BULLETIN OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 1840-4367 Vol. 1(2011), 59-65

> Former Bulletin of Society of Mathematicians Banja Luka ISSN 0354-5792, ISSN 1986-521X (0)

On (γ, γ') -connected spaces

N. Rajesh and V. Vijayabharathi

ABSTRACT. In this paper, we define (γ, γ') -connected spaces and study their properties in topological spaces.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topic of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the various modified forms of continuity, seperation axioms etc. by utilizing generalized open sets. Kasahara [5] defined the concept of an operation on topological spaces. Umehara et. al. [7] introduced the notion of $\tau_{(\gamma,\gamma')}$ which is the collection of all (γ,γ') -open sets in a topological space (X, τ) . Recently, G. S. S. Krishnan and K. Balachandran (see [1], [3], [2]) studied in this field. In this paper, we introduce and study the concepts of minimal (γ, γ') -open and maximal (γ, γ') -closed sets in topological spaces. In this paper, we define (γ, γ') -connected spaces and study their properties in topological spaces.

2. preliminaries

DEFINITION 2.1. Let (X, τ) be a topological space. An operation γ [5] on the topology τ is function $\gamma : \tau \to P(X)$ such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V.

DEFINITION 2.2. A subset A of a topological space (X, τ) is said to be (γ, γ') -open set [7] if for each $x \in A$ there exist open neighbourhoods U and V of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$. The complement of (γ, γ') -open set is called (γ, γ') -closed.

DEFINITION 2.3. [4] Let A be a subset of a topological space (X, τ) . A point $x \in A$ is said to be (γ, γ') -interior point of A if there exist open neighbourhods U and V

²⁰⁰⁰ Mathematics Subject Classification. 54A05, 54A10, 54D10.

Key words and phrases. Topological spaces, (γ, γ') -open set.

⁵⁹

of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$ and we denote the set of all such points by $\operatorname{Int}_{(\gamma,\gamma')}(A)$. Thus $\operatorname{Int}_{(\gamma,\gamma')}(A) = \{x \in A : x \in U \in \tau, V \in \tau \text{ and } U^{\gamma} \cup V^{\gamma'} \subset A$. Note that A is (γ, γ') -open if and only if $A = \operatorname{Int}_{(\gamma,\gamma')}(A)$. A set A is called (γ, γ') -closed if and only if $X \setminus A$ is (γ, γ') -open.

DEFINITION 2.4. [7] A point $x \in X$ is called a (γ, γ') -closure point of $A \subset X$, if $(U^{\gamma} \cup V^{\gamma'}) \cap A \neq \emptyset$, for any open neighbourhoods U and V of x. The set of all (γ, γ') -closure points of A is called (γ, γ') -closure of A and is denoted by $\operatorname{Cl}_{(\gamma, \gamma')}(A)$. A subset A of X is called (γ, γ') -closed, if $\operatorname{Cl}_{(\gamma, \gamma')}(A) \subset A$. Note that $\operatorname{Cl}_{(\gamma, \gamma')}(A)$ is contained in every (γ, γ') -closed superset of A.

DEFINITION 2.5. [6] An operation γ on τ is said to be regular if for any open neighbourhoods U, V of $x \in X$, there exits an open neighbourhood W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$.

DEFINITION 2.6. [6] An operation γ on τ is said to be open if for any open neighbourhood U of each $x \in X$, there exists (γ, γ') -open set B such that $x \in B$ and $U^{\gamma} \supseteq B$.

3. Properties of (γ, γ') -connected spaces

DEFINITION 3.1. A topological space (X, τ) is said to be (γ, γ') -connected if there does not exist a pair A, B of nonempty disjoint (γ, γ') -open subset of X such that $X = A \cup B$, otherwise X is called (γ, γ') -disconnected. In this case, the pair (A, B) is called a (γ, γ') -disconnection of X. A subset A of a space (X, τ) is (γ, γ') -connected if it is (γ, γ') -connected as a subspace.

EXAMPLE 3.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, b\}\}$. For $b \in X$, defined an operation $\gamma : \tau \to P(X)$ such that

$$\gamma(A) = \begin{cases} A & \text{if } a \in A, \\ \operatorname{Cl}(A) & \text{if } a \notin A, \end{cases}$$

and

$$\gamma'(A) = \begin{cases} A & \text{if } A = \{a, c\}, \\ A \cup \{b\} & \text{if } A \neq \{a, c\}. \end{cases}$$

It is clear that X is (γ, γ') -connected but not connected.

