BULLETIN OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 1840-4367 Vol. 2(2012), 173-184

> Former BULLETIN OF SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

EXTERNALLY EQUITABLE COLORING IN GRAPHS

D. Lakshmanaraj and V. Swaminathan

ABSTRACT. Let G=(V,E) be a simple graph. A partition of V(G) into independent, externally equitable sets is called externally equitable proper color partition of G or externally equitable proper coloring of G. The minimum cardinality of an externally equitable proper coloring of G is called externally equitable chromatic number of G and is denoted by $\chi_{ee}(G)$. Since $\Pi=\{\{u_1\},\{u_2\},\cdots,\{u_n\}\}$ where $V(G)=\{u_1,u_2,\cdots,u_n\}$ is an externally equitable proper coloring of G. In this paper, this new parameter is introduced and studied.

1. Introduction

The concept of equitability has been widely studied in coloring. A proper color partition is said to be equitable if the cardinalities of the color classes differ by at most one. E. Sampathkumar introduced degree equitability in graphs. A subset S of the vertex set of a graph is said to be degree equitable if the degrees of any two vertices of S differ by at most one. Arumugam et. al. [2] studied degree equitable sets and degree equitable proper coloring of vertices of a graph. K.M.Dharmalingam defined degree equitable and (ii) out degree equitable. A subset S of the vertex set V of a graph G is said to be externally equitable, if for any $x, y \in V - S$, $||N(x) \cap S| - |N(y) \cap S|| \leq 1$.

2. Main Results

DEFINITION 2.1. A partition of V(G) into independent, externally equitable sets is called externally equitable proper color partition of G or externally equitable proper coloring of G. The minimum cardinality of an externally equitable proper coloring of G is called externally equitable chromatic number of G and is denoted

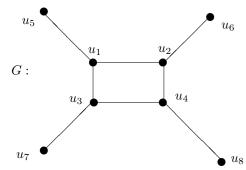
²⁰¹⁰ Mathematics Subject Classification. Primary 05C.

Key words and phrases. externally equitable sets, externally equitable proper coloring, externally equitable chromatic number.

¹⁷³

by $\chi_{ee}(G)$. Since $\Pi = \{\{u_1\}, \{u_2\}, \cdots, \{u_n\}\}\$ where $V(G) = \{u_1, u_2, \cdots, u_n\}$ is an externally equitable proper coloring of G, externally equitable proper color partition exists in any graph G.

Illustration 2.1.



 $\{\{u_5, u_6, u_7, u_8\}, \{u_1\}, \{u_2\}, \{u_3\}, \{u_4\}\}$ is an externally equitable independent partition of V(G).

REMARK 2.1. Since any χ_{ee} – partition of G is a proper color partition of G, $\chi(G) \leq \chi_{ee}(G)$ for any graph G.

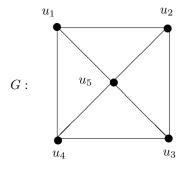
2.1. $\chi_{ee}-$ proper color partition for standard graphs.

OBSERVATION 2.1. (1)
$$\chi_{ee}(K_n) = n$$

(2) $\chi_{ee}(P_n) = \chi(P_n) = 2.$
(3) $\chi_{ee}(C_n) = \chi(C_n) = \begin{cases} 2 & \text{if } n \text{ is even} \\ 3 & \text{if } n \text{ is odd} \end{cases}$
(4) $\chi_{ee}(K_{1,n}) = \chi(K_{1,n}) = 2.$

THEOREM 2.1. $\chi_{ee}(W_{n+1}) = \begin{cases} n+1 & \text{when } n \ge 7\\ 4 & \text{when } n = 3 \text{ or } 5\\ 3 & \text{when } n = 4 \text{ or } 6 \end{cases}$

PROOF. When n = 3, $W_4 = K_4$ and hence $\chi_{ee}(W_4) = 4$. When n = 4, W_5 is



It is easily seen that $\{\{u_1, u_3\}, \{u_2, u_4\}, \{u_5\}$ is a χ_{ee} -partition of W_5 . Therefore $\chi_{ee}(W_5) = 3$.

When $n = 5, W_6$ is

It is easily seen that $\{\{u_1, u_3\}, \{u_2, u_4\}, \{u_5\}, \{u_6\}\}$ is a χ_{ee} -partition of W_6 . Therefore $\chi_{ee}(W_6) = 4$.

