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Abstract

In this paper, we show that some results of Sharma and Deshpande
[19] are not valid, we also give supporting example. Finally, we consider
the concept of weakly compatible mappings to improve the main result of
Pathak [9].
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1 Introduction

Jungck [3] proved a common fixed point theorem for commuting maps general-
izing the Banach’s fixed point theorem. Sessa [18] defined weak commutativity
and proved common fixed point theorem for weakly commuting mappings. Fur-
ther, Jungck [4] introduced the notion of compatibility, which is more general
than that of weak commutativity, then various fixed point theorems for compat-
ible mappings satisfying contractive type conditions and assuming continuity of
at least one of the mappings, have been obtained by many authors. In 1998,
Jungck and Rhoades [5] introduced the notion of weak compatibility and showed
that compatible maps are weakly compatible but the converse need not to be
true. Finally, Sharma and Choubey [17] proved common fixed point theorems
for weakly compatible mappings on a complete Menger spaces without using
the condition of continuity.

Menger [7] introduced the notion of probabilistic metric spaces, which is
a generalization of metric spaces. The study of these spaces was performed
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extensively by Schweizer and Sklar [15]. The theory of probabilistic metric
spaces is of fundamental importance in probabilistic functional analysis.

Recently, some fixed point theorems in Menger spaces have been proved by
many authors, Radu [10, 11], Stojakovic [13, 14], Dedeic and Sarapa [2], Murthy
and Stojakovic [1] and others under various contractive conditions.

In this paper, we point out that[[19], Theorem (3.1)] is false unless some
additional conditions are imposed. An example is given to justify our claim.
Finally, we improve the results of Pathak [9] by replacing the condition of com-
patibility of type (P) by weak-compatibility in complete Menger space.

2 Preliminaries

The following definitions appear in [15].

Definition 2.1 A real valued function f on the set of real numbers is called a
distribution function if it is non-decreasing, left continuous with infu∈R f(u) = 0
and supu∈R f(u) = 1.

The Heaviside function H is a distribution function defined by

H(u) =
{

0, u ≤ 0
1, u > 0.

Definition 2.2 Let X be a non-empty set and let L denote the set of all distri-
bution functions defined on X. An ordered pair (X,=) is called a probabilistic
metric space where = is a mapping from X×X into L if for every pair (x, y) ∈ X
a distribution function F (x, y) or Fx,y assumed to satisfy the following condi-
tions:

(1) Fx,y(u) = H(u) if and only if x = y.

(2) Fx,y(u) = Fy,x(u).

(3) Fx,y(0) = 0.

(4) If Fx,y(u1) = 1 and Fy,z(u2) = 1, then Fx,z(u1 + u2) = 1 for all x, y, z in
X and u1, u2 ≥ 0.

Every metric space (X, d) can be realized as a probabilistic metric space by
taking = : X ×X → L defined by Fx,y(u) = H(u− d(x, y)) for all x, y in X. So
probabilistic metric spaces provide a wider framework than that of the metric
spaces and are better suited in many situations.

Definition 2.3 A t-norm is a function t : [0, 1] × [0, 1] → [0, 1] satisfying the
following conditions:

(T1) t(a, 1) = a, t(0, 0) = 0,

(T2) t(a, b) = t(b, a),
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(T3) t(c, d) ≥ t(a, b) for c ≥ a, d ≥ b,

(T4) t(t(a, b), c) = t(a, t(b, c)) for all a, b, c ∈ [0, 1].

Definition 2.4 A Menger probabilistic metric space (X,=, t) is an ordered triple,
where t is a t-norm, and (X,=) is a probabilistic metric space satisfying the fol-
lowing condition: Fx,z(u1 + u2) ≥ t(Fx,y(u1), Fy,z(u2)) for all x, y, z in X and
u1, u2 ≥ 0.