THEOREM 3.1. A topological space (X, τ) is (γ, γ') -disconnected (resp. (γ, γ') connected) if and only if there exists a (resp. does not exist) nonempty subset A of X which is both (γ, γ') -open and (γ, γ') -closed in X.

PROOF. The proof is clear.

DEFINITION 3.2. A mapping $f : (X, \tau_1) \to (Y, \tau_2)$ is said to be $((\gamma, \gamma'), (\beta, \beta'))$ continuous if for each $x \in X$ and each open set V containing f(x), there exists an open set U such that $x \in U$ and $f(U^{\gamma}) \subset V^{\beta}$, where $\gamma : \tau_1 \to P(X); \beta : \tau_2 \to P(Y)$ are operations on τ_1 and τ_2 , respectively.

60

A $((\gamma, \gamma'), (\beta, \beta'))$ -continuous mapping has be charachterized as: If $f: (X, \tau_1) \to (Y, \tau_2)$ is a mapping and (β, β') is open, then f is $((\gamma, \gamma'), (\beta, \beta'))$ continuous if and only if for each (β, β') -open set V in $Y, f^{-1}(V)$ is (γ, γ') -open in X. We use this characterization and prove:

THEOREM 3.2. The $((\gamma, \gamma'), (\beta, \beta'))$ -continuous image of (γ, γ') -connected spec is (γ, γ') -connected, where (β, β') is open.

PROOF. Let $f: (X, \tau_1) \to (Y, \tau_2)$ be $((\gamma, \gamma'), (\beta, \beta'))$ -continuous from a (γ, γ') connected space (X, τ_1) onto a space (Y, τ_2) . Suppose that Y is (γ, γ') -disconnected and (A, V) is a (γ, γ') -disconnection of Y. Since f is $((\gamma, \gamma'), (\beta, \beta'))$ -continuous, therefore $f^{-1}(A), f^{-1}(B)$ are both (γ, γ') -open in X. Clearly $f^{-1}(A), f^{-1}(B)$ is a pair of (γ, γ') -disconnection of X a contradiction. Hence Y is (γ, γ') -connected. \Box

DEFINITION 3.3. The (γ, γ') -boundary of a subset A of (X, τ) is defined as $\operatorname{Cl}_{(\gamma, \gamma')}(A) \cap \operatorname{Cl}_{(\gamma, \gamma')}(X \setminus A).$

Next we characterize (γ, γ') -connectedness in terms of (γ, γ') -boundary as.

THEOREM 3.3. A topological space (X, τ) is (γ, γ') -connected if and only if every nonempty proper subspace has a nonempty (γ, γ') -boundary.

PROOF. Suppose that a nonempty proper subspace A of a (γ, γ') - connected space (X, τ) has empty (γ, γ') - boundary. Then A is (γ, γ') -open and $\operatorname{Cl}_{(\gamma,\gamma')}(A) \cap \operatorname{Cl}_{(\gamma,\gamma')}(X \setminus A) = \emptyset$. Let p be a (γ, γ') -limit point of A. Then $p \in \operatorname{Cl}_{(\gamma,\gamma')}(A)$ but $p \notin \operatorname{Cl}_{(\gamma,\gamma')}(X \setminus A)$. In particular, $p \notin X \setminus A$ and so $p \in A$. Thus A is (γ, γ') -closed and (γ, γ') -open. By theorem 3.1, X is (γ, γ') -disconnected. This contradiction proves that A has a nonempty (γ, γ') -boundary. Conversely, suppose X is (γ, γ') -disconnected. Then by Theorem 3.1, X has a proper subspace A which is both (γ, γ') -closed and (γ, γ') -open. Then $\operatorname{Cl}_{(\gamma, \gamma')}(A) = A, \operatorname{Cl}_{(\gamma, \gamma')}(X \setminus A) = (X \setminus A)$ and $\operatorname{Cl}_{(\gamma, \gamma')}(A) \cap \operatorname{Cl}_{(\gamma, \gamma')}(X \setminus A) = \emptyset$. So A has empty (γ, γ') -boundary, a contradiction. Hence X is (γ, γ') -connected.

DEFINITION 3.4. A two point discrete space $D = \{a, b\}$ is called (γ, γ') -discrete if $\tau_{(\gamma, \gamma')} = \tau$.

THEOREM 3.4. If a space (X, τ) is (γ, γ') -connected, then there does not exist a surjective $((\gamma, \gamma'), (\beta, \beta'))$ - continuous function f from X onto two point (γ, γ') - discrete space, where (β, β') is open.

