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CYCLIC CONTRACTION RESULT

IN 2-MENGER SPACE

Binayak S. Choudhury, Krishnapada Das
and Samir Kumar Bhandari

Abstract. In this paper we introduce and establish a cyclic contraction result

in probabilistic 2-metric spaces. A control function has been utilized in our
theorem. This result generalizes some existing results in 2-metric spaces. Our
result is illustrated with an example.

1. Introduction

Fixed point theory has an important role in modern mathematics. In 1922, S.
Banach [1] proved the well known Banach contraction mapping principle in metric
spaces. This contraction mapping principle is one of the pivotal results of mathe-
matical analysis. Its importance lies in its vast applications in a number of branches
of modern mathematics.

The concept of metric space has been extended in various ways. One such ex-
tension has been made by Gähler [14] in which a positive real number is assigned to
every three elements of the space. He introduced the following important definition
of 2-metric space.

Definitioin 1.1. 2-metric space [14,15]
Let X be a non empty set. A real valued function d on X ×X ×X is said to be a
2-metric on X if

(i) given distinct elements x, y ∈ X, there exists an element z ∈ X such
that

d(x, y, z) ̸= 0,
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(ii) d(x, y, z) = 0 when at least two of x, y, z are equal,
(iii) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X and
(iv) d(x, y, z) 6 d(x, y, w) + d(x,w, z) + d(w, y, z) for all x, y, z, w ∈ X.

When d is a 2-metric on X, the ordered pair (X, d) is called a 2-metric space.
In 1972 Sehgal and Bharucha-Reid [33] generalized the Banach contraction map-
ping principle to probabilistic metric spaces. Probabilistic metric spaces are proba-
bilistic generalization of metric spaces. In this space, instead of a nonnegative real
number, every pair of elements is assigned to a distribution function. The inherent
flexibility of these spaces allows us to extend the contraction mapping principle in
more than one inequivalent ways.

Definitioin 1.2. [18,32] A mapping F : R → R+ is called a distribution function
if it is non-decreasing and left continuous with inf

t∈R
F (t) = 0 and sup

t∈R
F (t) = 1,

where R is the set of real numbers and R+ denotes the set of non-negative real
numbers.

Definitioin 1.3. Probabilistic metric space [18,32]
A probabilistic metric space (briefly, PM-space) is an ordered pair (X,F ), where X
is a non empty set and F is a mapping from X ×X into the set of all distribution
functions. The function Fx,y is assumed to satisfy the following conditions for all
x, y, z ∈ X,

(i) Fx,y(0) = 0,
(ii) Fx,y(t) = 1 for all t > 0 if and only if x = y,
(iii) Fx,y(t) = Fy,x(t) for all t > 0,
(iv) if Fx,y(t1) = 1 and Fy,z(t2) = 1 then Fx,z(t1 + t2) = 1 for all

t1, t2 > 0.

Menger space is a particular type of probabilistic metric space in which the tri-
angular inequality is postulated with the help of a t-norm.
Shi, Ren and Wang give the following definition of n-th order t-norm.

Definitioin 1.4. n-th order t-norm [34]
A mapping T : Πn

i=1[0, 1] → [0, 1] is called a n-th order t-norm if the following
conditions are satisfied:

(i) T (0, 0, ...., 0) = 0, T (a, 1, 1, ..., 1) = a for all a ∈ [0, 1],
(ii) T (a1, a2,, a3, ...., an) = T (a2, a1, a3, ...., an) = T (a2, a3, a1, ...., an)

= .... = T (a2, a3, a4, ...., an, a1),
(iii) ai > bi, i=1,2,3,....,n implies T (a1, a2, a3, ...., an) > T (b1, b2, b3, ...., bn),
(iv) T (T (a1, a2, a3, ...., an), b2, b3, ...bn)

= T (a1, T (a2, a3, ...., an, b2), b3, ..., bn)
= T (a1, a2, T (a3, a4...., an, b2, b3), b4, ..., bn)
=...............................
= T (a1, a2, ..., an−1, T (an, b2, b3, ..., bn)).

When n = 2, we have a binary t-norm, which is commonly known as t-norm.