Definition 2.5 A sequence {xn} in (X,=, t) is said to converge to a point
x ∈ X if for every ε > 0 and λ > 0, there exists a positive integer N(ε, λ) such
that Fxn,x(ε) > 1− λ for all n ≥ N(ε, λ).

Definition 2.6 A sequence {xn} in (X,=, t) is said to be a Cauchy sequence
if for every ε > 0 and λ > 0, there exists a positive integer N(ε, λ) such that
Fxn,xm(ε) > 1− λ for all n,m ≥ N(ε, λ).

Definition 2.7 A Menger space (X,=, t) with continuous t-norm is said to be
complete if every Cauchy sequence in X converges to a point in X.

Definition 2.8 A coincidence point (or simply coincidence) of two mappings
is a point in their domain having the same image point under both mappings.

Formally, given two mappings f,g : X→ Y we say that a point x in X is a
coincidence point of f and g if f(x) = g(x).

Definition 2.9 ([5]) A pair of mappings A and S is called a weakly compatible
pair if they commute at a coincidence point.

Example 2.1 Define the pair A, S : [0, 3] → [0, 3] by

A(x) =
{

x, x ∈ [0, 1)
3, x ∈ [1, 3] , S(x) =

{
3− x, x ∈ [0, 1)
3, x ∈ [1, 3].

Then for any x ∈ [1, 3], ASx = SAx, showing that A, S are weakly compatible
maps on [0, 3].

Definition 2.10 An PM-space (X,=) is said to be a simple space if and only if
there exists a metric d on X and a distribution function G satisfying G(0) = 0,
such that for every x, y in X

Fx,y(u) =





G

(
u

d(x,y)

)
, x 6= y ;

H(u), x = y for all x, y ∈ X.

Furthermore, we say that (X,=) is the simple space generated by the metric
space (X, d) and the distribution function G.

Theorem 2.1 ([15]) A simple space is a Menger space under any choice of T
satisfying (T1), (T2), (T3) and (T4).
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3 Common Fixed Point Theorems

Rashwan and Hedar [12] proved the following Theorem:

Theorem 3.1 Let A, B, S and T be self mappings on a complete Menger space
(X, F, t), where t is continuous and t(x, x) ≥ x for all x ∈ [0, 1], satisfying the
conditions:

(3.1.1) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(3.1.2) there exists k ∈ (0, 1) such that
FAp,Bq(ku) ≥ t(FAp,Sp(u), t(FBq,Tq(u), t(FAp,Tq(αu), FBq,Sp(2u− αu))))
for all x, y ∈ X, u > 0 and α ∈ (0, 2),

(3.1.3) one of A,B, S and T is continuous,

(3.1.4) the pairs {A,S} and {B, T} are compatible.

Then A, B, S and T have a unique common fixed point in X.

In [19] Sharma and Deshpande improved Theorem (3.1) by replacing the
condition of compatibility by weak-compatibility, relaxing the continuity re-
quirement of maps and relaxing the completeness of the space (X, F, t) .They
proved the following theorem:

Theorem 3.2 Let A, B, S and T be self mappings on a Menger space (X, F, t)
where t is continuous and t(x, x) ≥ x for all x ∈ [0, 1], satisfying the conditions:

(3.2.1) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(3.2.2) there exists k ∈ (0, 1) such that
FAx,By(ku) ≥ t(FAx,Sx(u), t(FBy,Ty(u), t(FAx,Ty(αu), FBy,Sx(2u− αu))))
for all x, y ∈ X, u > 0 and α ∈ (0, 2).
If

(3.2.3) one of A(X), B(X), S(X) and T (X) is a complete subspace of X,
then

(i) A and S have a coincidence point, and

(ii) B and T have a coincidence point.

Further if

(3.2.4) the pairs {A,S} and {B, T} are weakly compatible,
then

(iii) A, B, S and T have a unique common fixed point in X.
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Now, we provide an example to demonstrate that this claim is false unless
some additional conditions are imposed.
The next example shows that there exists four mappings A, B, S and T satis-
fying all the properties (3.2.1) → (3.2.4) but they have more than one common
fixed point.