PROOF. Suppose there exits a $((\gamma, \gamma'), (\beta, \beta'))$ - continuous from a (γ, γ') - connected space (X, τ) onto a two point (γ, γ') -discrete space $D = \{a, b\}$. Then $((\gamma, \gamma'), (\beta, \beta'))$ -continuity of f impolies $A = f^{-1}\{a\}$ and $B = f^{-1}\{b\}$ are (γ, γ') -open in X. Clearly (A, B) is a (γ, γ') -disconnection of X. This contradiction proves the theorem.

DEFINITION 3.5. Let X be a space and $A \subset X$. Then the class of (γ, γ') -open sets in A is defined in a natural way as: $\tau_{(\gamma,\gamma')A} = \{A \cap O : O \in \tau_{(\gamma,\gamma')}\}$, where $\tau_{(\gamma,\gamma')}$ is the class of (γ, γ') -open sets of X. That is, G is (γ, γ') -open in A if and only if $G = A \cap O$, where O is a (γ, γ') -open set in X. THEOREM 3.5. Let (A, B) be a (γ, γ') -disconnection of a space (X, τ) and C be a (γ, γ') -connected subspace of X. Then C is contained in A or B.

PROOF. Suppose that C is neither contained in A nor in B. Then $C \cap A, C \cap B$ are both nonempty (γ, γ') -open subsets of C such that $(C \cap A) \cap (C \cap B) = \emptyset$ and $(C \cap A) \cup (C \cap B) = C$. This gives that $(C \cap A, C \cap B)$ is a (γ, γ') -disconnection of C. This contradiction proves the theorem.

THEOREM 3.6. Let $X = \bigcup_{\alpha \in I} \{X_{\alpha}\}$, where each X_{α} is (γ, γ') -connected and $\bigcap_{\alpha \in I} \{X_{\alpha}\} \neq \emptyset$. Then X is (γ, γ') -connected.

PROOF. Suppose on the contrary that (A, B) is a (γ, γ') -disconnection of X. Since each X_{α} is (γ, γ') -connected, therefore by Theorem 3.5, $X_{\alpha} \subset A$ or $X_{\alpha} \subset B$. Since $\cap X_{\alpha} \neq \emptyset$, therefore all X_{α} are contained in A or in B. This gives that, if $X \subset A$, then $B = \emptyset$ or if $X \subset B$, then $A = \emptyset$. This contradictions proves that X is (γ, γ') -connected.

Using Theorem 3.6, we characterize (γ, γ') -connectedness as:

THEOREM 3.7. A space (X, τ) is (γ, γ') -connected if and only if for every pair of points x, y in X, there is a (γ, γ') -connected subset of X which contains both x and y.

PROOF. The necesity is immediate since the (γ, γ') -connected space itself contains these two points. For the sufficiency, suppose that for any two points x, y; there is a (γ, γ') -connected subspace $C_{x,y}$ of X such that $x, y \in C_{x,y}$. Let $a \in X$ be a fixed point and $\{C_{a,c}, x \in X\}$ be a class of all (γ, γ') -connected subsets of Xwhich contain a and $x \in X$. Then $X = \bigcup_{x \in X} \{C_{a,x}\}$ and $\bigcap_{x \in X} \{C_{a,x}\} = \emptyset$. Therefore by Theorem 3.6, X is (γ, γ') -connected.

THEOREM 3.8. Let C be a (γ, γ') -connected subset of a space (X, τ) and $A \subset X$ such that $C \subset A \subset \operatorname{Cl}_{(\gamma, \gamma')}(C)$. Then A is (γ, γ') -connected.

PROOF. It is sufficient to show that $\operatorname{Cl}_{(\gamma,\gamma')}(C)$ is (γ,γ') -connected. On the contrary, suppose that $\operatorname{Cl}_{(\gamma,\gamma')}(C)$ is (γ,γ') -disconnected. Then there exists a (γ,γ') -disconnection (H,K) of $\operatorname{Cl}_{(\gamma,\gamma')}(C)$. That is, there are $H \cap C, K \cap C$ (γ,γ') -open sets in C such that $(H \cap C) \cap (K \cap C) = (H \cap K) \cap C = \emptyset$, and $(H \cap C) \cup (K \cap C) = (H \cup K) \cap C = C$. This gies that $(H \cap C, K \cap C)$ is a (γ, γ') -disconnection of C, a contradiction. This proves that $\operatorname{Cl}_{(\gamma,\gamma')}(C)$ is (γ,γ') -connected. \Box

DEFINITION 3.6. A maximal (γ, γ') -connected subset of a space (X, τ) is called a (γ, γ') -component of X. If X is itself (γ, γ') -connected, then X is the only (γ, γ') -component of X.