Definitioin 1.5. Menger space [18,32]
A Menger space is a triplet (X,F,∆), where X is a non empty set, F is a function
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defined on X × X to the set of all distribution functions and ∆ is a 2nd order
t-norm, such that the following are satisfied:

(i) Fx,y(0) = 0 for all x, y ∈ X,
(ii) Fx,y(s) = 1 for all s > 0 if and only if x = y,
(iii) Fx,y(s) = Fy,x(s) for all x, y ∈ X, s > 0 and
(iv) Fx,y(u+ v) > ∆(Fx,z(u), Fz,y(v)) for all u, v > 0 and x, y, z ∈ X.

The theory of Menger spaces is an important part of stochastic analysis. Schweizer
and Sklar have given a comprehensive account of several aspects of such spaces
in [32].
Probabilistic 2-metric space is the probabilistic generalization of 2-metric spaces.

Wen-Zhi Zeng [37] first introduced the concept of probabilistic 2-metric space.

Definitioin 1.6. probabilistic 2-metric space [37]
A probabilistic 2-metric space is an order pair (X,F ) where X is an arbitrary set
and F is a mapping from X ×X ×X into the set of all distribution functions such
that the following conditions are satisfied.

(i) Fx,y,z(t) = 0 for t 6 0 and for all x, y, z ∈ X,
(ii) Fx,y,z(t) = 1 for all t > 0 iff at least two of x, y, z are equal,
(iii) for distinct points x, y ∈ X there exists a point z ∈ X

such that Fx,y,z(t) ̸= 1 for t > 0,
(iv) Fx,y,z(t) = Fx,z,y(t) = Fz,y,x(t) for all x, y, z ∈ X and t > 0,
(v) Fx,y,w(t1) = 1, Fx,w,z(t2) = 1 and Fw,y,z(t3) = 1 then Fx,y,z(t1+t2+t3) =

1, for all x, y, z, w ∈ X and t1, t2, t3 > 0.

A special case of the above definition is the following.

Definitioin 1.7. 2-Menger space [17]
Let X be a nonempty set. A triplet (X,F,∆) is said to be a 2-Menger space if F
is a mapping from X ×X ×X into the set of all distribution functions satisfying
the following conditions:

(i) Fx,y,z(0) = 0,
(ii) Fx,y,z(t) = 1 for all t > 0 if and only if at least two of x, y, z ∈ X are

equal,
(iii) for distinct points x, y ∈ X there exists a point z ∈ X

such that Fx,y,z(t) ̸= 1 for t > 0,
(iv) Fx,y,z(t) = Fx,z,y(t) = Fz,y,x(t), for all x, y, z ∈ X and t > 0,
(v) Fx,y,z(t) > ∆(Fx,y,w(t1), Fx,w,z(t2), Fw,y,z(t3))

where t1, t2, t3 > 0, t1 + t2 + t3 = t, x, y, z, w ∈ X and ∆ is the 3rd order t-norm.

Definitioin 1.8. [17] A sequence {xn} in a 2-Menger space (X,F,∆) is said to
be converge to a limit x if given ϵ > 0, 0 < λ < 1 there exists a positive integer
Nϵ,λ such that

(1.1) Fxn,x,a(ϵ) > 1− λ

for all n > Nϵ,λ and for every a ∈ X.
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Definitioin 1.9. [17] A sequence {xn} in a 2-Menger space (X,F,∆) is said to
be a Cauchy sequence in X if given ϵ > 0, 0 < λ < 1 there exists a positive integer
Nϵ,λ such that

(1.2) Fxn,xm,a(ϵ) > 1− λ

for all m,n > Nϵ,λ and for every a ∈ X.

Definitioin 1.10. [17] A 2-Menger space (X,F,∆) is said to be complete if every
Cauchy sequence is convergent in X.

Several results of metric fixed point theory has been extended to these spaces.
Some of the fixed point results in 2-metric spaces are [19,21,24,26,27,29] while
the references [2,6,16,17,35] are some fixed point results in probabilistic 2-metric
spaces.