Example 3.1 Let X = (0, 3] with the Euclidean metric d and let = : X×X → L
be defined as:

Fx,y(u) =





G

(
u

d(x,y)

)
, x 6= y ;

H(u), x = y for all x, y ∈ X,

where G(x) is any distribution function such that G(0) = 0, then, (X,=) is a
simple space. By using Theorem (2.1), the space (X,=, t) will be Menger space
with ”t = min”.
Define the mappings A, B, S and T as following:

A(x) =
{

1
2 , x ∈ (0, 1)
3, x ∈ [1, 3] , B(x) =

{
1− x, x ∈ (0, 1)
3, x ∈ [1, 3]

S(x) =
{

1− x, x ∈ (0, 1)
3, x ∈ [1, 3] , T (x) =

{
x, x ∈ (0, 1)
3, x ∈ [1, 3].

We see that, X = (0, 3] is not complete. Since A(X) = { 1
2 , 3}, B(X) = {(0, 1)∪

{3}}, T (X) = {(0, 1) ∪ {3}} and S(X) = {(0, 1) ∪ {3}}, then we can say that
A(X) ⊆ S(X), B(X) ⊆ T (X) and A(X) is complete subspace of X.

We have ASx = SAx for all x ∈ [1, 3] or x = 1
2 , then {A, S} commute at

coincidence points, and also, BTx = TBx for all x ∈ [1, 3] or x = 1
2 , then {B, T}

commute at coincidence points, i.e, {A,S} and {B, T} are weakly compatible
pairs.
Hence, these mappings satisfy the conditions (3.2.1), (3.2.3) and (3.2.4). More-
over, A, B, S and T satisfying (3.2.2), for k = 3

4 , α = 3
2 and u ≥ 0 as follows:

1- If x ∈ (0, 1), y ∈ (0, 1), x 6= y, x 6= 1
2 and y 6= 1

2 .

Left hand side of (3.2.2) (L.H.S) is FAx,By(ku) = F 1
2 ,1−y( 3

4u) = G(
3
4 u

| 12−y| ).
Right hand side of (3.2.2) (R.H.S) equal,

t(FAx,Sx(u), t(FBy,Ty(u), t(FAx,Ty( 3
2u), FBy,Sx( 1

2u))))
= min{F 1

2 ,1−x(u), F1−y,y(u), F 1
2 ,y( 3

2u), F1−y,1−x( 1
2u)}

= min{G( u
| 12−x| ), G( u

|1−2y| ), G(
3
2 u

| 12−y| ), G(
1
2 u

|x−y| )}
∵ |1−2y| = 2| 12 − y| > 2

3 | 12 − y| ⇒ u
|1−2y| ≤

3
2 u

| 12−y| , (equal sign holds atu =
0), since G(x) is non decreasing distribution function , then, G( u

|1−2y| ) ≤
G(

3
2 u

| 12−y| ).
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R.H.S = min{G( u
| 12−x| ), G( u

|1−2y| ), G(
1
2 u

|x−y| )}.
Now we consider many cases,

Case(i) If x > y and x < 1
2 :

x > y ⇒ −x < −y ⇒ 1
2 − x < 1

2 − y ⇒ | 12 − x| < | 12 − y| ⇒ u
| 12−x| ≥

u
|1−2y| ⇒ G( u

| 12−x| ) ≥ G( u
|1−2y| ).

Also, x < 1
2 ⇒ x−y < 1

2 −y ⇒ |x−y| < | 12 −y| < |1−2y| ⇒ u
|x−y| ≥

u
| 12−y| ⇒

1
2 u

|x−y| ≥ u
|1−2y| ⇒ G(

1
2 u

|x−y| ) ≥ G( u
|1−2y| ).

Hence, R.H.S = G( u
|1−2y| ), and we have

3
4 u

| 12−y| =
3
2 u

|1−2y| ≥ u
|1−2y| .