When $n = 6, W_7$ is

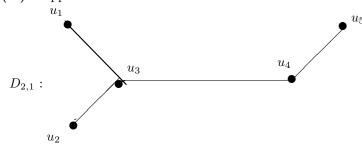
It is easily seen that $\{\{u_1, u_3, u_5\}, \{u_2, u_4, u_6\}, \{u_7\}\}\$ is a χ_{ee} -partition of W_7 . Therefore $\chi_{ee}(W_6) = 3$. Let $n \ge 7$. Consider W_{n+1} . let $\{u_1, u_2, \ldots, u_n\}$ be the vertices on the cycle of W_{n+1} and v be the central vertex. In any χ_{ee} -partition of W_{n+1} , $\{v\}$ is an element of the partition. Let V_1 be any other element of the partition. Then $|N(v) \cap V_1| = |V_1|$. Since for any $x \in V(W_{n+1}) - V_1$, $x \ne v$, $|N(x) \cap V_1| \le 2$, we get that $|V_1| \le 3$. If V_1 contains $u_{i+1}, u_{i+3}, u_{i+5}$, then $|N(u_{i+7} \cap V_1| = 0$. A similar argument shows that $|V_1| \ne 2$. Therefore $|V_1| = 1$.

THEOREM 2.2.
$$\chi_{ee}(D_{r,s}) = \begin{cases} \max\{r,s\}+2 & when |r-s| \ge 2\\ 3 & when |r-s| \le 1 \text{ and } r, s \ge 3\\ 2 & when r = 2, s = 1 \text{ or } 2\\ & or r = 1, s = 1 \text{ or } s = 2 \end{cases}$$

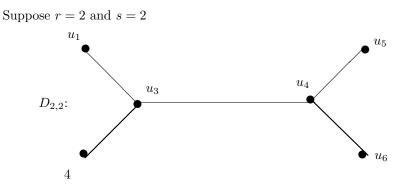
PROOF. **Case(i):** $|r-s| \ge 2$. Let $r = max\{r, s\}$. Let u, v be the centers of $D_{r,s}$ and let u_1, u_2, \ldots, u_r be the pendant vertices at u and v_1, v_2, \ldots, v_s be the pendant vertices at v. Let $\pi = \{V_1, V_2, \ldots, V_t\}$ be a χ_{ee} -partition of $D_{r,s}$. If V_1 contains two pendants at u, then any pendant at v not in V_1 will have no neighbours in V_1 and $u \notin V_1$ has two neighbours in V_1 , a contradiction. Therefore V_1 contains all pendant vertices at v. Suppose V_1 does not contain a pendant at u. Then that pendant at u will have no neighbour in V_1 , a contradiction since u has two neighbours in V_1 . Therefore V_1 contains all pendants at u. Then $|N(u) \cap V_1| = r$ and $|N(v) \cap V_1| = s$ and $|r - s| \ge 2$, a contradiction. Therefore, V_1 cannot contain two pendants at u. Suppose $V_1 = \{u_i, v_j\}$ where $1 \le i \le r, 1 \le j \le s$. Then V_1 is externally equitable independent. Thus, $V_1 = \{u_1, v_1\}$, $V_2 = \{u_2, v_2\}, V_3 = \{u_3, v_3\}, \cdots, V_s = \{u_s, v_s\}$ are elements of any χ_{ee} -partition of $D_{r,s}$. The remaining pendants at u and the two centers must appear as singletons in π . Therefore $\chi_{ee}(D_{r,s}) = max\{r, s\} + 2$.

Case (ii): $|r-s| \leq 1$ and $r, s \geq 3$. Let $\pi = \{\{u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_s\}, \{u\}, \{v\}\}$. Then π is an externally equitable independent partition of $D_{r,s}$. Therefore $\chi_{ee}(D_{r,s}) \leq 3$. Suppose $\pi = \{V_1, V_2\}$ be a χ_{ee} -partition of $D_{r,s}$. Clearly $u \in V_1$ and $v \in V_2$. Therefore V_2 contains all the pendants at u and V_1 contains all the pendants at v. Then $|N(u_1) \cap V_1| = 1$ and $|N(v) \cap V_1| = r$, a contradiction, since $r \geq 3$. Therefore $\chi_{ee}(D_{r,s}) \geq 3$.