In 1984 Khan, Swaleh and Sessa introduced a new category of contractive fixed
point problems in metric spaces [22]. They introduced the concept of “altering
distance function”, which is a control function that alters the distance between
two points in a metric space. This concept was further generalized in a number
of works. There are several works in metric fixed point theory involving altering
distance function, some of these are noted in [28,30] and [31].
Recently first two authors of the present paper had extended the concept of altering
distance function to the context of Menger spaces in [3]. They have introduced the
Φ-function. The definition is as follows:

Definitioin 1.11. Φ-function [3]
A function ϕ : R → R+ is said to be a Φ-function if it satisfies the following
conditions:

(i) ϕ(t) = 0 if and only if t = 0,
(ii) ϕ(t) is strictly monotone increasing and ϕ(t) → ∞ as t → ∞,
(iii) ϕ is left continuous in (0,∞),
(iv) ϕ is continuous at 0.

With the help of Φ-function Choudhury and Das [3] introduced a new type of con-
traction mapping in Menger spaces which is known as ϕ-contraction. The idea of
this control function has opened new possibilities of proving more fixed point results
in Menger spaces. This concept has also applied to a coincidence point problems.
Some recent results using Φ-function are noted in [4,5,7,8,11,12] and [25].
Recently cyclic contraction and cyclic contractive type mappings have been ap-
peared in literature. Kirk, Srinivasan and Veeramani [23] initiated this line of
research in metric spaces.

Definitioin 1.12. [23] Let A and B be two non-empty sets. A cyclic mapping is
a mapping T : A

∪
B → A

∪
B which satisfies:

TA ⊆ B and TB ⊆ A.
Kirk, Srinivasan and Veeramani [23], amongst other results, established the follow-
ing generalization of the contraction mapping principle.
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Theorem 1.1. [23] Let A and B be two non-empty closed subsets of a complete
metric space X and suppose f : X → X satisfies:

(1) fA ⊆ B and fB ⊆ A,
(2) d(fx, fy) 6 kd(x, y) forall x ∈ A and y ∈ B where k ∈ (0, 1).

Then f has a unique fixed point in A
∩

B.

The problems of cyclic contractions have been strongly associated with prox-
imity point problems. Some other results dealing with cyclic contractions and
proximity point problems may be noted in [10,13,20,36,38] and [39].

The present authors introduced a ϕ-contraction in the context of 2-Menger
spaces for two mappings in [9]. The following theorem was established.

Theorem 1.2. [9] Let (X,F,∆) be a complete 2-Menger space, where ∆ is
the minimum t- norm, T1, T2 are two self maps on X such that for all x, y, a in X
and t > 0,

(1.3) FT1x,T2y,a(ϕ(t)) > Fx,y,a(ϕ(
t

c
))

where c ∈ (0, 1) and ϕ is a Φ-function. Then T1 and T2 have a unique common
fixed point in X.

In this paper we define another contraction, namely, a cyclic contraction in
2-Menger spaces and have shown that in a 2-Menger space with minimun t-norm,
the said contraction has a unique fixed point. Our theorem is supported with an
example.

2. Main Result

Theorem 2.1. Let (X,F,∆) be a complete 2-Menger space with the 3rd order
minimum t-norm ∆ and let there exist two non-empty closed subsets A and B of X
such that the mapping T : A

∪
B → A

∪
B which satisfies the following conditions:

(2.1) TA ⊆ B and TB ⊆ A

(2.2) FTx,Ty,a(ϕ(t)) > Fx,y,a(ϕ(
t

c
))

for all x ∈ A, y ∈ B and a ∈ X where 0 < c < 1, ϕ is a ϕ-function. Then A
∩
B

is non-empty and T has a unique fixed point in A
∩

B.

Proof. Let x be an arbitrary point of A. Now we construct the sequence
{xn}∞n=1 in X by xn = Tnx, n ∈ N , where N is the set of natural numbers.
As x ∈ A, Tx ∈ B, T 2x ∈ A, T 3x ∈ B and in general we obtain

(2.3) T 2nx = x2n ∈ A and T 2n+1x = x2n+1 ∈ B for all n > 0.
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For any non-negative integer n and for fixed a ∈ X, we have
FT 2n+1x,T 2n+2x,a(ϕ(t)) = FTT 2nx,TT 2n+1x,a(ϕ(t))

(2.4) > FT 2nx,T 2n+1x,a(ϕ(
t

c
)).

