# EXTERNALLY EQUITABLE COLORING IN GRAPHS 

D. Lakshmanaraj and V. Swaminathan


#### Abstract

Let $G=(V, E)$ be a simple graph. A partition of $V(G)$ into independent, externally equitable sets is called externally equitable proper color partition of $G$ or externally equitable proper coloring of $G$. The minimum cardinality of an externally equitable proper coloring of $G$ is called externally equitable chromatic number of $G$ and is denoted by $\chi_{e e}(G)$. Since $\Pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \cdots,\left\{u_{n}\right\}\right\}$ where $V(G)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ is an externally equitable proper coloring of $G$, externally equitable proper color partition exists in any graph $G$. In this paper, this new parameter is introduced and studied.


## 1. Introduction

The concept of equitability has been widely studied in coloring. A proper color partition is said to be equitable if the cardinalities of the color classes differ by at most one. E. Sampathkumar introduced degree equitability in graphs. A subset $S$ of the vertex set of a graph is said to be degree equitable if the degrees of any two vertices of S differ by at most one. Arumugam et. al. [2] studied degree equitable sets and degree equtable proper coloring of vertices of a graph. K.M.Dharmalingam defined degree equitability and out degree equitability studied dominating sets which are (i) degree equitable and (ii) out degree equitable. A subset $S$ of the vertex set $V$ of a graph $G$ is said to be externally equitable, if for any $x, y \in V-S, \| N(x) \cap S|-|N(y) \cap S|| \leqslant 1$.

## 2. Main Results

Definition 2.1. A partition of $V(G)$ into independent,externally equitable sets is called externally equitable proper color partition of $G$ or externally equitable proper coloring of $G$. The minimum cardinality of an externally equitable proper coloring of $G$ is called externally equitable chromatic number of $G$ and is denoted

[^0]by $\chi_{e e}(G)$. Since $\Pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \cdots,\left\{u_{n}\right\}\right\}$ where $V(G)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ is an externally equitable proper coloring of $G$, externally equitable proper color partition exists in any graph $G$.

Illustration 2.1.

$\left\{\left\{u_{5}, u_{6}, u_{7}, u_{8}\right\},\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}\right\}\right\}$ is an externally equitable independent partition of $V(G)$.

REMARK 2.1. Since any $\chi_{e e}-$ partition of $G$ is a proper color partition of $G$, $\chi(G) \leqslant \chi_{e e}(G)$ for any graph $G$.

## 2.1. $\chi_{e e}-$ proper color partition for standard graphs.

ObSERVATION 2.1. (1) $\chi_{e e}\left(K_{n}\right)=n$
(2) $\chi_{e e}\left(P_{n}\right)=\chi\left(P_{n}\right)=2$.
(3) $\chi_{e e}\left(C_{n}\right)=\chi\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is even } \\ 3 & \text { if } n \text { is odd }\end{cases}$
(4) $\chi_{e e}\left(K_{1, n}\right)=\chi\left(K_{1, n}\right)=2$.

Theorem 2.1. $\chi_{e e}\left(W_{n+1}\right)= \begin{cases}n+1 & \text { when } n \geqslant 7 \\ 4 & \text { when } n=3 \text { or } 5 \\ 3 & \text { when } n=4 \text { or } 6\end{cases}$
Proof. When $n=3, W_{4}=K_{4}$ and hence $\chi_{e e}\left(W_{4}\right)=4$.
When $n=4, W_{5}$ is


It is easily seen that $\left\{\left\{u_{1}, u_{3}\right\},\left\{u_{2}, u_{4}\right\},\left\{u_{5}\right\}\right.$ is a $\chi_{e e}$-partition of $W_{5}$. Therefore $\chi_{e e}\left(W_{5}\right)=3$.

When $n=5, W_{6}$ is
It is easily seen that $\left\{\left\{u_{1}, u_{3}\right\},\left\{u_{2}, u_{4}\right\},\left\{u_{5}\right\},\left\{u_{6}\right\}\right\}$ is a $\chi_{e e}$-partition of $W_{6}$. Therefore $\chi_{e e}\left(W_{6}\right)=4$.