EXAMPLE 3.2. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, b\}\}$. For $b \in X$, defined an operation $\gamma : \tau \to P(X)$ such that

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\},\\ Cl(A) & \text{if } A \neq \{a\}, \end{cases}$$

and

$$\gamma'(A) = \begin{cases} A & \text{if } A \neq \{b\},\\ Cl(A) & \text{if } A = \{b\}. \end{cases}$$

It is clear that $\{a, c\}$ is a maximal (γ, γ') -connected set.

THEOREM 3.9. Let X be a topological space. Then we have the following

- (1) For each $x \in X$, there is exactly one (γ, γ') -component of X containing x.
- (2) Each (γ, γ') -connected subset of X is contained in exactly one (γ, γ') component of X.
- (3) A (γ, γ') -connected subset of X which is both (γ, γ') -open and (γ, γ') closed is a (γ, γ') -connected, if γ and γ' are regular.
- (4) Every (γ, γ') -component of X is (γ, γ') -closed in X.

PROOF. (1) Let $x \in X$ and $\{C_{\alpha} : \alpha \in I\}$ a class of all (γ, γ') -connected subsets of X containing x. Put $C = \bigcup_{\alpha \in I} C$, then by Theorem 3.6, C is (γ, γ') connected and $x \in X$. Suppose $C \subset C^*$ for some (γ, γ') -connected subset C^* of X. Then $x \in C^*$ and hence C^* is one of the C_{α} 's and hence $C^* \subset C$. Consequently $C = C^*$. This proves that C is a (γ, γ') -component of X which contains x. (2). Let A be a (γ, γ') -connected subset of X which is not a (γ, γ') -component of X. Suppose that C_1, C_2 are (γ, γ') -components of X such that $A \subset C_1, A \subset C_2$. Since $C_1 \cap C_2 = \emptyset, C_1 \cup C_2$ is another (γ, γ') -connected set which contains C_1 as well as that C_2 , a cotradiction to the fact that C_1 and C_2 are (γ, γ') -components. This proves that A is contained in exactly one (γ, γ') -component of X. (3) Suppose that A is (γ, γ') -connected subset of X which is both (γ, γ') -open and (γ, γ') -closed. By (2), A is contained is exactly one (γ, γ') -component C of X. If A is a proper subset of C, and since (γ, γ') is regular, therefore $C = (C \cap A) \cup (C \cap (X \setminus A))$ is a (γ, γ') disconnection of C, a contradiction. Thus A = C. (4) Suppose a (γ, γ') -component C of X is not $(\gamma,\gamma')\text{-closed}.$ Then by Theorem 3.8, $\operatorname{Cl}_{(\gamma,\gamma')}(C)$ is $(\gamma,\gamma')\text{-connected}$ containing (γ, γ') -component C of X. This implies $C = \operatorname{Cl}_{(\gamma, \gamma')}(C)$ and hence C is (γ, γ') -closed.

4. (γ, γ') -Locally connected spaces

DEFINITION 4.1. A space (X, τ) is said to be (γ, γ') -locally connected if for any point $x \in X$ and any (γ, γ') -open set U containing x, there is a (γ, γ') -connected (γ, γ') -open set V such that $x \in V \subset U$.

EXAMPLE 4.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $a \in X$, define an operation $\gamma : \tau \to P(X)$ such that

$$\gamma(A) = \begin{cases} A & \text{if } a \in A, \\ Cl(A) & \text{if } a \notin A, \end{cases}$$

and

$$\gamma'(A) = \begin{cases} A & \text{if } A \neq \{b\},\\ Cl(A) & \text{if } A = \{b\}. \end{cases}$$

It is clear that $\emptyset, X, \{a\}, \{b\}, \{a, b\}$ are the only (γ, γ') -open sets. Clearly X is (γ, γ') -locally connected but not locally connected.

THEOREM 4.1. If X is a (γ, γ') -locally connected space, then X has a (γ, γ') neighbourhood base comprising (γ, γ') -connected (γ, γ') -open sets.