Then, R.H.S = G( u
|1−2y| ) ≤ G(

3
4 u

| 12−y| ) = L.H.S.

Case(ii) If x > y , x > 1
2 and y < 1

2 :
x < 1

2 ⇒ x − y > 1
2 − y.Since y < 1

2 and x > y, then |x − y| >

| 12 − y| ⇒ 1
2 u

|x−y| ≤
1
2 u

| 12−y| ⇒ G(
1
2 u

|x−y| ) ≤ G( u
|1−2y| ).

Also, y < 1
2 ⇒ y− x < 1

2 − x ⇒ x− y > x− 1
2 ⇒ |x− y| > |x− 1

2 | ⇒
1
2 u

|x−y| ≤ u
|x−y| ≤ u

|x− 1
2 |
⇒ G(

1
2 u

|x−y| ) ≤ G( u
|x− 1

2 |
).

Hence, R.H.S = G(
1
2 u

|x−y| ), and we have
1
2 u

|x−y| ≤
1
2 u

| 12−y| ≤
3
4 u

| 12−y| ⇒
R.H.S = G(

1
2 u

|x−y| ) ≤ L.H.S = G(
3
4 u

| 12−y| ).

Case(iii) If we take any value for x and y such that x > y , x > 1
2

and y > 1
2 , we note that |1 − 2y| ≥ | 12 − x| ≥ 2|x − y|. Then for

any x > y > 1
2 we have u

|1−2y| ≤ u
| 12−x| ≤ u

2|x−y| ⇒ G( u
|1−2y| ) ≤

G( u
| 12−x| ) ≤ G( u

2|x−y| ) ⇒ R.H.S = G( u
|1−2y| ), i.e, L.H.S ≥ R.H.S.

Case(iv) If x < y:
As in the previous cases one can verify that, R.H.S ≤ L.H.S.

2- If x = 1
2 and y = 1

2 .
L.H.S = FAx,By( 3

4u) = F 1
2 , 1

2
( 3
4u) = H(u).

R.H.S = min{FAx,Sx(u), FBy,Ty(u), FAx,Ty( 3
2u), FBy,Sx( 1

2u)}
= min{F 1

2 , 1
2
(u), F 1

2 , 1
2
(u), F 1

2 , 1
2
( 3
2u), F 1

2 , 1
2
( 1
2u)}

= H(u).

3- If x = 1
2 and y ∈ (0, 1).

L.H.S = F 1
2 ,1−y( 3

4u) = G(
3
4 u

| 12−y| ).

R.H.S = min{F 1
2 , 1

2
(u), F1−y,y(u), F 1

2 ,y( 3
2u), F1−y, 1

2
( 1
2u)}

= min{G( u
|1−2y| ), G(

3
2 u

| 12−y| ), G(
1
2 u

| 12−y| )}.
Since,

3
2 u

| 12−y| ≥
1
2 u

| 12−y| = u
|1−2y| ⇒ R.H.S ≤ L.H.S.

4- If y = 1
2 and x ∈ (0, 1).

L.H.S = F 1
2 , 1

2
( 3
4u) = H(u).
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R.H.S = min{F 1
2 ,1−x(u), F 1

2 , 1
2
(u), F 1

2 , 1
2
( 3
2u), F 1

2 ,1−x(1
2u)}

= G(
1
2 u

| 12−x| ).
If u > 0 ⇒ L.H.S = 1 > R.H.S
If u = 0 ⇒ L.H.S = 0 = G(0) = R.H.S.

5- If x ∈ [1, 3], y ∈ [1, 3].
L.H.S = R.H.S.