Case(iii): Suppose r = 2 and s = 1

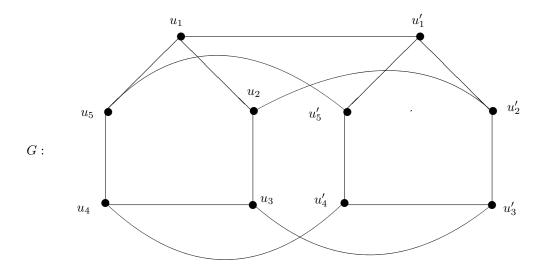


Here $\pi = \{\{u, v_1\}, \{v, u_1, u_2\}\}$ is a χ_{ee} -partition of $D_{2,1}$. Therefore $\chi_{ee}(D_{2,1}) = 2$.



Then $\pi = \{\{u, v_1, v_2\}, \{v, u_1, u_2\}\}$ is a χ_{ee} -partition of $D_{2,2}$. Therefore $\chi_{ee}(D_{2,2}) = 2$. When r = 1, s = 1 then $\chi_{ee}(D_{1,1}) = P_4$ and $\chi_{ee}(P_4) = 2$.

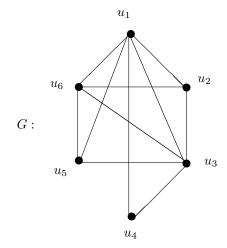
REMARK 2.2. There exists regular graph G such that $\chi_{ee}(G) > \chi(G)$. For: let

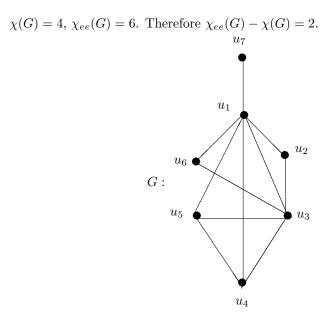


 $\pi = \{\{u_1, v_3\}, \{u_2, v_4\}, \{u_3, v_5\}, \{u_4, v_1\}, \{u_5, v_2\}\} \text{ is an externally equitable independent partition of } V(G). \ \chi(G) = 3, \ \chi_{ee}(G) = 5, \text{ since } \beta_0^{ee}(G) = 2.$

PROPOSITION 2.1. Given any positive integer k there exists a graph G such that $\chi_{ee}(G) - \chi(G) = k$.

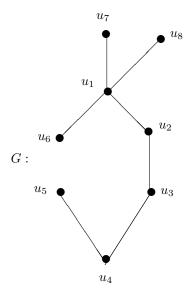
PROOF. Let $k \ge 6$. Let $G = D_{2,k}$. Then $\chi_{ee}(G) = max\{2,k\} + 2 = k + 2$, $\chi(G) = 2$. Therefore $\chi_{ee}(G) - \chi(G) = k$. $\chi(D_{3,4}) = 2$ and $\chi_{ee}(D_{3,4}) = 3$. Therefore $\chi_{ee}(G) - \chi(G) = 1$.

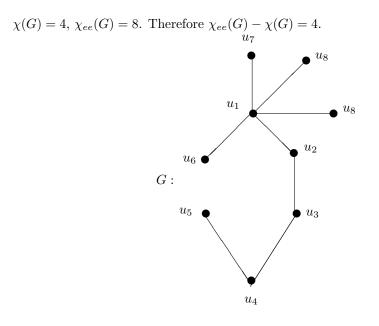


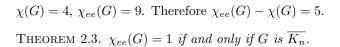


 $\chi(G) = 4, \ \chi_{ee}(G) = 7.$ Therefore $\chi_{ee}(G) - \chi(G) = 3.$

LAKSHMANARAJ AND SWAMINATHAN





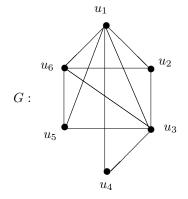


PROOF. Suppose $\chi_{ee}(G) = 1$. Then no two vertices of G are adjacent. Therefore $G = \overline{K_n}$. Converse is obvious.

THEOREM 2.4. $\chi_{ee}(G) = 2$ if and only if G is bipartite and the degrees of any two elements of the same partition differ by at most one.

PROOF. Suppose $\chi_{ee}(G) = 2$. Then $V(G) = X \cup Y$ where X and Y are independent and any two vertices of X have almost equal number of neighbors in Y and vice versa .(that is, for every $u, v \in X$, $||N(u) \cap Y| - |N(v) \cap Y|| \leq 1$ and for every $u, v \in Y$, $||N(u) \cap X| - |N(v) \cap X|| \leq 1$). The converse is obvious. \Box

EXAMPLE 2.1.