When $n=6, W_{7}$ is
It is easily seen that $\left\{\left\{u_{1}, u_{3}, u_{5}\right\},\left\{u_{2}, u_{4}, u_{6}\right\},\left\{u_{7}\right\}\right\}$ is a $\chi_{e e}$-partition of $W_{7}$. Therefore $\chi_{e e}\left(W_{6}\right)=3$. Let $n \geqslant 7$. Consider $W_{n+1}$. let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices on the cycle of $W_{n+1}$ and $v$ be the central vertex. In any $\chi_{e e}$-partition of $W_{n+1},\{v\}$ is an element of the partition. Let $V_{1}$ be any other element of the partition. Then $\left|N(v) \cap V_{1}\right|=\left|V_{1}\right|$. Since for any $x \in V\left(W_{n+1}\right)-V_{1}, x \neq$ $v,\left|N(x) \cap V_{1}\right| \leqslant 2$, we get that $\left|V_{1}\right| \leqslant 3$. If $V_{1}$ contains $u_{i+1}, u_{i+3}, u_{i+5}$, then $\mid N\left(u_{i+7} \cap V_{1} \mid=0\right.$. A similar argument shows that $\left|V_{1}\right| \neq 2$. Therefore $\left|V_{1}\right|=1$. Therefore $\chi_{e e}\left(W_{n+1}\right)=n+1$.

Theorem 2.2. $\chi_{e e}\left(D_{r, s}\right)= \begin{cases}\max \{r, s\}+2 & \text { when }|r-s| \geqslant 2 \\ 3 & \text { when }|r-s| \leqslant 1 \text { and } r, s \geqslant 3 \\ 2 & \text { when } r=2, s=1 \text { or } 2 \\ & \text { or } r=1, s=1 \text { or } s=2\end{cases}$
Proof. Case(i): $|r-s| \geqslant 2$. Let $r=\max \{r, s\}$. Let $u, v$ be the centers of $D_{r, s}$ and let $u_{1}, u_{2}, \ldots, u_{r}$ be the pendant vertices at $u$ and $v_{1}, v_{2}, \ldots, v_{s}$ be the pendant vertices at $v$. Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{t}\right\}$ be a $\chi_{e e}$-partition of $D_{r, s}$. If $V_{1}$ contains two pendants at $u$, then any pendant at $v$ not in $V_{1}$ will have no neighbours in $V_{1}$ and $u \notin V_{1}$ has two neighbours in $V_{1}$, a contradiction. Therefore $V_{1}$ contains all pendant vertices at $v$. Suppose $V_{1}$ does not contain a pendant at $u$. Then that pendant at $u$ will have no neighbour in $V_{1}$, a contradiction since $u$ has two neighbours in $V_{1}$. Therefore $V_{1}$ contains all pendants at $u$. Then $\left|N(u) \cap V_{1}\right|=r$ and $\left|N(v) \cap V_{1}\right|=s$ and $|r-s| \geqslant 2$, a contradiction. Therefore, $V_{1}$ cannot contain two pendants at $u$. Similarly, $V_{1}$ cannot contain two pendant at $v$. Suppose $V_{1}=\left\{u_{i}, v_{j}\right\}$ where $1 \leqslant$ $i \leqslant r, 1 \leqslant j \leqslant s$. Then $V_{1}$ is externally equitable independent.Thus, $V_{1}=\left\{u_{1}, v_{1}\right\}$, $V_{2}=\left\{u_{2}, v_{2}\right\}, V_{3}=\left\{u_{3}, v_{3}\right\}, \cdots, V_{s}=\left\{u_{s}, v_{s}\right\}$ are elements of any $\chi_{e e}$-partition of $D_{r, s}$. The remaining pendants at $u$ and the two centers must appear as singletons in $\pi$. Therefore $\chi_{e e}\left(D_{r, s}\right)=\max \{r, s\}+2$.

Case (ii): $|r-s| \leqslant 1$ and $r, s \geqslant 3$. Let $\pi=\left\{\left\{u_{1}, u_{2}, \ldots, u_{r}, v_{1}, v_{2}, \ldots, v_{s}\right\}\right.$, $\{u\},\{v\}\}$. Then $\pi$ is an externally equitable independent partition of $D_{r, s}$. Therefore $\chi_{e e}\left(D_{r, s}\right) \leqslant 3$. Suppose $\pi=\left\{V_{1}, V_{2}\right\}$ be a $\chi_{e e}$-partition of $D_{r, s}$. Clearly $u \in V_{1}$ and $v \in V_{2}$. Therefore $V_{2}$ contains all the pendants at $u$ and $V_{1}$ contains all the pendants at $v$. Then $\left|N\left(u_{1}\right) \cap V_{1}\right|=1$ and $\left|N(v) \cap V_{1}\right|=r$, a contradiction, since $r \geqslant 3$. Therefore $\chi_{e e}\left(D_{r, s}\right) \geqslant 3$. Therefore $\chi_{e e}\left(D_{r, s}\right)=3$.