PROOF. Let (β, β') be the class of all (γ, γ') -connected (γ, γ') -open subsets of a (γ, γ') -locally connected space (X, τ) . We show that (β, β') is a (γ, γ') neighbourhood base for a topology τ on X. Let U be (γ, γ') -open subset on Xand $x \in U$. Since X is (γ, γ') -locally connected space, therefore there exists a (γ, γ') -connected (γ, γ') -open set $B \in \beta$ such that $x \in B \subset U$. This implies that each (γ, γ') -open set in X is the union of members of (β, β') . Consequently (β, β') is a (γ, γ') -neighbourhood base for τ .

The following theorem shows that (γ, γ') -locally connectedness is a (γ, γ') -open hereditary property.

THEOREM 4.2. A (γ, γ') -open subset of (γ, γ') -locally connected space is (γ, γ') -locally connected.

PROOF. Let U be a (γ, γ') -open subset of a (γ, γ') -locally connected space (X, τ) . Let $x \in U$ and V be a (γ, γ') -open neighbourhood of x in U. Then V is a (γ, γ') -open neighbourhood of x in X. Since X is (γ, γ') -locally connected, therefore there exists a (γ, γ') -connected, (γ, γ') -open neighbourhood W of x such that $x \in W \subset V$. In this way W is also a (γ, γ') -connected (γ, γ') -open neighbourhood x in U such that $x \in W \subset U \subset V$ or $x \in W \subset V$. This proves that U is (γ, γ') -locally connected.

DEFINITION 4.2. A mapping $f : (X, \tau_1) \to (Y, \tau_2)$ is said to be $((\gamma, \gamma'), (\beta, \beta'))$ closed (resp. $((\gamma, \gamma'), (\beta, \beta'))$ -open) if for any (γ, γ') -closed $((\gamma, \gamma')$ -open) set A of X, f(A) is (β, β') -closed (resp. (β, β') -open) in Y.

THEOREM 4.3. A $((\gamma, \gamma'), (\beta, \beta'))$ -continuous, $((\gamma, \gamma'), (\beta, \beta'))$ -open surjective image of (γ, γ') -locally connected space is (γ, γ') -locally connected space.

PROOF. Let $f: (X, \tau_1) \to (Y, \tau_2)$ be $((\gamma, \gamma'), (\beta, \beta'))$ -continuous, $((\gamma, \gamma'), (\beta, \beta'))$ - open from a (γ, γ') -locally connected space (X, τ) to a space Y. We show that Y = f(X) is (γ, γ') -locally connected space. Let $y \in Y$ and choose $x \in X$ such that f(x) = y. Let U be (β, β') -open set containing x. Since X is (γ, γ') -locally connected, there exists a (γ, γ') -connected, (γ, γ') -open set V containing x such that $x \in V \subset f^{-1}(U)$. This gives that $f(x) \in f(V) \subset f(f^{-1}(U)) = U$ or $y \in f(V) \subset U$. Since f is $((\gamma, \gamma'), (\beta, \beta'))$ -continuous, f(V) is (γ, γ') -open. Moreover f(V) is (γ, γ') -connected. This proves that Y is (γ, γ') -locally connected. \Box

Acknowledgement

The authors thank the referee for his valuable comments and suggestions.

ON (γ, γ') -CONNECTED SPACES

References

- [1] C. Carpintero, N. Rajesh and E. Rosas, On a class of (γ, γ') preopen sets in a topological space, to appear in Fasciculi Mathematici, Vol. 46 (2011).
- [2] C. Carpintero, N. Rajesh and E. Rosas, On (γ, γ') -semiopen sets in topological spaces (submitted).
- [3] C. Carpintero, N. Rajesh and E. Rosas, Bioperations via-b-open sets in topological spaces, J. Adv. Res. Appl. Math., 2(4)(2010), 61-69.
- [4] S. Hussain and B. Ahmad, Bi (γ, γ') -operations in topological spaces, Math. Today, 22(1)(2006), 21-36.
- [5] S.Kasahara, Operation-compact spaces, Math. Japonica 24 (1979), 97-105.
- H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36(1)(1991), 175-184.
- [7] J. Umehara, H. Maki and T. Noiri, Bioperation on topological spaces and some separation axioms, Mem. Fac. Sci. Kochi Univ. (A), 13(1992), 45-59.

(received 03.07.2011; in revised form 09.10.2011; available online 11.10.2011)

Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India.

E-mail address: nrajesh_topology@yahoo.co.in

DEPARTMENT OF MATHEMATICS, NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI, TAMILNADU, INDIA.

 $E\text{-}mail\ address:\ \texttt{vijayabharathi}_\texttt{vCyahoo.com}$