6- If x ∈ [1, 3] and y ∈ (0, 1), y 6= 0.
L.H.S= F3,1−y( 3

4u) = G(
3
4 u

|2+y| )
R.H.S= min{F3,3(u), F1−y,y(u), F3,y( 3

2u), F1−y,3( 1
2u)}

= min{H(u), G( u
|1−2y| ), G(

3
2 u

|3−y| ), G(
1
2 u

|2+y| )}
If u = 0 R.H.S = 0 = L.H.S.
Now suppose u > 0, we have two cases:

Case(i) If y > 1
2 :

y > 1
2 ⇒ y+2 > 1

2 +2 = 3− 1
2 > 3−y ⇒ |y+2| > |3−y| ⇒ 2|y+2| >

|y + 2| > |3− y| > 2
3 |3− y| ⇒ 1

2 u

|y+2| <
3
2 u

|3−y| ⇒ G(
1
2 u

|y+2| ) < G(
3
2 u

|3−y| ).
Also, 2y − 1 = 2(y − 1

2 ) < 2(y + 2) ⇒ 2|y − 1
2 | < 2|y + 2| ⇒

u
|2y−1| >

1
2 u

|y+2| ⇒ G( u
|2y−1| ) > G(

1
2 u

|y+2| ). Hence, R.H.S= G(
1
2 u

|y+2| ) <

G( u
|2y−1| ) = L.H.S.

Case(ii) If y < 1
2 :

2
3 (3−y) < 2

3 (3+y) < 2
3 (3+ 1

2 ) = 2+ 1
3 < 2(2− 1

2 ) < 2(2−y) < 2(2+y),

then 2
3 |3− y| < 2|2 + y| ⇒ 3

2 u

|3−y| >
1
2 u

|2+y| ⇒ G(
3
2 u

|3−y| ) > G(
1
2 u

|2+y| ).

Also, 2|y + 2| > |1− 2y| ⇒ 1
2 u

|y+2| < u
|1−2y| ⇒ G(

1
2 u

|y+2| ) < G( u
|1−2y| ).

Hence, R.H.S= G(
1
2 u

|y+2| ) ≤ L.H.S.

7- If x ∈ [1, 3], y = 1
2 .

L.H.S= F3, 1
2
( 3
4u) = G(

3
4 u
5
2

) = G( 3
10u)

R.H.S= min{F3,3(u), F 1
2 , 1

2
(u), F3, 1

2
( 3
2u), F 1

2 ,3(
1
2u)} = min{H(u),H(u), G( 3

5u), G( 1
5u)} =

G( 1
5u) ≤ L.H.S.

8- If x ∈ (0, 1), y ∈ [1, 3]andx 6= 1
2 .

L.H.S= F 1
2 ,3(

3
4u) = G(

3
4 u
5
2

) = G( 3
10u)

R.H.S= min{F 1
2 ,1−x(u), F3,3(u), F 1

2 ,3(
3
2u), F3,1−x( 1

2u)}
= min{G( u

| 12−x
|),H(u), G( 3

5u), G(
1
2 u

|2+x| )}.
∵ 2|2 + x| > |2 + x| > | 12 − x| ⇒ G( u

| 12−x| ) ≥ G(
1
2 u

|2+x| ).

Also, 53 < 2(2 + x) ⇒ G( 3
5u) ≥ G(

1
2 u

|2+x| ). i.e, R.H.S = G(
1
2 u

|2+x| ) ≤ L.H.S.
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9- If y ∈ [1, 3], x = 1
2 .

L.H.S= H(u) ≥ R.H.S.

Then A,B, S and T satisfying (3.2.1) → (3.2.4) but they have more than one
common fixed point.

The following Lemma is used in the sequel.

Lemma 3.1 ([20, 16]) Let {xn} be a sequence in a Menger space (X,=, t),
where t is continuous and t(x, x) ≥ x for all x ∈ [0, 1] . If there exists a
constant k ∈ (0, 1) such that,
Fxn,xn+1(kx) ≥ Fxn−1,xn

(x) for all x > 0 and n ∈ N , then {xn} is Cauchy
sequence in X.

Now we prove a common fixed point theorem for four weakly compatible maps
on a complete Menger space.