Case(iii): Suppose $r=2$ and $s=1$


Here $\pi=\left\{\left\{u, v_{1}\right\},\left\{v, u_{1}, u_{2}\right\}\right\}$ is a $\chi_{e e}$-partition of $D_{2,1}$. Therefore $\chi_{e e}\left(D_{2,1}\right)=$ 2.

Suppose $r=2$ and $s=2$


Then $\pi=\left\{\left\{u, v_{1}, v_{2}\right\},\left\{v, u_{1}, u_{2}\right\}\right\}$ is a $\chi_{e e}$-partition of $D_{2,2}$.
Therefore $\chi_{e e}\left(D_{2,2}\right)=2$. When $r=1, s=1$ then $\chi_{e e}\left(D_{1,1}\right)=P_{4}$ and $\chi_{e e}\left(P_{4}\right)=$ 2.

Remark 2.2. There exists regular graph $G$ such that $\chi_{e e}(G)>\chi(G)$.
For: let

$\pi=\left\{\left\{u_{1}, v_{3}\right\},\left\{u_{2}, v_{4}\right\},\left\{u_{3}, v_{5}\right\},\left\{u_{4}, v_{1}\right\},\left\{u_{5}, v_{2}\right\}\right\}$ is an externally equitable independent partition of $V(G), \chi(G)=3, \chi_{e e}(G)=5$, since $\beta_{0}^{e e}(G)=2$.

Proposition 2.1. Given any positive integer $k$ there exists a graph $G$ such that $\chi_{e e}(G)-\chi(G)=k$.

Proof. Let $k \geqslant 6$. Let $G=D_{2, k}$. Then $\chi_{e e}(G)=\max \{2, k\}+2=k+2$, $\chi(G)=2$. Therefore $\chi_{e e}(G)-\chi(G)=k . \chi\left(D_{3,4}\right)=2$ and $\chi_{e e}\left(D_{3,4}\right)=3$. Therefore $\chi_{e e}(G)-\chi(G)=1$.


$$
\chi(G)=4, \chi_{e e}(G)=6 . \text { Therefore } \chi_{e e}(G)-\chi(G)=2
$$


$\chi(G)=4, \chi_{e e}(G)=7$. Therefore $\chi_{e e}(G)-\chi(G)=3$.

$\chi(G)=4, \chi_{e e}(G)=8$. Therefore $\chi_{e e}(G)-\chi(G)=4$.

$\chi(G)=4, \chi_{e e}(G)=9$. Therefore $\chi_{e e}(G)-\chi(G)=5$.
Theorem 2.3. $\chi_{e e}(G)=1$ if and only if $G$ is $\overline{K_{n}}$.
Proof. Suppose $\chi_{e e}(G)=1$. Then no two vertices of $G$ are adjacent. Therefore $G=\overline{K_{n}}$. Converse is obvious.

Theorem 2.4. $\chi_{e e}(G)=2$ if and only if $G$ is bipartite and the degrees of any two elements of the same partition differ by at most one.

Proof. Suppose $\chi_{e e}(G)=2$. Then $V(G)=X \cup Y$ where $X$ and $Y$ are independent and any two vertices of $X$ have almost equal number of neighbors in $Y$ and vice versa. (that is, for every $u, v \in X,\|N(u) \cap Y|-| N(v) \cap Y\| \leqslant 1$ and for every $u, v \in Y,\|N(u) \cap X|-| N(v) \cap X\| \leqslant 1)$. The converse is obvious.

Example 2.1.

$G$ is a bipartite Graph. Therefore $\chi(G)=2$. But $\chi_{e e}(G)=3$ and the color classes are $\left\{\left\{u_{1}, u_{2}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}\right\}\right\}$.

