqslant y^{* *} \Rightarrow \alpha(x) \leqslant \alpha(y)$
(2) $\alpha(x \wedge y)=(x \wedge y)^{* *}=x^{* *} \wedge y^{* *}=\alpha(x) \wedge \alpha(y)$
(3) $\alpha(x \vee y)=(x \vee y)^{* *}=\left(x^{*} \wedge y^{*}\right)^{*}=x^{* *} \underline{\vee} y^{* *}=\alpha(x) \underline{\vee} \alpha(y)$
(4) Let $x \in \operatorname{ker}(\alpha) \Rightarrow \alpha(x)=m \Rightarrow x^{* *}=m \Rightarrow x^{*}=0 \Rightarrow x \in D_{L}$.

Conversely, assume that $x \in D_{L} \Rightarrow x^{*}=0 \Rightarrow x^{* *}=m$
$\Rightarrow \alpha(x)=m \Rightarrow x \in \operatorname{ker}(\alpha)$.
Hence $\operatorname{ker}(\alpha)=D_{L}$.

References

[1] Birkhoff G.:LatticeTheory, Third Edition. Colloq. publ., Vol. 25 Amer.Math.Soc.Providence 1979.
[2] Burris S. and H.P.Sankappanavar. : A course in Universal Algebra, Spinger-Verlag, New York, Heidellberg, Berlin 1981.
[3] Gratzer G. : General Lattice Theory, Pure and Applied Mathematics Vol. 75, Academic Press, New York (1978).
[4] G.C.Rao, Berhanu Assaye and M.V.Ratnamani.: Heyting Almost Distributive Lattices, International Journal of Computational Cognition, 8(3)(2010), 89-93.
[5] G.C.Rao and Berhanu Assaye.: Closed Elements in Heyting Almost Distributive Lattices, International Journal of Computational Cognition. 9(2)(2011), 56-60.
[6] G.C.Rao and Berhanu Assaye.: Dense Elements in Heyting Almost Distributive Lattices, International Journal of Computational Cognition, 9(2)(2011), 61-65.
[7] G.C.Rao, M.V.Ratnamani, K.P.Shum and Berhanu Assaye. : Semi Heyting Almost Distributive Lattices (communicated)
[8] H.P.Sankappanavar. : Semi Heyting Algebra :An Abstraction From Heyting Algebras, IX Congreso, Dr. Antonio A.R. Monteiro, (Bahia Blanca, 30 de Mayo al 1 de Junio de 2007), pp. 33-66.
[9] Rao G.C. : Almost Distributive Lattices, Doctorial Thesis, Department of Mathematics, Andhhra University, Andhra Pradesh, INDIA, 1980.
[10] Swamy U.M. and Rao G.C.: Almost Distributive Lattices, Jour. Asust. Math. Soc. (Series A), 31(1981), 77-91.
[11] U.M.Swamy, G.C. Rao and G. Nanaji Rao: Pseudocomplementation on Almost Distributive Lattices, South East Bulletin of Mathematics, 24(1)(2000), 95-104.

Received by editors 17.07.2014: Revised version 24.11.2014; Available online 01.12.2014.

Department of Mathematics, Andhra University, Visakhapatnam, A.P, IndiA E-mail address: gcraomaths@yahoo.co.in

AItAM Enggenering College, Tekkali, Srikakulam, Andhra Pradesh, INDiA E-mail address: vvratnamani@gmail.com

Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia.

[^0]: 2010 Mathematics Subject Classification. 06D99, 06D15.
 Key words and phrases. Semi Heyting Almost Distributive Lattice(SHADL), pseudocomplementation on ADL, closed element, dense element.