G is a bipartite Graph. Therefore $\chi(G) = 2$. But $\chi_{ee}(G) = 3$ and the color classes are $\{\{u_1, u_2\}, \{v_1, v_3, v_4, v_5\}, \{v_2, v_3\}\}$.

THEOREM 2.5. $\frac{n}{\beta_0^{ee}(G)} \leq \chi_{ee}(G) \leq n - \beta_0^{ee}(G) + 1.$

PROOF. Let $\chi_{ee}(G) = k$. Let π be a partition of V(G) into k externally equitable independent sets V_1, V_2, \cdots, V_k . Then $|V_i| \leq \beta_0^{ee}(G) \lor i, 1 \leq i \leq k$. $n = |V_1| + |V_2| + |V_3| + \cdots + |V_k| \leq k \beta_0^{ee}(G)$. Therefore $\frac{n}{\beta_0^{ee}(G)} \leq k$. Let S be

 $n = |V_1| + |V_2| + |V_3| + \dots + |V_k| \leq k \beta_0^{ee}(G)$. Therefore $\frac{n}{\beta_0^{ee}(G)} \leq k$. Let S be a β_0^{ee} - set of G. Let $\pi = \{S, \{v_1\}, \{v_2\}, \dots, \{v_t\}\}$ where

 $V - S = \{v_1, v_2, \dots, v_t\}$ and $t = n - \beta_0^{ee}(G)$. Then π is an externally equitable independent partition of G. Therefore $\chi_{ee}(G) \leq n - \beta_0^{ee}(G) + 1$.

PROPOSITION 2.2. Let S be any externally equitable independent set of C_n^+ . Let $V(C_n) = \{u_1, u_2, u_3, \ldots, u_n\}$ and $V(C_n^+) = \{u_1, u_2, u_3, \ldots, u_n, u_1^{'}, u_2^{'}, u_3^{'}, \ldots, u_n^{'}\}$ where $u_i^{'}$ is the pendant vertex of C_n^+ adjacent with $u_i, 1 \leq i \leq n$. Then S cannot contain any pair of vertices of the form $u_i, u_{i+2}, 1 \leq i \leq n$ (i+2 taken mod n).

PROOF. Suppose $u_i, u_{i+2} \in S$. Then $|N(u_{i+1}) \cap S| \ge 2$. Therefore, $|N(x) \cap S| \ge 1$, for every $x \in V - S$. Therefore S is a dominating set of C_n^+ . Since S is independent, $u_{i+1} \notin S$ and as S is a dominating set of C_n^+ we get that $u'_{i+1} \in S$. Therefore $|N(u_{i+1}) \cap S| = 3$. Hence $|N(x) \cap S| \ge 2$, for every $x \in V - S$. Since V - S contains pendant vertices, this is not possible.

PROPOSITION 2.3. When $n \cong 1, 2 \pmod{3}$, $\chi_{ee}(C_n^+) \ge 4$.

PROOF. Suppose $n \cong 1 \pmod{3}$. Let $\pi = \{V_1, V_2, V_3\}$ be a χ_{ee} - partition of C_n^+ . Let $V(C_n) = \{u_1, u_2, \dots, u_n\}$. By Proposition 2.2, $|V_i \cap V(C_n)| \leq \frac{n-1}{3}$, $1 \leq i \leq 3$. Therefore $\sum_{i=1}^{i=3} |V_i \cap V(C_n)| \leq n-1$ a contradiction,

since $V_1 \cup V_2 \cup V_3 = V(C_n^+)$. Suppose $n \cong 2 \pmod{3}$. Arguing as before $\sum_{i=1}^{i=3} |V_i \cap V(C_n)| \leq n-2$ a contradiction. Therefore $\chi_{ee}(C_n^+) \geq 4$, when $n \cong 1, 2 \pmod{3}$. \Box

PROPOSITION 2.4. Let $n \cong 0 \pmod{3}$. Let V_1 be an externally equitable independent set of C_n^+ . Let $V(C_n) = \{u_1, u_2, u_3, \ldots, u_n\}$. Suppose $|V_1 \cap V(C_n)| = \frac{n}{3}$ and suppose $u'_j \in V_1$ for some j such that $u_j \notin V_1$. Then $|V_1| = n$.