THEOREM 2.5. $\frac{n}{\beta_{0}^{e e}(G)} \leqslant \chi_{e e}(G) \leqslant n-\beta_{0}^{e e}(G)+1$.
Proof. Let $\chi_{e e}(G)=k$. Let $\pi$ be a partition of $V(G)$ into $k$ externally equitable independent sets $V_{1}, V_{2}, \cdots, V_{k}$. Then $\left|V_{i}\right| \leqslant \beta_{0}^{e e}(G) \vee i, 1 \leqslant i \leqslant k$.
$n=\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right|+\cdots+\left|V_{k}\right| \leqslant k \beta_{0}^{e e}(G)$. Therefore $\frac{n}{\beta_{0}^{e e}(G)} \leqslant k$. Let $S$ be a $\beta_{0}^{e e}$ - set of $G$. Let $\pi=\left\{S,\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{t}\right\}\right\}$ where
$V-S=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and $t=n-\beta_{0}^{e e}(G)$. Then $\pi$ is an externally equitable independent partition of $G$. Therefore $\chi_{e e}(G) \leqslant n-\beta_{0}^{e e}(G)+1$.

Proposition 2.2. Let $S$ be any externally equitable independent set of $C_{n}^{+}$. Let $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ and $V\left(C_{n}^{+}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ where $u_{i}^{\prime}$ is the pendant vertex of $C_{n}^{+}$adjacent with $u_{i}, 1 \leqslant i \leqslant n$. Then $S$ cannot contain any pair of vertices of the form $u_{i}, u_{i+2}, 1 \leqslant i \leqslant n(i+2$ taken mod $n)$.

Proof. Suppose $u_{i}, u_{i+2} \in S$. Then $\left|N\left(u_{i+1}\right) \cap S\right| \geqslant 2$. Therefore, $|N(x) \cap S| \geqslant$ 1 , for every $x \in V-S$. Therefore $S$ is a dominating set of $C_{n}^{+}$. Since $S$ is independent, $u_{i+1} \notin S$ and as $S$ is a dominating set of $C_{n}^{+}$we get that $u_{i+1}^{\prime} \in S$. Therefore $\left|N\left(u_{i+1}\right) \cap S\right|=3$. Hence $|N(x) \cap S| \geqslant 2$, for every $x \in V-S$. Since $V-S$ contains pendant vertices, this is not possible.

Proposition 2.3. When $n \cong 1,2(\bmod 3), \chi_{e e}\left(C_{n}^{+}\right) \geqslant 4$.

Proof. Suppose $n \cong 1(\bmod 3)$. Let $\pi=\left\{V_{1}, V_{2}, V_{3}\right\}$ be a $\chi_{e e^{-}}$partition of $C_{n}^{+}$. Let $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. By Proposition $2.2,\left|V_{i} \cap V\left(C_{n}\right)\right| \leqslant \frac{n-1}{3}$, $1 \leqslant i \leqslant 3$. Therefore $\sum_{i=1}^{i=3}\left|V_{i} \cap V\left(C_{n}\right)\right| \leqslant n-1$ a contradiction, since $V_{1} \cup V_{2} \cup V_{3}=V\left(C_{n}^{+}\right)$. Suppose $n \cong 2(\bmod 3)$. Arguing as before $\sum_{i=1}^{i=3} \mid V_{i} \cap$ $V\left(C_{n}\right) \mid \leqslant n-2$ a contradiction. Therefore $\chi_{e e}\left(C_{n}^{+}\right) \geqslant 4$, when $n \cong 1,2(\bmod 3)$.

Proposition 2.4. Let $n \cong 0(\bmod 3)$. Let $V_{1}$ be an externally equitable independent set of $C_{n}^{+}$. Let $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$. Suppose $\left|V_{1} \cap V\left(C_{n}\right)\right|=$ $\frac{n}{3}$ and suppose $u_{j}^{\prime} \in V_{1}$ for some $j$ such that $u_{j} \notin V_{1}$. Then $\left|V_{1}\right|=n$.

Proof. Let $n \cong 0(\bmod 3)$. Let without loss of generality $u_{1}, u_{4}, \ldots, u_{n-2} \in V_{1}$ and $u_{2}^{\prime} \in V_{1}$. Therefore Then $\left|N\left(u_{2}\right) \cap V_{1}\right|=2$. Therefore, $V_{1}$ is a dominating set of $C_{n}^{+}$. Therefore $u_{3}^{\prime}, u_{5}^{\prime}, u_{6}^{\prime} \ldots, u_{n-1}^{\prime}, u_{n}^{\prime} \in V_{1}$ and hence $\left|V_{1}\right|=n$.

