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DEDEKIND PARTIAL GROUPOIDS
FOR ANTI-ORDERED SETS1

Daniel Abraham Romano2

Abstract

We associate with every anti-ordered set ((X, =, 6=), α) with α∩α−1 =
∅ a partial groupoid ((X, =, 6=), ·) in such a way that (x, y) ∈ α ⇐⇒ x·y =
y and (x, y) ./ α ⇐⇒ x · y = x for two elements x, y ∈ X such that x 6= y.
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1 Introduction

It is well known that in the Classical theory Dedekind’s definition of lattices
as algebras with two operations satisfying commutativity, associativity and ab-
sorption, is equivalent to the definition of lattices as partially ordered sets in
which every two elements have greatest lower bound (g.l.b. or inf) and least
upper bound (l.u.b. or sup). As a matter of fact, this equivalence holds at the
level of semilattices (see e.g. [1], [6]). Recall that a meet semilattice is a poset
(S,≤) such that every two elements have g.l.b. Then the operation

x ∧ y = inf{x, y}
is commutative, associative and idempotent; we say that (S,∧) is a Dedekind
semilattice. Conversely, if (S,∧) is a commutative and idempotent semigroup,
i.e., a Dedekind semilattice, then by defining

x ≤ y ⇐⇒ x ∧ y = x,
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we obtain a meet semilattice (S,≤). Similarly, the correspondence

x ∨ y = sup{x, y},

x ≤ y ⇐⇒ x ∨ y = y,

establishes a bijection between join semilattices and Dedekind semilattices. As
a matter of fact the above bijections can be lifted to the categorial level: the
categories of meet semilattices and join semilattices and Dedekind semilattices
are isomorphic.

In the Classical theory of ordered sets connection between ordered sets and
some kind of groupoids are interesting for researches. For example, Fiala and
Novak in [5] describe a connection between so called o-groupid and partially
ordered sets. Neggers in [8] introduced the internal operation between ele-
ments of partially ordered set and provided an axiomatic characterization of
the groupoids in this way. Neggers and Kim in [9] define a partial order in an
arbitrary semigroup and relate it to partially ordered groupoids.

Setting of this investigation is Bishop’s constructive mathematics. In this
note we suggest a Dedekind-like construction for arbitrary anti-ordered set in-
stead of meet semilattices, by associating with every anti-ordered set a certain
groupoid, which we call the Dedekind groupoid of the anti-ordered set. Our
construction reduces to the conventional construction of the internal operation
only in the case of chains.

2 Preliminaries

This investigation is in Bishop’s constructive mathematics in sense of books [2],
[3], [4], [7] and papers [10], [11], [12]. Let (X, =, 6=) be a constructive set (i.e. it
is a relational system with the relation ” 6= ”). The diversity relation ” 6= ” is a
binary relation on X, which satisfies the following properties:

¬(x 6= x), x 6= y =⇒ y 6= x, x 6= y ∧ y = z =⇒ x 6= z.

If it satisfies the following condition

(∀x, z ∈ X)(x 6= z =⇒ (∀y ∈ X)(x 6= y ∨ y 6= z)),

it called apartness (A. Heyting).
For subset A of X we say that it is strongly extensional subset of X if and

only if
x ∈ A =⇒ (∀y ∈ X)(x 6= y ∨ y ∈ A).

Follows Bridges and Vita’s definition for subsets A and B of X we say that
set A is set-set apartness from B, and it is denoted by A ./ B, if and only
if (∀x ∈ A)(∀y ∈ B)(x 6= y). We set x ./ B instead x ./ Y , and, of course,
x 6= y instead {x} ./ {y}. With AC = {x ∈ X : x ./ A} we denote apartness
complement of A.
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For a function f : (X, =, 6=) −→ (Y, =, 6=) we say that it is a strongly exten-
sional if and only if (∀a, b ∈ X)(f(a) 6= f(b) =⇒ a 6= b).

A relation σ on set X is called a quasi-antiorder relation on X if

σ ⊆ 6=, σ ⊆ σ ∗ σ.

If X is a semigroup, then σ has to compatible with the semigroup operation in
the following way

(∀a, b, x ∈ X)(((xa, xb) ∈ σ ∨ (ax, bx) ∈ σ) =⇒ (a, b) ∈ σ).