PROOF. Let $n \cong 0 \pmod{3}$. Let without loss of generality $u_1, u_4, \ldots, u_{n-2} \in V_1$ and $u_2^{'} \in V_1$. Therefore Then $|N(u_2) \cap V_1| = 2$. Therefore, V_1 is a dominating set of C_n^+ . Therefore $u_3^{'}, u_5^{'}, u_6^{'}, \ldots, u_{n-1}^{'}, u_n^{'} \in V_1$ and hence $|V_1| = n$.

PROPOSITION 2.5. Let $n \cong 0 \pmod{3}$. Suppose $\pi = \{V_1, V_2, V_3\}$ be a χ_{ee} -partition of C_n^+ . Then $|V_i \cap V(C_n)| = \frac{n}{3}$, for all i = 1, 2 and 3.

PROOF. Clearly $|V_i \cap V(C_n)| \leq \frac{n}{3}$, for all i = 1, 2 and 3. Suppose $|V_i \cap V(C_n)| < \frac{n}{3}$. Therefore for some $j \neq i, 1 \leq j \leq 3$, $|V_i \cap V(C_n)| > \frac{n}{3}$ (since $\sum_{i=1}^{i=3} |V_i \cap V(C_n)| = n$) a contradiction. Therefore, $|V_i \cap V(C_n)| = \frac{n}{3}$, for all i = 1, 2 and 3.

PROPOSITION 2.6. Let $n \cong 0 \pmod{3}$. Then $\chi_{ee}(C_n^+) > 3$.

PROOF. Suppose $\chi_{ee}(C_n^+) = 3$. Let $\pi = \{V_1, V_2, V_3\}$ be a χ_{ee} - partition of C_n^+ . Then $|V_i \cap V(C_n)| = \frac{n}{3}$, for all i = 1, 2 and 3. Since $V_1 \cup V_2 \cup V_3 = V(C_n^+)$ for any $j, 1 \leq j \leq n, u'_j \in V_i$, for some $i, 1 \leq i \leq 3$. Suppose $u'_j \in V_1$. Then by Lemma 2.32, $|V_1| = n$. Also, there exists $u'_r \notin V_i$, for some $r, 1 \leq r \leq n$. Therefore $u'_r \in V_2$ or V_3 . Therefore by lemma 2.2.32, $|V_2| = n$ or $|V_3| = n$. Since $V(C_n^+) = 2n$, one of V_2, V_3 is empty a contradiction. Therefore $\chi_{ee}(C_n^+) \geq 4$.

PROPOSITION 2.7. $\chi_{ee}(C_n^+) \leq 4.$

PROOF. **Case(i):** Let n = 3k. Then $\{\{u_1, u_4, u'_2, u'_3, u'_5, u'_6, \dots, u'_{3k}\},\$

 $\{u_2, u_5, u_8, \dots, u_{3k-1}\}, \{u_3, u_7, u_{10}, \dots, u_{3k-2}, u_1'\}, \{u_6, u_9, u_{12}, \dots, u_{3k}, u_4'\}\}$ is an externally equitable independent partition of C_n^+ . Therefore, $\chi_{ee}(C_n^+) \leq 4$.

Case(ii): Let n = 3k + 1. Then $\{\{u_1, u_4, u'_2, u'_3, u'_5, u'_6, \dots, u'_{3k+1}\},\$

 $\{u_2, u_6, u_9, \dots, u_{3k}, u'_4\}, \{u_3, u_7, u_{10}, \dots, u_{3k+1}\}, \{u_5, u_8, u_{11}, \dots, u_{3k-1}, u'_1\}\}$ is an externally equitable independent partition of C_n^+ . Therefore $\chi_{ee}(C_n^+) \leq 4$.

Case(iii): Let n = 3k + 2. Then $\{u_1, u_4, u'_2, u'_3, u'_5, u'_6, \dots, u'_{3k+2}\},$ $\{u'_2, u_6, u_9, \dots, u_{3k}, u'_4\}, \{u_3, u_7, u_{10}, \dots, u_{3k+1}, u'_1\}, \{u_5, u_8, u_{11}, \dots, u_{3k+2}\}$ is an externally equitable independent partition of C_n^+ . Therefore $\chi_{ee}(C_n^+) \leq 4$.

THEOREM 2.6. $\chi_{ee}(C_n^+) = 4.$

PROOF. Follows from proposition 2.3 to 2.7.

REMARK 2.3. Let G = (V, E) be a simple graph. Let S be an externally equitable independent set of G and for any $u \in V - S$, $|N(u) \cap S| \ge 2$. Then S is a dominating set of G. In particular, if $|N(u) \cap S| = r \ge 2$ then S is a (r-1)-dominating set of G.