Proposition 2.5. Let $n \cong 0(\bmod 3)$. Suppose $\pi=\left\{V_{1}, V_{2}, V_{3}\right\}$ be a $\chi_{e e}$ - partition of $C_{n}^{+}$. Then $\left|V_{i} \cap V\left(C_{n}\right)\right|=\frac{n}{3}$, for all $i=1,2$ and 3 .

Proof. Clearly $\left|V_{i} \cap V\left(C_{n}\right)\right| \leqslant \frac{n}{3}$, for all $i=1,2$ and 3. Suppose $\left|V_{i} \cap V\left(C_{n}\right)\right|<$ $\frac{n}{3}$. Therefore for some $j \neq i, 1 \leqslant j \leqslant 3,\left|V_{i} \cap V\left(C_{n}\right)\right|>\frac{n}{3}$ (since $\sum_{i=1}^{i=3}\left|V_{i} \cap V\left(C_{n}\right)\right|=n$ ) a contradiction. Therefore, $\left|V_{i} \cap V\left(C_{n}\right)\right|=\frac{n}{3}$, for all $i=1,2$ and 3 .

Proposition 2.6. Let $n \cong 0(\bmod 3)$. Then $\chi_{e e}\left(C_{n}^{+}\right)>3$.
Proof. Suppose $\chi_{e e}\left(C_{n}^{+}\right)=3$. Let $\pi=\left\{V_{1}, V_{2}, V_{3}\right\}$ be a $\chi_{e e^{-}}$partition of $C_{n}^{+}$.Then $\left|V_{i} \cap V\left(C_{n}\right)\right|=\frac{n}{3}$, for all $i=1,2$ and 3 . Since $V_{1} \cup V_{2} \cup V_{3}=V\left(C_{n}^{+}\right)$for any $j, 1 \leqslant j \leqslant n, u_{j}^{\prime} \in V_{i}$, for some $i, 1 \leqslant i \leqslant 3$. Suppose $u_{j}^{\prime} \in V_{1}$. Then by Lemma 2.32, $\left|V_{1}\right|=n$. Also, there exists $u_{r}^{\prime} \notin V_{i}$, for some r, $1 \leqslant r \leqslant n$. Therefore $u_{r}^{\prime} \in V_{2}$ or $V_{3}$. Therefore by lemma $2.2 .32,\left|V_{2}\right|=n$ or $\left|V_{3}\right|=n$. Since $V\left(C_{n}^{+}\right)=2 n$, one of $V_{2}, V_{3}$ is empty a contradiction. Therefore $\chi_{e e}\left(C_{n}^{+}\right) \geqslant 4$.

Proposition 2.7. $\chi_{e e}\left(C_{n}^{+}\right) \leqslant 4$.
Proof. Case(i): Let $n=3 k$. Then $\left\{\left\{u_{1}, u_{4}, u_{2}^{\prime}, u_{3}^{\prime}, u_{5}^{\prime}, u_{6}^{\prime}, \ldots, u_{3 k}^{\prime}\right\}\right.$, $\left.\left\{u_{2}, u_{5}, u_{8}, \ldots, u_{3 k-1}\right\},\left\{u_{3}, u_{7}, u_{10}, \ldots, u_{3 k-2}, u_{1}^{\prime}\right\},\left\{u_{6}, u_{9}, u_{12}, \ldots, u_{3 k}, u_{4}^{\prime}\right\}\right\}$ is an externally equitable independent partition of $C_{n}^{+}$. Therefore, $\chi_{e e}\left(C_{n}^{+}\right) \leqslant 4$.