(by (2.2) and (2.3))
Again, for any t > 0, for fixed a ∈ X and n > 0, we have

FT 2nx,T 2n+1x,a(ϕ(t)) = FTT 2n−1x,TT 2nx,a(ϕ(t))
= FTT 2nx,TT 2n−1x,a(ϕ(t))
> FT 2nx,T 2n−1x,a(ϕ(

t
c ))

(2.5) = FT 2n−1x,T 2nx,a(ϕ(
t

c
)).

Combining (2.4) and (2.5), for all n > 0, t > 0 and for some a ∈ X, we have

(2.6) Fxn,xn+1,a(ϕ(t)) > Fxn−1,xn,a(ϕ(
t

c
)).

By successive application of the above inequality for some a ∈ X, n > 0 and for all
t > 0, we have

Fxn,xn+1,a(ϕ(t)) > Fx0,x1,a(ϕ(
t
cn )).

Taking limit on both sides as n → ∞ for all t > 0, we have from above inequal-
ity

(2.7) lim
n→∞

Fxn,xn+1,a(ϕ(t)) = 1.

By virtue of property of ϕ and F we can choose s > 0 such that s > ϕ(t). Then,
for all a ∈ X and t > 0, we have

(2.8) lim
n→∞

Fxn,xn+1,a(s) = 1.

We next prove that {xn} is a Cauchy sequence. If possible, let {xn} be not a
Cauchy sequence. Then, there exist ϵ > 0 and 0 < λ < 1 for which we can find
some a ∈ X and subsequences {xm(k)} and {xn(k)} of {xn} with n(k) > m(k) > k
such that

(2.9) Fxm(k),xn(k),a(ϵ) < 1− λ.

We take n(k) corresponding to m(k) to be the smallest integer satisfying (2.9), so
that

(2.10) Fxm(k),xn(k)−1,a(ϵ) > 1− λ.

If ϵ1 < ϵ then, we have
Fxm(k),xn(k),a(ϵ1) 6 Fxm(k),xn(k),a(ϵ).

From the above, we conclude that it is possible to construct {xm(k)} and {xn(k)}
with n(k) > m(k) > k and satisfying (2.9), (2.10) whenever ϵ is replaced by a
smaller positive value. As ϕ is continuous at 0 and strictly monotone increasing
with ϕ(0) = 0, it is possible to obtain ϵ2 > 0 such that ϕ(ϵ2) < ϵ.
Then, by the above argument, it is possible to obtain an increasing sequence of
integers {m(k)} and {n(k)} with n(k) > m(k) > k such that

(2.11) Fxm(k),xn(k),a(ϕ(ϵ2)) < 1− λ
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and

(2.12) Fxm(k),xn(k)−1,a(ϕ(ϵ2)) > 1− λ.

Now, we have the following possible cases.

Case-I: m(k) is odd and n(k) is even for an infinite number of values of k.
Then, there exist {m(l)} ⊂ {m(k)} and {n(l)} ⊂ {n(k)} where m(l) is odd and
n(l) is even for all l with n(l) > m(l) > l such that for some a ∈ X,

(2.13) Fxm(l),xn(l),a(ϕ(ϵ2)) < 1− λ

and

(2.14) Fxm(l),xn(l)−1,a(ϕ(ϵ2)) > 1− λ.

Now, from (2.13), for some a ∈ X and for ϵ2 > 0, we have
1− λ > Fxm(l),xn(l),a(ϕ(ϵ2))

= FTm(l)x,Tn(l)x,a(ϕ(ϵ2))
= FTTm(l)−1x,TTn(l)−1x,a(ϕ(ϵ2))
> FTm(l)−1x,Tn(l)−1x,a(ϕ(

ϵ2
c ))

(by (2.2) and (2.3))

(2.15) = Fxm(l)−1,xn(l)−1,a(ϕ(
ϵ2
c
)).

By virtue of property of ϕ, we can choose s1, s2 > 0 such that ϕ( ϵ2c ) = ϕ(ϵ2)+s1+s2.
By (2.15), for all a ∈ X and ϵ2 > 0, we have
1− λ > Fxm(l)−1,xn(l)−1,a(ϕ(

ϵ2
c ))

> ∆(Fxm(l)−1,xn(l)−1,xm(l)(s1), Fxm(l)−1,xm(l),a(s2), Fxm(l),xn(l)−1,a(ϕ(ϵ2)))

(2.16) > ∆(Fxm(l)−1,xm(l),xn(l)−1
(s1), Fxm(l)−1,xm(l),a(s2), Fxm(l),xn(l)−1,a(ϕ(ϵ2))).