REMARK 2.4. If S is an externally equitable independent set of G and for any $u \in V - S$ $|N(u) \cup S| \ge 3$ then S does not contain any pendant vertex. ((*ie*) $deg_G(v) \ge 2$, for any $v \in V - S$)

OBSERVATION 2.2. Let G and H be two vertex disjoint graphs. Any externally equitable independent set S of G + H contains either vertices from V(G) or V(H) and not from both. Also, if $S \subseteq V(G)$, then for any $u \in V(H)$, $|N(u) \cap S| = |S|$. Hence, $|N(v) \cap S| = |S| - 1$ or |S| for any $v \in V - S$. Therefore S is a (|S| - 1)-dominating set of G. If for any $x \in V(G) - S$, $deg_G(x) \leq |S| - 2$ then S is not an externally equitable independent set of G + H.

OBSERVATION 2.3. Let G and H be two vertex disjoint graphs. Let S be an externally equitable independent set of G. Then G is an externally equitable independent set of $G \cup H$ if and only if for every $x \in V - S$, $|N(x) \cup S| \leq 1$. Similar results holds for H also. Also, if S is an externally equitable independent set of $G \cup H$ and S is a dominating set of G, then $|N(x) \cap S| = 1$, for every $x \in V - S$.

OBSERVATION 2.4. Let G and H be two vertex disjoint graphs. Let S be an externally equitable independent set of G + H. Then S is an externally equitable independent set of G if $S \subseteq V(G)$ or an externally equitable independent set of H if $S \subseteq V(H)$.

OBSERVATION 2.5. Let $\pi = \{S_1, S_2, \ldots, S_r\}$ be a χ_{ee} partition of G. S_1, S_2, \ldots, S_r are externally equitable independent partition of G + H if and only if every $u \in S_i, 1 \leq i \leq r, n - |S_i| \geq deg_G(u) \geq n - |S_i| - (r - 1)$.

OBSERVATION 2.6. Let $\pi = \{S_1, S_2, \ldots, S_t\}$ be externally equitable independent dent partition of G + H. Let S_1, S_2, \ldots, S_r be an externally equitable independent sets of G and $S_{r+1}, S_{r+2}, \ldots, S_t$ be externally equitable independent sets of H. Then $\pi_1 = \{S_1, S_2, \ldots, S_r\}$ is an externally equitable independent partition of Gand $\pi_2 = \{S_{r+1}, S_{r+2}, \ldots, S_t\}$ be an externally equitable independent partition of H. Also for every $u \in S_i, 1 \leq i \leq r, n - |S_i| \geq deg_G(u) \geq n - |S_i| - (r - 1)$ and $n - |S_j| \geq deg_H(u) \geq n - |S_j| - (t - r - 1)$ for every $u \in S_j, r + 1 \leq j \leq t$.

OBSERVATION 2.7. Let $\pi_1 = \{S_1, S_2, \ldots, S_r\}$ be an externally equitable independent partition of G and $\pi_2 = \{S_{r+1}, S_{r+2}, \ldots, S_t\}$ is an externally equitable independent partition of H. Then $\pi_1 \cup \pi_2$ is an externally equitable independent partition of G + H if and only if for every i, $1 \leq i \leq r$ $n - |S_i| \geq \deg_G(u) \geq n - |S_i| - (r-1)$ for every $u \in S_i$ and $n - |S_j| \geq \deg_H(u) \geq n - |S_j| - (t-r-1)$ for every $u \in S_i$, $r + 1 \leq j \leq t$. Let $k = max\{|S_i|, 1 \leq i \leq r\}$ and $l = min\{|S_i|, 1 \leq i \leq r\}$.

 $n-k-(r-1) \leq \deg_G(u) \leq n-l$, for every $u \in V(G)$. Therefore $\delta(G) \geq n-k-(r-1)$ and $\Delta(G) \leq n-l$.