Theorem 3.3 Let A, B, S and T be self mappings on a complete Menger space
(X, F, t) where t(x, y) = min(x, y) for all x, y ∈ [0, 1], satisfying the following
conditions:

(3.3.1) A(X), B(X) are closed sets of X and A(X) ⊂ T (X), B(X) ⊂ S(X),

(3.3.2) the pairs {A,S} and {B, T} are weakly compatible,

(3.3.3) [FAx,By(ku)]2 ≥
min

{
[FSx,Ty(u)]2, FSx,Ax(u)FTy,By(u), FSx,Ty(u)FSx,Ax(u),

FSx,Ty(u)FTy,By(u), FSx,Ty(u)FSx,By(2u), FSx,Ty(u)FTy,Ax(u),

FSx,By(2u)FTy,Ax(u), FSx,Ax(u)FTy,Ax(u), FSx,By(2u)FTy,By(u)
}

for all x, y ∈ X, x > 0 and u > 0, where k ∈ (0, 1). Then A, B, S and T have
a unique common fixed point in X.

Proof. since A(X) ⊂ T (X) for any arbitrary x0 ∈ X, there exists a point
x1 ∈ X such that Ax0 = Tx1 and B(X) ⊂ S(X) implies that for this point x1

we can find a point x2 ∈ X such that Bx1 = Sx2 and so on. inductively, we
can define a sequence {yn} in X such that

y2n = Ax2n = Tx2n+1

y2n+1 = Bx2n+1 = Sx2n+2, n = 0, 1, 2, ..., .
(3.1)

Now we prove that the sequence defined by (3.1) is a Cauchy sequence. By
Lemma (3.1) it is sufficient to show that Fy2n,y2n+1(ku) ≥ Fy2n−1,y2n(u) for all
u > 0 where k ∈ (0, 1). Suppose that Fy2n,y2n+1(ku) < Fy2n−1,y2n(u) and using
(3.3.3), we have
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[Fy2n,y2n+1(ku)]2 = [FAx2n,Bx2n+1(ku)]2 ≥
min

{
[FSx2n,Tx2n+1(u)]2, FSx2n,Ax2n

(u)FTx2n+1,Bx2n+1(u), FSx2n,Tx2n+1(u)FSx2n,Ax2n
(u),

FSx2n,Tx2n+1(u)FTx2n+1,Bx2n+1(u), FSx2n,Tx2n+1(u)FSx2n,Bx2n+1(2u),
FSx2n,Tx2n+1(u)FTx2n+1,Ax2n(u), FSx2n,Bx2n+1(2u)FTx2n+1,Ax2n(u),

FSx2n,Ax2n
(u)FTx2n+1,Ax2n

(u), FSx2n,Bx2n+1(2u)FTx2n+1,Bx2n+1(u)
}

,

≥ min
{

[Fy2n−1,y2n
(u)]2, Fy2n−1,y2n

(u)Fy2n,y2n+1(u), Fy2n−1,y2n
(u)Fy2n−1,y2n

(u),

Fy2n−1,y2n
(u)Fy2n,y2n+1(u), Fy2n−1,y2n

(u)Fy2n−1,y2n+1(2u), Fy2n−1,y2n
(u)Fy2n,y2n

(u),

Fy2n−1,y2n+1(2u)Fy2n,y2n
(u), Fy2n−1,y2n

(u)Fy2n,y2n
(u), Fy2n−1,y2n+1(2u)Fy2n,y2n+1(u)

}
,

≥ min
{

[Fy2n,y2n+1(ku)]2, Fy2n,y2n+1(ku)Fy2n,y2n+1(u), [Fy2n,y2n+1(ku)]2),

Fy2n,y2n+1(ku)Fy2n,y2n+1(u), Fy2n,y2n+1(ku)t{Fy2n−1,y2n(u), Fy2n,y2n+1(u)},
Fy2n,y2n+1(ku), t{Fy2n−1,y2n

(u), Fy2n,y2n+1(u)},
Fy2n,y2n+1(ku), t{Fy2n−1,y2n(u), Fy2n,y2n+1(u)}Fy2n,y2n+1(u)

}
.