Using (2.8), for all a ∈ X and for sufficiently large l, we have

(2.17) Fxm(l)−1,xm(l),xn(l)−1
(s1) > 1− λ

and

(2.18) Fxm(l)−1,xm(l),a(s2) > 1− λ.

Now, using (2.14), (2.17), (2.18) in (2.16), for all a ∈ X and ϵ2 > 0, we have
1− λ > ∆(1− λ, 1− λ, 1− λ) = 1− λ,

which is a contradiction.

Case-II: The integers m(k) is even and n(k) is odd for an infinite number of
values of k. Then, there exist {m(l)} ⊂ {m(k)} and {n(l)} ⊂ {n(k)} where m(l)
is even and n(l) is odd for all l with n(l) > m(l) > l such that for some a ∈ X,
(2.13), (2.14) hold.
Then, we arrive at a contradiction exactly as in the Case-I above.

Case-III: The integers m(k) and n(k) both are even for an infinite number of
values of k. Then, there exist {m(l)} ⊂ {m(k)} and {n(l)} ⊂ {n(k)} where m(l)
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and n(l) both are even for all l with n(l) > m(l) > l such that for some a ∈ X,
(2.13), (2.14) hold.
By virtue of the property of ϕ, we can choose η1, η2 > 0 such that ϕ(ϵ2) > η1 + η2.
Now, from (2.13) for all a ∈ X and for ϵ2 > 0, we have
1− λ > Fxm(l),xn(l),a(ϕ(ϵ2)), that is,

(2.19) 1− λ > ∆(Fxm(l),xn(l),xm(l)+1
(η1), Fxm(l),xm(l)+1,a(η2),

Fxm(l)+1,xn(l),a(ϕ(ϵ2)− η1 − η2)).
Again, by virtue of property of ϕ, we can choose 0 < ϵ3 < ϵ2 such that
ϕ(ϵ2)− η1 − η2 = ϕ(ϵ3) and

ϵ3
c > ϵ2 where 0 < c < 1.

Now, from (2.19) for all a ∈ X, we have

(2.20) 1−λ > ∆(Fxm(l),xm(l)+1,xn(l)
(η1), Fxm(l),xm(l)+1,a(η2), Fxm(l)+1,xn(l),a(ϕ(ϵ3))).

For ϵ3 > 0, for all a ∈ X, we obtain
Fxm(l)+1,xn(l),a(ϕ(ϵ3)) = FTTm(l)x,TTn(l)−1x,a(ϕ(ϵ3))

> FTm(l)x,Tn(l)−1x,a(ϕ(
ϵ3
c )) (by (2.2) and (2.3))

= Fxm(l),xn(l)−1,a(ϕ(
ϵ3
c ))

> Fxm(l),xn(l)−1,a(ϕ(ϵ2))

(2.21) > 1− λ. (by (2.14))

Again, by (2.8) for sufficiently large l and for all a ∈ X, we have

(2.22) Fxm(l),xm(l)+1,xn(l)
(η1) > 1− λ

and

(2.23) Fxm(l),xm(l)+1,a(η2) > 1− λ.

Using (2.21), (2.22), (2.23) in (2.20) for all a ∈ X, we obtain
1− λ > ∆(1− λ, 1− λ, 1− λ) = 1− λ,

which is a contradiction.

Case-IV: The integers m(k) and n(k) both are odd for an infinite number of
values of k. Then, there exist {m(l)} ⊂ {m(k)} and {n(l)} ⊂ {n(k)} where m(l)
and n(l) both are odd for all l with n(l) > m(l) > l such that for some a ∈ X,
(2.13), (2.14) hold.
Then, we arrive at a contradiction exactly as in the Case-III above.

Combining all the above four cases we can conclude that {xn} is a Cauchy
sequence.

