On the Hyers-Ulam stability of Pexider- type extension of the Jensen-Hosszu equation

Zygfryd Kominek ${ }^{\text {IT }}$

Abstract

We consider the following pexiderized version of Jensen-Hosszú equation of the form $$
2 f\left(\frac{x+y}{2}\right)=g(x+y-x y)+h(x y),
$$ where f, g, h are unknown real-valued functions of a real variable. We prove that f, g, h are affine functions and, moreover, we prove that these equation is stable in the Hyers-Ulam sense. AMS Mathematics Subject Classification (2010): 39B82, 39B62, 26A51 Key words and phrases: Jensen-Hosszú functional equation, Hyers-Ulam stability

Functional equation of the form

$$
2 f\left(\frac{x+y}{2}\right)=f(x+y-x y)+f(x y), \quad x, y \in \mathbb{R}
$$

is called Jensen-Hosszú equation. In [2] we have proved that Jensen-Hosszú equation is equivalent to the Jensen equation

$$
2 f\left(\frac{x+y}{2}\right)=f(x)+f(y), \quad x, y \in \mathbb{R}
$$

The general solution of these equations are of the form $f(x)=a(x)+c, x \in \mathbb{R}$, where $a: \mathbb{R} \rightarrow \mathbb{R}$ is an additive function and c is a real constant.

[^0]Let $\delta \geq 0$ be a fixed real number and let $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ be functions satisfying the following condition

$$
\left|2 f\left(\frac{x+y}{2}\right)-g(x+y-x y)-h(x y)\right| \leq \delta, \quad x, y \in \mathbb{R}
$$

Putting here $x=y=0$ we get

$$
|2 f(0)-g(0)-h(0)| \leq \delta .
$$

If $F(x)=f(x)-f(0), G(x)=g(x)-g(0), H(x)=h(x)-h(0), x \in \mathbb{R}$, then the triple $\{F, G, H\}$ satisfies the analogue condition, i.e.,

$$
\begin{equation*}
\left|2 F\left(\frac{x+y}{2}\right)-G(x+y-x y)-H(x y)\right| \leq 2 \delta, \quad x, y \in \mathbb{R} \tag{1}
\end{equation*}
$$

and, moreover,

$$
F(0)=G(0)=H(0)=0 .
$$

Setting $y=0$ in (1) we obtain

$$
\begin{equation*}
\left|2 F\left(\frac{x}{2}\right)-G(x)\right| \leq 2 \delta, \quad x \in \mathbb{R} \tag{2}
\end{equation*}
$$

For arbitrary $u \in \mathbb{R}$ and $v \leq 0$ the equation

$$
z^{2}-(u+v) z+v=0
$$

has two solutions x and y fulfilling the following equalities

$$
u+v=x+y \quad \text { and } \quad v=x y
$$

Consequently,

$$
\begin{equation*}
\left|2 F\left(\frac{u+v}{2}\right)-G(u)-H(v)\right| \leq 2 \delta, \quad u \in \mathbb{R}, v \leq 0 \tag{3}
\end{equation*}
$$

Setting $u=0$ in (3) we obtain

$$
\begin{equation*}
\left|2 F\left(\frac{v}{2}\right)-H(v)\right| \leq 2 \delta, \quad v \leq 0 \tag{4}
\end{equation*}
$$

By virtue of (2), (3) and (4), for all $u \in \mathbb{R}$ and each $v \leq 0$, we have

$$
\begin{aligned}
& \left|2 F\left(\frac{u+v}{2}\right)-2 F\left(\frac{u}{2}\right)-2 F\left(\frac{v}{2}\right)\right| \\
& \leq\left|2 F\left(\frac{u+v}{2}\right)-G(u)-H(v)\right|+\left|2 F\left(\frac{u}{2}\right)-G(u)\right|+\left|2 F\left(\frac{v}{2}\right)-H(v)\right| \leq 6 \delta,
\end{aligned}
$$

which can be rewritten to the following equivalent form

$$
\begin{equation*}
|F(u+v)-F(u)-F(v)| \leq 3 \delta, \quad u \in \mathbb{R}, v \leq 0 \tag{5}
\end{equation*}
$$

According to the well-known theorem ([1] for example) there exists a uniquely determined additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
|F(v)-A(v)| \leq 3 \delta, \quad v \leq 0 \tag{6}
\end{equation*}
$$

Using also (2) we obtain

$$
\begin{equation*}
|G(v)-A(v)| \leq\left|G(v)-2 F\left(\frac{v}{2}\right)\right|+\left|2 F\left(\frac{v}{2}\right)-2 A\left(\frac{v}{2}\right)\right| \leq 8 \delta, \quad v \leq 0 \tag{7}
\end{equation*}
$$

and, similarly, using (4) instead of (2)

$$
\begin{equation*}
|H(v)-A(v)| \leq 8 \delta, \quad v \leq 0 \tag{8}
\end{equation*}
$$

It follows from (3) (by putting $u=-v$) that

$$
|G(-v)+H(v)| \leq 2 \delta, \quad v \leq 0
$$

For arbitrary $v>0$ we have

$$
|G(v)-A(v)| \leq|G(v)+H(-v)|+|A(-v)-H(-v)| \leq 2 \delta+8 \delta=10 \delta
$$

which together with (7) implies that

$$
\begin{equation*}
|G(u)-A(u)| \leq 10 \delta, \quad u \in \mathbb{R} \tag{9}
\end{equation*}
$$