Since k ∈ (0, 1) then u > ku for any u > 0 and Fy2n,y2n+1(u) > Fy2n,y2n+1(ku)
and also
t{Fy2n−1,y2n(u), Fy2n,y2n+1(u)} ≥ t{Fy2n,y2n+1(ku), Fy2n,y2n+1(u)} ≥
t{Fy2n,y2n+1(ku), Fy2n,y2n+1(ku)} ≥ Fy2n,y2n+1(ku).

Hence,
[Fy2n,y2n+1(ku)]2 ≥ min {[Fy2n,y2n+1(ku)]2, Fy2n,y2n+1(ku)}.
Since Fx,y(u) for any x, y ∈ X, u > 0 is a nondecreasing and inf Fx,y(u) =
0, supFx,y(u) = 1, then [Fy2n,y2n+1(ku)]2 ≥ {[Fy2n,y2n+1(ku)]2}, which is a con-
tradiction. Thus Fy2n,y2n+1(ku) ≥ Fy2n−1,y2n(u) and {yn} is Cauchy sequence
in X.

Since the Menger space (X, F, t) is complete, then the sequence {yn} con-
verges to a point z in Xand the subsequences {Ax2n}, {Bx2n+1}, {Sx2n}, {Tx2n+1}
of {y2n} also converge to z.

Since A(x) ⊂ B(x), there exists p ∈ X , such that z = Tp. by using (3.3.3)
we have

[FAx2n,Bp(ku)]2 ≥
min

{
[FSx2n,Tp(u)]2, FSx2n,Ax2n(u)FTp,Bp(u),

FSx2n,Tp(u)FSx2n,Ax2n(u), FSx2n,Tp(u)FTp,Bp(u),
FSx2n,Tp(u)FSx2n,Bp(2u), FSx2n,Tp(u)FTp,Ax2n(u),
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FSx2n,Bp(2u)FTp,Ax2n
(u), FSx2n,Ax2n

(u)FTp,Ax2n
(u), FSx2n,Bp(2u)FTp,Bp(u)

}
.

Taking limits as n →∞ gives,

[Fz,Bp(ku)]2 ≥ min
{

[Fz,z(u)]2, Fz,z(u)Fz,Bp(u), Fz,z(u)Fz,z(u),

Fz,z(u)Fz,Bp(u), Fz,z(u)Fz,Bp(2u), Fz,z(u)Fz,z(u), Fz,Bp(2u)Fz,z(u),

Fz,z(u)Fz,z(u), Fz,Bp(2u)Fz,Bp(u)
}

,

≥ min {[Fz,Bp(u)]2, Fz,Bp(u)} ≥ [Fz,Bp(u)]2.
Which means that Bp = z then we have, Bp = Tp = z.
By a similar way, since B(X) ⊂ S(X), there exists q ∈ X such that z = Sq.
Again by using (3.3.3)
[FAq,Bx2n+1(ku)]2 ≥
min

{
[FSq,Tx2n+1(u)]2, FSq,Aq(u)FTx2n+1,Bx2n+1(u),

FSq,Tx2n+1(u)FSq,Aq(u), FSq,Tx2n+1(u)FTx2n+1,Bx2n+1(u),
FSq,Tx2n+1(u)FSq,Bx2n+1(2u), FSq,Tx2n+1(u)FTx2n+1,Aq(u),
FSq,Bx2n+1(2u)FTx2n+1,Aq(u), FSq,Aq(u)FTx2n+1,Aq(u),

FSq,Bx2n+1(2u)FTx2n+1,Bx2n+1(u)
}

.