Since X is complete, we have xn → z in X for n → ∞. The subsequences
{x2n} and {x2n−1} of {xn} also converges to z. Now {x2n} ⊂ A and A is closed.
Therefore z ∈ A. Similarly, {x2n−1} ⊂ B and B is closed. Therefore z ∈ B. Thus
we have z ∈ A

∩
B.
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Now we prove that Tz = z.
For this, we have

(2.24) Fz,Tz,a(ϕ(t)) > ∆(Fz,Tz,x2n+1(s1), Fz,x2n+1,a(s2),

Fx2n+1,Tz,a(ϕ(t)− s1 − s2)).

(where s1, s2 > 0 and ϕ(t) > s1 + s2)
Now, by the property of ϕ we can choose ξ1, ξ2 > 0 such that s1 = ϕ(ξ1) and
ϕ(t)− s1 − s2 = ϕ(ξ2).
Now, from (2.24), we get
Fz,Tz,a(ϕ(t)) > ∆(Fz,Tz,TT 2nx(ϕ(ξ1)), Fz,x2n+1,a(s2), FTT 2nx,Tz,a(ϕ(ξ2)))

= ∆(FTT 2nx,Tz,z(ϕ(ξ1)), Fz,x2n+1,a(s2), FTT 2nx,Tz,a(ϕ(ξ2))).
Now, using the inequality (2.2) we get

Fz,Tz,a(ϕ(t)) > ∆(FT 2nx,z,z(ϕ(
ξ1
c )), Fz,x2n+1,a(s2), FT 2nx,z,a(ϕ(

ξ2
c ))).

By the property of ϕ and F we have
FT 2nx,z,z(ϕ(

ξ1
c )) = 1.

Hence
Fz,Tz,a(ϕ(t)) > ∆(1, Fz,x2n+1,a(s2), Fx2n,z,a(ϕ(

ξ2
c ))).

Taking limit as n → ∞ and by the property of F , we get

Fz,Tz,a(ϕ(t)) > ∆(1, 1, 1) = 1.
Hence z = Tz.

To prove the uniqueness of the fixed point, let v be another fixed point of T in
A
∩

B, that is, Tv = v.
Let a ∈ X be any element different from z and v.

Now,
Fz,v,a(ϕ(t)) = FTz,Tv,a(ϕ(t))

> Fz,v,a(ϕ(
t
c ))

= FTz,Tv,a(ϕ(
t
c ))

> Fz,v,a(ϕ(
t
c2 )).

Repeating this process n times we get
Fz,v,a(ϕ(t)) = FTz,Tv,a(ϕ(t)) > Fz,v,a(ϕ(

t
cn )).

Letting n → ∞ on both sides we get from the above inequality,
Fz,v,a(ϕ(t)) > Fz,v,a(ϕ(

t
cn )) → 1.

(since ϕ is strictly increasing and ϕ(t) → ∞ as t → ∞ )
Hence, Fz,v,a(ϕ(t)) = 1, which implies that z = v.

Hence the fixed point is unique. �

Example 2.1. Let X = {α, β, γ, δ}, A = {α, β, δ}, B = {γ, δ}, the t-norm ∆
is a 3rd order minimum t-norm and F be defined as
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Fα,β,γ(t) = Fα,β,δ(t) =

 0, if t 6 0,
0.40, if 0 < t < 4,
1, if t > 4,

Fα,γ,δ(t) = Fβ,γ,δ(t) =

{
0, if t 6 0,
1, if t > 0.

Then (X,F,∆) is a complete 2-Menger space. If we define T : X → X as follows:
Tα = δ, Tβ = γ, Tγ = δ, T δ = δ then the mapping T satisfies all the conditions of
the Theorem 2.1 where ϕ(t) = t, 0 < c < 1 and δ is the unique fixed point of T in
A
∩

B.
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[14] S. Gähler, 2-metrische Räume and ihre topologische strucktur, Math. Nachr., 26 (1963),

115-148.
[15] S. Gähler, Uber die unifromisieberkeit 2-metrischer Raume, Math. Nachr., 28 (1965), 235-

244.

[16] I. Golet, A fixed point theorems in probabilistic 2-metric spaces, Sem. Math. Phys. Inst.
Polit. Timisoara, 1988, 21-26.

[17] O. Hadzic, A fixed point theorem for multivalued mappings in 2-Menger spaces, Univ. u
Novom Sadu, Zb. Rad. Prirod. Mat. Fak., Ser. Mat., 24 (1994), 1-7.

[18] O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic
Publishers, 2001.