ILLUSTRATION 2.2. Consider $G = K_3$ and $H = C_8$. Let $V(K_3) = \{u_1, u_2, u_3\}$ and $V(C_8) = \{v_1, v_2, \ldots, v_8\}$. $\pi_1 = \{\{u_1\}, \{u_2\}, \{u_3\}\}$ and $\pi_2 = \{\{v_1, v_3, v_5, v_7\}, \{v_2, v_4, v_6, v_8\}\}$ are χ_{ee} partitions of G and H respectively. Let $S_1 = \{v_1, v_3, v_5, v_7\}$ and $S_2 = \{v_2, v_4, v_6, v_8\}$. If $\pi_1 \cup \pi_2$ is an externally equitable independent partition of G + H, then S_1 and S_2 are 3 dominating sets of H which is not possible since $\Delta(H) = 2$. A similar argument shows that a χ_{ee} partition of H cannot contain an element of cardinality three since any externally equitable independent set of cardinality three in C_8 is not a independent 2-dominating set of C_8 . If π_2 contains an element of cardinality two then it is not a dominating set of C_8 since $\gamma(C_8) = 3$. Therefore, every element of π_2 is a singleton and hence $\chi_{ee}(K_3 + C_8) = 11$.

OBSERVATION 2.8. $\chi_{ee}(G + H) \leq |V(G)| + |V(H)|$ and the upper bound is sharp as seen in the above example.

OBSERVATION 2.9. Given any positive integer k, there exist graph G and H such that $\chi_{ee}(G+H) - (\chi_{ee}(G) + \chi_{ee}(H)) = k$.

PROOF. Case 1: k is even. Let $G = K_3$ and $H = C_{2k+2}$. $\chi_{ee}(G+H) = 2k+5$. $\chi_{ee}(G) = 3$ and $\chi_{ee}(H) = 2$. Hence the observation.

Case 2: k is odd. Consider $G = K_4$, $H = D_{k+2,k}$. $\chi_{ee}(G+H) = 2k+4+4 = 2k+8$, $\chi_{ee}(G) = 4$, $\chi_{ee}(H) = k+4$. Therefore, $\chi_{ee}(G+H) - (\chi_{ee}(G) + \chi_{ee}(H)) = k$.

OBSERVATION 2.10. Let G and H be two vertex disjoint graphs. Let $\pi_1 = \{V_1, V_2, \ldots, V_k\}$ and $\pi_2 = \{W_1, W_2, \ldots, W_r\}$ be χ_{ee^-} partitions of G and H respectively. Let $r_i = \min_{x \in V(G) - V_i} \{N(x) \cap V_i\}, 1 \leq i \leq k$. Let $s_j = \min_{x \in V(H) - W_j} \{N(y) \cap W_j\}, 1 \leq j \leq r$. If r = k and $r_i = s_i$ for every i = 1 to k, then $\{V_1 \cup W_1, V_2 \cup W_2, \ldots, V_k \cup W_k\}$ is an externally equitable independent partition of $G \cup H$. Hence $\chi_{ee}(G \cup H) \leq k$.

PROPOSITION 2.8. Let G and H be two vertex disjoint graphs. Then $max\{\chi_{ee}(G), \chi_{ee}(H)\} \leq \chi_{ee}(G \cup H).$

PROOF. Let $\pi = \{V_1, V_2, \ldots, V_k\}$ be a χ_{ee} - partition of $G \cup H$. Let $\pi_1 = \{V_1 \cap V(G), V_2 \cap V(G), \ldots, V_k \cap V(G)\}$ and $\pi_2 = \{V_1 \cap V(H), V_2 \cap V(H), \ldots, V_k \cap V(H)\}$. Clearly π_1 and π_2 are independent partitions of G and H respectively. Let $x, y \in V(G) - (V_i \cap V(G)), 1 \leq i \leq k$. Therefore $x, y \in V(G \cup H) - V_i$. Therefore $|(N(x) \cap V_i) - (N(y) \cap V_i)| \leq 1$. Since x and y are not adjacent with any vertex of $H, N(x) \cap V_i = N(x) \cap (V_i \cap V(G))$ and $N(y) \cap V_i = N(y) \cap (V_i \cap V(G))$. Therefore $|N(x) \cap (V_i \cap V(G)) - N(y) \cap (V_i \cap V(G))| \leq 1$ for every $i, 1 \leq i \leq k$. Therefore π_1 is an externally equitable independent partition of G. Similarly π_2 is an externally equitable independent partition of K. Therefore $\chi_{ee}(G) \leq k$ and $\chi_{ee}(H) \leq k$. Therefore $\max\{\chi_{ee}(G), \chi_{ee}(H)\} \leq \chi_{ee}(G \cup H)$.