Taking limits as n →∞ gives,
[FAq,z(ku)]2 ≥
min

{
[Fz,z(u)]2, Fz,Aq(u)Fz,z(u), Fz,z(u)Fz,Aq(u),

Fz,z(u)Fz,z(u), Fz,z(u)Fz,z(2u), Fz,z(u)Fz,Aq(u), Fz,z(2u)Fz,Aq(u),

Fz,Aq(u)Fz,Aq(u), Fz,z(2u)Fz,z(u)
}

,

≥ min {[Fz,Aq(u)]2, Fz,Aq(u)} ≥ [Fz,Aq(u)]2.
This yields Aq = z then we have,Aq = Sq = z.
Since {B, T} are weakly compatible then they commute at their coincidence
point p. i.e, BTp = TBp or Bz = Tz
Now we show that z is a fixed point of B.
By using (3.3.3), [FAq,Bz(ku)]2 ≥
min

{
[FSq,Tz(u)]2, FSq,Aq(u)FTz,Bz(u), FSq,Tz(u)FSq,Aq(u),

FSq,Tz(u)FTz,Bz(u), FSq,Tz(u)FSq,Bz(2u), FSq,Tz(u)FTz,Aq(u), FSq,Bz(2u)FTz,Aq(u),

FSq,Aq(u)FTz,Aq(u), FSq,Bz(2u)FTz,Bz(u)
}

,

[Fz,Bz(ku)]2 ≥ min
{

[Fz,Bz(u)]2, Fz,z(u)FBz,Bz(u), Fz,Bz(u)Fz,z(u),

Fz,Bz(u)FBz,Bz(u), Fz,Bz(u)Fz,Bz(2u), Fz,Bz(u)FBz,z(u), Fz,Bz(2u)FBz,z(u),
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Fz,z(u)FBz,z(u), Fz,Bz(2u)FBz,Bz(u)
}

, ≥ min {[Fz,Bz(u)]2, Fz,Bz(u)},
≥ [Fz,Bz(u)]2.
which implies that Bz = Tz = z

Similarly, since {A,S} are weakly compatible then they commute at their coin-
cidence point q. i.e, ASq = SAq or Az = Sz.
Now we show that z is a fixed point of A. By using (3.3.3),

[FAz,z(ku)]2 ≥ min
{

[FAz,z(u)]2, FAz,Az(u)Fz,z(u), FAz,z(u)FAz,Az(u),

FAz,z(u)Fz,z(u), FAz,z(u)FAz,z(2u), FAz,z(u)Fz,Az(u), FAz,z(2u)Fz,Az(u),

FAz,Az(u)Fz,Az(u), FAz,z(2u)Fz,z(u)
}

,

≥ [FAz,z(u)]2 which means that Az = Sz = z.

Thus z is a common fixed point of A, B, S and T . Finally in order to prove
the uniqueness of z, suppose that z, w are common fixed points of A, B, S and
T . We prove the converse by putting x = z, y = w in (3.3.3).

[FAz,Bw(ku)]2 ≥ min
{

[FSz,Tw(u)]2, FSz,Az(u)FTw,Bw(u), FSz,Tw(u)FSz,Az(u),

FSz,Tw(u)FTw,Bw(u), FSz,Tw(u)FSz,Bw(2u), FSz,Tw(u)FTw,Az(u), FSz,Bw(2u)FTw,Az(u),

FSz,Az(u)FTw,Az(u), FSz,Bw(2u)FTw,Bw(u)
}

,

[Fz,w(ku)]2 ≥ min
{

[Fz,w(u)]2, Fz,z(u)Fw,w(u), Fz,w(u)Fz,z(u),

Fz,w(u)Fw,w(u), Fz,w(u)Fz,w(2u), Fz,w(u)Fw,z(u), Fz,w(2u)Fw,z(u),

Fz,z(u)Fw,z(u), Fz,w(2u)Fw,w(u)
}
≥ [Fz,w(u)]2.

which means that z = w. This complete the proof of the theorem. 2
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