According to (9) and (2)

$$
|F(u)-A(u)| \leq \frac{1}{2}|2 F(u)-G(2 u)|+\frac{1}{2}|G(2 u)-A(2 u)| \leq 6 \delta, \quad u \in \mathbb{R}
$$

Putting $y=1$ and $x=v>0$ in (1) we get

$$
\left|2 F\left(\frac{v+1}{2}\right)-G(1)-H(v)\right| \leq 2 \delta
$$

and, consequently,
$|H(v)-A(v)| \leq\left|H(v)+G(1)-2 F\left(\frac{v+1}{2}\right)\right|+2\left|F\left(\frac{v+1}{2}\right)-A\left(\frac{v+1}{2}\right)\right|+|G(1)-A(1)| \leq 24 \delta$.
Therefore,
$|F(x)-A(x)| \leq 6 \delta, \quad|G(x)-A(x)| \leq 10 \delta \quad$ and $\quad|H(x)-A(x)| \leq 24 \delta, \quad x \in \mathbb{R}$.

Now, we are in a position to formulate our main result.
Theorem 0.1 Let $\delta \geq 0$ be a fixed real number and let $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ be functions satisfying the following condition

$$
\left|2 f\left(\frac{x+y}{2}\right)-g(x+y-x y)-h(x y)\right| \leq \delta, \quad x, y \in \mathbb{R}
$$

Then there exist functions $f_{1}, g_{1}, h_{1}: \mathbb{R} \rightarrow \mathbb{R}$ fulfilling the equation

$$
2 f_{1}\left(\frac{x+y}{2}\right)-g_{1}(x+y-x y)-h_{1}(x y)=0, \quad x, y \in \mathbb{R}
$$

and the following estimations
$\left|f(x)-f_{1}(x)\right| \leq 7 \delta, \quad\left|g(x)-g_{1}(x)\right| \leq 11 \delta, \quad$ and $\quad\left|h(x)-h_{1}(x)\right| \leq 24 \delta, \quad x \in \mathbb{R}$.

Proof. Let F, G, H and A have the same meaning as above and let $d=2 f(0)-$ $g(0)-h(0)$. As we observed $|d| \leq \delta$. We define functions f_{1}, g_{1} and h_{1} by the formulas
$f_{1}(x)=A(x)+f(0)-d, \quad g_{1}(x)=A(x)+g(0)-d, \quad h_{1}(x)=A(x)+h(0), x \in \mathbb{R}$.
Then

$$
2 f_{1}\left(\frac{x+y}{2}\right)-g_{1}(x+y-x y)-h_{1}(x y)=2 f(0)-g(0)-h(0)-d=0
$$

and

$$
\begin{aligned}
& \left|f(x)-f_{1}(x)\right|=|f(x)-f(0)+d-A(x)| \leq|F(x)-A(x)|+|d| \leq 7 \delta, \quad x \in \mathbb{R}, \\
& \left|g(x)-g_{1}(x)\right| \leq|G(x)-A(x)|+|d| \leq 11 \delta, \\
& \left|h(x)-h_{1}(x)\right|=|H(x)-A(x)| \leq 24 \delta,
\end{aligned}
$$

as required.

Remark 0.1 The assertion of Theorem 1 says, in another words, that pexiderized Jensen-Hosszú equation of the form

$$
2 f\left(\frac{x+y}{2}\right)=g(x+y-x y)+h(x y), \quad x, y \in \mathbb{R}
$$

is stable in the Hyers-Ulam sense.
If we take $\delta=0$ we obtain the solution of the pexiderized Jensen-Hosszú equation.

Colorallary 0.1 Functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ satisfy pexiderized Jensen-Hosszú equation if and only if there exist an additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ and real constants a and b such that
(10) $f(x)=A(x)+a, \quad g(x)=A(x)+b, \quad h(x)=A(x)+2 a-b, \quad x \in \mathbb{R}$.

Proof. Putting $\delta=0$, from the proof of our Theorem, we get
$f(x)=A(x)+f(0)-d, \quad g(x)=A(x)+g(0)-d, \quad h(x)=A(x)+h(0), x \in \mathbb{R}$,
where $d=2 f(0)-g(0)-h(0)$. If $a=f(0)-d, b=g(0)-d$ we obtain hence (10). On the other hand, functions defined by (10) fulfilled the equation

$$
2 f\left(\frac{x+y}{2}\right)=g(x+y-x y)+h(x y), \quad x, y \in \mathbb{R} .
$$

Remark 0.2 Our main result generalizes an earlier author's result on the HyersUlam stability of the Jensen-Hosszú equation [2].

References

[1] Marek Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen Inequality, PWN, Uniwersytet Slaski, Warszawa-Krakw-Katowice, 1985
[2] Z. Kominek, On a Jensen-Hosszú equation, I; Annales Math. Silesianae, 23(2009), 57-60.

Received by the editors June 21, 2011

[^0]: ${ }^{1}$ Institute of Mathematics, Silesian University, Bankowa 14, PL-40-007 Katowice, Poland, e-mail: zkominek@ux2.math.us.edu.pl