REMARK 2.5. The bound is sharp as seen from the following example: Let $G = K_3$ and $H = C_8$. $V(G) = \{u_1, u_2, u_3\}$ and $V(H) = \{v_1, v_2, \dots, v_8\}$. $\chi_{ee}(G) = 3$ and

 $\chi_{ee}(H) = 2. \{\{u_1, v_1, v_3, v_5, v_7\}, \{u_2, v_2, v_4, v_6, v_8\}, \{u_3\}\} \text{ is an externally equitable independent partition of } G \cup H. \text{ Therefore } \chi_{ee}(G \cup H) \leq 3. \text{ But } \chi_{ee}(G \cup H) \geq 3, \\ \chi_{ee}(G \cup H) = 3 = \max \{\chi_{ee}(G), \chi_{ee}(H)\}.$

THEOREM 2.7. Let G and H be two vertex disjoint graphs. Let π_1 and π_2 be two partitions of G and H respectively satisfying the following. Let $\pi_1 = \{V_1, V_2, \ldots, V_k\}, \ \pi_2 = \{W_1, W_2, \ldots, W_r\}$. Any vertex in $V(G) - V_i$ is adjacent with either a or a + 1 vertices of $V_i \ 1 \leq i \leq k$ and any vertex in $V(H) - W_j$ is adjacent with either a or a + 1 vertices of $W_j \ 1 \leq i \leq r$. Then $\chi_{ee}(G \cup H) \leq \max\{\chi_{ee}(G), \chi_{ee}(H)\}$.

PROOF. Let with out loss of generality $k \ge r$. Consider $\pi = \{V_1 \cup W_1, V_2 \cup W_2, \ldots, V_r \cup W_r, \ldots, V_k\}$. Clearly π is an externally equitable independent partition of $G \cup H$. Therefore $\chi_{ee}(G \cup H) \le k = \max\{\chi_{ee}(G), \chi_{ee}(H)\}$.

REMARK 2.6. Let G and H be two vertex disjoint graphs. Let π_1 and π_2 be two partitions of G and H respectively satisfying the following. Let $\pi_1 = \{V_1, V_2, \ldots, V_k\}, \pi_2 = \{W_1, W_2, \ldots, W_r\}$. Any vertex in $V(G) - V_i$ is adjacent with either a or a + 1 vertices of V_i $1 \leq i \leq k$ and any vertex in $V(H) - W_j$ is adjacent with either a or a + 1 vertices of W_j $1 \leq i \leq r$. Then $\chi_{ee}(G \cup H) \leq \max\{k, r\}$.

References

- R. B. Allan and R. C. Laskar, On domination and independent domination numbers of a graph, Discrete Math. 23 (1978), 73-76.
- [2] A. Anitha, S. Arumugam and E. Sampathkumar, Degree Equitable Sets in a Graph, International J.Math. Combin., 3(2009), 32-47.
- [3] A. Anitha, S. Arumugam, S. B. Rao and E. Sampathkumar, Degree Equitable Chromatic number of a a Graph, JCMCC, 75(2010), 187-199.
- [4] C. Berge, Theory of graphs and its applications, Dunod, Paris, 1958.
- [5] K. M. Dharmalingam, Studies in Graph Theory Equitable domiantion and Bottleneck domination, Ph.D Thesis, 2006.
- [6] K. M. Dharmalingam and V.Swaminathan, Degree Equitable domiantion in Graphs, Kragujevac J. Math., 35(1)(2011),191-197.
- [7] G. H. Fricke, Teresa W. Haynes, S. T. Hetniemi, S. M. Hedetniemi and R. C. Laskar, *Excellent trees*, Bull. Inst. Combin. Appl., 34 (2002), 27-38.
- [8] F. Harary, Graph Theory, ddison Wesley, Reading Mass, 1972.
- [9] S. T. Hedetniemi and R. C. Laskar, Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Math. 86(1990) 257-277.
- [10] Peter Dankelmann Durban Gayla S. Domke, Wayne Goddard, Paul Grobler, Johannes H. Hattingh and Henda C. Swart, *Maximum Sizes of Graphs with Given Domination*, ParametersPreprint submitted to Elsevier Science 15 October 2004.
- [11] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
- [12] W.Meyer, Equitable coloring, Amer.Math. Monthly, 80 (1973), 920-922.

Received by editor 05.01.2012; available on internet 03.09.2012

Associate Professor, Department of Mathematics, Sethu Institute of Technology, Virudhunagar District, Madurai, India

Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, India

 $E\text{-}mail\ address:\ \texttt{sulanesri@yahoo.com}$