ON A LOGARITHMIC INEQUALITY

József Sándor

Abstract. We offer a new proof of a logarithmic inequality used in the theory of quasiconformal mappings and norm inequalities for vector functions [1].

1. Introduction

In the recent paper [1], the following logarithmic inequality has been proved (see Lemma 2.7 of [1]):

Theorem 1.1. For any $k \geqslant 1$ and $t \in\left[t_{0}, 1\right)$, where $t_{0}=\frac{e-1}{e+1}$ one has:

$$
\begin{equation*}
\log \left(\frac{1+t^{1 / k}}{1-t^{1 / k}}\right) \leqslant k \log \left(\frac{1+t}{1-t}\right) . \tag{1}
\end{equation*}
$$

The proof of (1) given in [1] is very complicated, based on more subsequent Lemmas on various hyperbolic functions. We note that (1) has important applications in the study of quasiconformal mappings and related vector function inequalities [1].

The aim of this note is to offer a very simple proof of (1), and in fact to obtain a more general result.

2. The proof

Our method will be based on the study of monotonicity of a certain function, combined with a well-known result related to the logarithmic mean

$$
L=L(x, y)=\frac{x-y}{\log x-\log y}(x \neq y), L(x, x)=x .
$$

The following result is well-known (see e.g. [2]):

[^0]Lemma 2.1. One has $L>G$ for any $x, y>0, x \neq y$, where

$$
G=G(x, y)=\sqrt{x y}
$$

denotes the geometric mean of x and y.
Put now $t=\frac{1}{p}$, where $1<p \leqslant \frac{e+1}{e-1}$ and $\frac{1}{k}=x$ in (1). Then the inequality becomes

$$
f(x)=x \log \left(\frac{p^{x}+1}{p^{x}-1}\right) \leqslant f(1), \text { where } 0<x \leqslant 1
$$

and $f(1)=\log \left(\frac{p+1}{p-1}\right) \geqslant 1$.
Now the following result will be proved:
Theorem 2.1. Assuming the above conditions, the function $f(x)$ is strictly increasing on $(0,1]$.

Particularly, one has $f(x) \leqslant f(1)$ for $0<x \leqslant 1$.
Proof. An easy computation gives

$$
f^{\prime}(x)=\log \left(\frac{p^{x}+1}{p^{x}-1}\right)-\frac{2 x p^{x} \log p}{p^{2 x}-1}=\log \left(\frac{a+1}{a-1}\right)-\frac{2 a \log a}{a^{2}-1}=g(a)
$$

where $a=p^{x}$. Since $0<x \leqslant 1, a \leqslant p$ and as $p \leqslant \frac{e+1}{e-1}$, one has $a \leqslant \frac{e+1}{e-1}$, i.e. $\log \left(\frac{a+1}{a-1}\right) \geqslant 1$. This implies

$$
g(a) \geqslant 1-\frac{2 a \log a}{a^{2}-1}=1-\frac{a \log a^{2}}{a^{2}-1}>0,
$$

as this is equivalent with $L\left(a^{2}, 1\right)<G\left(a^{2}, 1\right)$ of the Lemma.
Since $f^{\prime}(x)>0$, the function f is strictly increasing, and the proof of Theorem 2 is finished.

Remark 2.1. (1) Particularly, by letting $p_{0}=\frac{e+1}{e-1}$ we get $f(1)=1$, and the inequality

$$
\begin{equation*}
\log \left(\frac{p_{0}^{x}+1}{p_{0}^{x}-1}\right) \leqslant \frac{1}{x} \tag{2}
\end{equation*}
$$

follows. For $x=\frac{1}{k}$ and $p_{0}=\frac{1}{t_{0}}$, with the use of (2) an easier proof of Lemma 2.9 of [1] can be deduced.
(2) Let $0<x \leqslant y \leqslant 1$. Then

$$
\begin{equation*}
x \log \left(\frac{p^{x}+1}{p^{x}-1}\right) \leqslant y \log \left(\frac{p^{y}+1}{p^{y}-1}\right) \leqslant \log \left(\frac{p+1}{p-1}\right) . \tag{3}
\end{equation*}
$$

This offers an extension of inequality (1) for $x=\frac{1}{k}$ and $p=\frac{1}{t}$.

References

[1] B.A. Bhayo, V. Božin, D. Kalaj, M. Vuorinen, Norm inequalities for vector functions, J. Math. Anal. Appl., 380(2011), 768-781.
[2] J. Sándor, On the identric and logarithmic means, Aequationes Math., 40(1990), 261-270.

Received 04.04.2012; available on internet 12.10.2012
Babeş-Bolyai University, Department of Mathematics, Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania

E-mail address: jsandor@math.ubbcluj.ro

[^0]: 2010 Mathematics Subject Classification. Primary 11A25.
 Key words and phrases. Logarithmic function, logarithmic mean.