[19] K. Iseki, Fixed point theorems in 2-metric space, Math. Sem. Notes, Kobe Univ., 3 (1975),
133-136.



CYCLIC CONTRACTION RESULT IN 2-MENGER SPACE 233

[20] S. Karpagam and S. Agrawal, Best proximity point theorems for cyclic orbital MeirKeeler
contraction maps, Nonlinear Analysis, 74 (2011), 1040-1046.

[21] M. S. Khan, On the convergence of sequences of fixed points in 2-metric spaces, Indian J.
Pure Appl. Math., 10 (1979), 1062-1067.

[22] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the
points, Bull. Austral. Math. Soc., 30 (1984), 1-9.

[23] W.A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical

contractive conditions, Fixed Point Theory, 4 (2003), 79-89.
[24] S.N. Lal and A.K. Singh , An analogue of Banach’s contraction principle for 2-metric

spaces, Bull. Austral. Math. Soc., 18 (1978), 137-143.
[25] D. Mihet, Altering distances in probabilistic Menger spaces, Nonlinear Analysis, 71 (2009),

2734-2738.
[26] S.V.R. Naidu and J.R. Prasad, Fixed point theorems in metric , 2-metric and normed

linear spaces, Indian J. Pure Appl. Math, 17 (1986), 602-612.
[27] S.V.R. Naidu, Some fixed point theorems in metric and 2-metric spaces, Int. J. Math. Math.

Sci., 28:11 (2001), 625-638.
[28] S.V.R. Naidu, Some fixed point theorems in metric spaces by altering distances, Czechoslo-

vak Mathematical Journal, 53 (2003), 205-212.
[29] B. E. Rhoades, Contraction type mapping on a 2-metric spaces, Math. Nachr., 91 (1979),

151-155.
[30] K.P.R. Sastry and G.V.R. Babu, Some fixed point theorems by altering distances between

the points, Indian J. Pure. Appl. Math., 30(6) (1999), 641-647.

[31] K.P.R. Sastry, S.V.R. Naidu, G.V.R. Babu and G.A. Naidu, Generalisation of common
fixed point theorems for weakly commuting maps by altering distances, Tamkang Journal of
Mathematics, 31(3) (2000), 243-250.

[32] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North-Holland, (1983).

[33] V.M. Sehgal and A.T. Bharucha-Reid, Fixed point of contraction mappings on PM space,
Math. Sys. Theory, 6(2) (1972), 97-100.

[34] Y. Shi, L. Ren and X. Wang, The extension of fixed point theorems for set valued mapping,
J. Appl. Math. Computing, 13 (2003), 277-286.

[35] S. L. Singh, Rekha Talwar and Wen-Zhi Zeng, Common fixed point theorems in 2-Menger
spaces and applications, Math. Student, 63 (1994), 74-80.

[36] C. Vetro, Best proximity points: Convergence and existence theorems for p-cyclic mappings,
Nonlinear Analysis, 73 (2010), 2283-2291.

[37] Wen-Zhi Zeng, Probabilistic 2-metric spaces, J. Math. Research Expo., 2 (1987), 241-245.
[38] K. Wlodarczyk, R. Plebaniak and A. Banach, Best proximity points for cyclic and noncyclic

set-valued relatively quasi-asymptotic contractions in uniform spaces, Nonlinear Analysis, 70
(2009), 3332-3341.

[39] K. Wlodarczyk, R. Plebaniak and C. Obczyski, Convergence theorems, best approximation
and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions
in cone uniform spaces, Nonlinear Analysis, 72 (2010), 794-805.

Received by editors 28.07.2012; available online 05.11.2012

Binayak S. Choudhury, Department of Mathematics, Bengal Engineering and Sci-
ence University, Shibpur, Howrah - 700003, India

E-mail address: binayak12@yahoo.co.in

Krishnapada Das, Department of Mathematics, Bengal Engineering and Science
University, Shibpur, Howrah - 700003, India

E-mail address: kestapm@yahoo.co.in



234 B.S.CHOUDHURY, K.DAS AND S.K.BHANDARI

Samir Kumar Bhandari, Department of Mathematics, Bengal Engineering and Sci-
ence University, Shibpur, Howrah - 700003, India

E-mail address: skbhit@yahoo.co.in