A quasi-antiorder relation α on set X is an anti-order relation on X if it satisfies
yet another condition

α ∪ α−1 = 6= .

If X is a semigroup, then α has to compatible with the semigroup operation.
For the necessary undefined notions, the reader is referred to books [2]-[4],

[7] and to papers [10]-[12].

3 Dedekind partial groupoids
for anti-ordered sets

This section we will begin with the following definition:

For given anti-ordered set ((X, =, 6=), α), we define the relation · ⊆ (X ×
X) × X by the following way: If (x, y) ∈ α, then x · y = y and if (x, y) ./ α,
then x · y = x.

This definition is not a generalization of the operation ∧ mentioned above.
Let us note that for every x ∈ X holds x · x = x because (x, x) ./ α holds for
any x ∈ X.

In the following two lemmas we give important connection between the anti-
order α and this relation on X.

Lemma 3.1 Let x, y ∈ X be any two elements x, y ∈ X such that x 6= y, and
α ∩ α−1 = ∅. Then, the following conditions are equivalent:
(1) (x, y) ./ α;
(2) x · y = x;
(3) x · y = y · x = x.

Proof : (1) =⇒ (3). Assume that x 6= y and (x, y) ./ α. Then, we have to have
(y, x) ∈ α and, so on y · x = x. Therefore, by definition we have xy = x = yx.
(3) =⇒ (2) Validity of this implication is obvious.
(2) =⇒ (1) Let (u, v) be an arbitrary pair of α. Then, we have (u, x) ∈ α or
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(x, y) ∈ α or (y, v) ∈ α . Since in the second case we have x · y = y 6= x, which
is impossible, we have (x, y) 6= (u, v) ∈ α. This means (x, y) ./ α. 2

Colorallary 3.1 x·y = y ·x ⇐⇒ ((x, y) ./ α ∨ (y, x) ./ α) for any two elements
x, y ∈ X such that x 6= y.

Proof : The first part of assertion follows from Lemma 3.1. Further on, for
elements x, y ∈ X such that x · y = y · x we have
x 6= y ⇐⇒ (x, y) ∈ α ∨ (y, x) ∈ α

=⇒ (x · y = y = y · x) ∨ (y · x = x = x · y)
=⇒ (y, x) ./ α ∨ (x, y) ./ α. 2

Colorallary 3.2 The structure (X, ·) is commutative if and only if (X,αC) is
a chain.

Lemma 3.2 Let x, y ∈ X be any two elements x, y ∈ X such that x 6= y, and
α ∩ α−1 = ∅. Then, the following conditions are equivalent:
(4) (x, y) ∈ α;
(5) x · y 6= x;
(6) x · y = y · x ∧ x · y 6= x.

Proof : (4) =⇒ (5). If (x, y) ∈ α, then x · y = y 6= x.
(5) =⇒ (4). Assume that x ·y 6= x. From x 6= y, follows (x, y) ∈ α or (y, x) ∈ α.
The second case is impossible because (y, x) ∈ α implies (x, y) ./ α. Indeed, if
(u, v) is an arbitrary element of α we have to
(u, v) ∈ α =⇒ (u, x) ∈ α ∨ (x, y) ∈ α ∨ (y, v) ∈ α

=⇒ (x, y) 6= (u, v) ∈ α (because ¬((x, y) ∈ α) holds by hypothesis).
So, (x, y) ./ α implies x · y = x by definition. Least is in contradiction with
x · y 6= x. Therefore, we have (x, y) ./ α .
(5) =⇒ (6) Assume x·y 6= x. Then (x, y) ∈ α by (4) and (y, x) ./ α by hypothesis
α ∩ α−1 = ∅. So, from x · y = y and y · x = y we conclude x · y = y = y · x.
Finally, we have x · y 6= x and x · y = y · x.
(6)=⇒ (5). Immediately follows. 2

Theorem 3.1 (a) The relation ’·’ is a partial function from X ×X into X.
(b) If α∩α−1 = ∅, then the partial function ’·’ is a strongly extensional function
from X ×X into X.
So, if α ∩ α−1 = ∅, then the structure ((X, =, 6=), ·) is a idempotent partial
groupoid.

Proof : (a). (i) Since (x = x′ ∧ y = y′ ∧ (x, y) ∈ α) =⇒ (x′, y′) ∈ α, we have

x · y = y = y′ = x′ · y′.
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(ii) Suppose that x = x′ ∧ y = y′ ∧ (x, y) ./ α. Thus, we have (x′, y′) ./ α and
therefore

x′ · y′ = x′ = x = x · y.

So, the relation ’·’ is a partially function from X ×X into X.
(b). At the other hand, suppose that x ·y′ 6= x ·y for some elements x, y, y′ ∈ X.
Then
(i) x · y 6= x · y′ ∧ (x, y) ∈ α ∧ (x, y′) ∈ α

=⇒ x · y 6= x · y′ ∧ x · y = y ∧ x · y′ = y′

=⇒ y 6= y′;
(ii) x · y 6= x · y′ ∧ (x, y) ./ α ∧ (x, y′) ./ α

=⇒ x · y 6= x · y′ ∧ x · y = x ∧ x · y′ = x
=⇒ x 6= x (It is impossible!);

(iii) x · y 6= x · y′ ∧ (x, y) ∈ α ∧ (x, y′) ./ α
=⇒ x · y 6= x · y′ ∧ ((x, y′) ∈ α ∨ (y′, y) ∈ α) ∧ (x, y′) ./ α
=⇒ x · y 6= x · y′ ∧ (y′, y) ∈ α
=⇒ y 6= y′;

(iv) x · y 6= x · y′ ∧ (x, y) ./ α ∧ (x, y′) ∈ α
=⇒ x · y 6= x · y′ ∧ ((x, y) ∈ α ∨ (y, y′) ∈ α) ∧ (x, y) ./ α
=⇒ x · y 6= x · y′ ∧ (y, y′) ∈ α
=⇒ y 6= y′.

(v) x · y 6= x · y′ ∧ (y′, x) ∈ α ∧ (y, x) ∈ α
=⇒ x · y 6= x · y′ ∧ y · x = x ∧ y′ · x = x
=⇒ x 6= x (Is is impossible!);

(vi) x · y 6= x · y′ ∧ (y′, x) ./ α ∧ (y, x) ∈ α
=⇒ x · y 6= x · y′ ∧ (y′, x) ./ α ∧ (y, y′) ∈ α ∨ (y′, x) ∈ α)
=⇒ y 6= y′;

(vii) x · y 6= x · y′ ∧ (y, x) ./ α ∧ (y′, x) ∈ α
=⇒ x · y 6= x · y′ ∧ (y, x) ./ α ∧ ((y′, y) ∈ α ∨ (y, x) ∈ α)
=⇒ y′ 6= y;

(viii) x · y 6= x · y′ ∧ (y, x) ./ α ∧ (y′, x) ./ α
=⇒ x · y 6= x · y′ ∧ x · y = y · x = y ∧ y′ · x = x · y′ = y′

=⇒ y 6= y′;
(ix) x · y 6= x · y′ ∧ (y, x) ./ α ∧ (x, y′) ./ α

=⇒ (x · y 6= x ∨ x 6= x · y′) ∧ (y, x) ./ α ∧ (x, y′) ./ α
=⇒ ((x, y) ∈ α ∨ (x, y′) ∈ α) ∧ (y, x) ./ α ∧ (x, y′) ./ α
=⇒ (x, y) ∈ α ∧ (y, x) ./ α ∧ (x, y′) ./ α
=⇒ ((x, y′) ∈ α ∨ (y′, y) ∈ α) ∧ (y, x) ./ α ∧ (x, y′) ./ α
=⇒ (y, y′) ∈ α
=⇒ y 6= y′;

(x) x · y 6= x · y′ ∧ (y, x) ./ α ∧ (x, y′) ∈ α
=⇒ x · y 6= x · y′ ∧ x · y = y · x = y ∧ x · y′ = y′

=⇒ y 6= y′;
(xi) x · y 6= x · y′ ∧ (y, x) ∈ α ∧ (x, y′) ∈ α
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=⇒ x · y 6= x · y′ ∧ ((y, y′) ∈ α ∨ (y′, x) ∈ α) ∧ (x, y′) ∈ α
=⇒ x · y 6= x · y′ ∧ (y, y′) ∈
=⇒ y 6= y′.

We prove the implication y ·x 6= y′ ·x =⇒ y 6= y′ on similar way. So, the partial
function ’·’ is a strongly extensional function. Finally, the structure (X, =, 6=)
is an idempotent partial groupoid under this internal operation. 2
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