Case(ii): Let $n=3 k+1$. Then $\left\{\left\{u_{1}, u_{4}, u_{2}^{\prime}, u_{3}^{\prime}, u_{5}^{\prime}, u_{6}^{\prime}, \ldots, u_{3 k+1}^{\prime}\right\}\right.$, $\left.\left\{u_{2}, u_{6}, u_{9}, \ldots, u_{3 k}, u_{4}^{\prime}\right\},\left\{u_{3}, u_{7}, u_{10}, \ldots, u_{3 k+1}\right\},\left\{u_{5}, u_{8}, u_{11}, \ldots, u_{3 k-1}, u_{1}^{\prime}\right\}\right\}$ is an externally equitable independent partition of $C_{n}^{+}$.
Therefore $\chi_{e e}\left(C_{n}^{+}\right) \leqslant 4$.
Case(iii): Let $n=3 k+2$. Then $\left\{u_{1}, u_{4}, u_{2}^{\prime}, u_{3}^{\prime}, u_{5}^{\prime}, u_{6}^{\prime}, \ldots, u_{3 k+2}^{\prime}\right\}$,
$\left\{u_{2}^{\prime}, u_{6}, u_{9}, \ldots, u_{3 k}, u_{4}^{\prime}\right\},\left\{u_{3}, u_{7}, u_{10}, \ldots, u_{3 k+1}, u_{1}^{\prime}\right\},\left\{u_{5}, u_{8}, u_{11}, \ldots, u_{3 k+2}\right\}$ is an externally equitable independent partition of $C_{n}^{+}$.
Therefore $\chi_{e e}\left(C_{n}^{+}\right) \leqslant 4$.

Theorem 2.6. $\chi_{e e}\left(C_{n}^{+}\right)=4$.
Proof. Follows from proposition 2.3 to 2.7 .

Remark 2.3. Let $G=(V, E)$ be a simple graph. Let $S$ be an externally equitable independent set of $G$ and for any $u \in V-S,|N(u) \cap S| \geqslant 2$. Then $S$ is a dominating set of $G$. In particular, if $|N(u) \cap S|=r \geqslant 2$ then $S$ is a $(r-1)-$ dominating set of $G$.

Remark 2.4. If $S$ is an externally equitable independent set of $G$ and for any $u \in V-S|N(u) \cup S| \geqslant 3$ then $S$ does not contain any pendant vertex. $\left((i e) \operatorname{deg}_{G}(v) \geqslant 2\right.$, for any $\left.v \in V-S\right)$

Observation 2.2. Let $G$ and $H$ be two vertex disjoint graphs. Any externally equitable independent set $S$ of $G+H$ contains either vertices from $V(G)$ or $V(H)$ and not from both. Also, if $S \subseteq V(G)$, then for any $u \in V(H),|N(u) \cap S|=|S|$. Hence, $|N(v) \cap S|=|S|-1$ or $|S|$ for any $v \in V-S$. Therefore $S$ is a $(|S|-1)$ dominating set of $G$. If for any $x \in V(G)-S, \operatorname{deg}_{G}(x) \leqslant|S|-2$ then $S$ is not an externally equitable independent set of $G+H$.

Observation 2.3. Let $G$ and $H$ be two vertex disjoint graphs. Let $S$ be an externally equitable independent set of $G$. Then $G$ is an externally equitable independent set of $G \cup H$ if and only if for every $x \in V-S,|N(x) \cup S| \leqslant 1$. Similar results holds for $H$ also. Also, if $S$ is an externally equitable independent set of $G \cup H$ and $S$ is a dominating set of $G$, then $|N(x) \cap S|=1$, for every $x \in V-S$.

Observation 2.4. Let $G$ and $H$ be two vertex disjoint graphs. Let $S$ be an externally equitable independent set of $G+H$. Then $S$ is an externally equitable independent set of $G$ if $S \subseteq V(G)$ or an externally equitable independent set of $H$ if $S \subseteq V(H)$.

ObSERVATION 2.5. Let $\pi=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$ be a $\chi_{e e}$ partition of $G$.
$S_{1}, S_{2}, \ldots, S_{r}$ are externally equitable independent partition of $G+H$ if and only if every $u \in S_{i}, 1 \leqslant i \leqslant r, n-\left|S_{i}\right| \geqslant \operatorname{deg}_{G}(u) \geqslant n-\left|S_{i}\right|-(r-1)$.

Observation 2.6. Let $\pi=\left\{S_{1}, S_{2}, \ldots, S_{t}\right\}$ be externally equitable independent partition of $G+H$. Let $S_{1}, S_{2}, \ldots, S_{r}$ be an externally equitable independent sets of $G$ and $S_{r+1}, S_{r+2}, \ldots, S_{t}$ be externally equitable independent sets of $H$. Then $\pi_{1}=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$ is an externally equitable independent partition of $G$ and $\pi_{2}=\left\{S_{r+1}, S_{r+2}, \ldots, S_{t}\right\}$ be an externally equitable independent partition of $H$. Also for every $u \in S_{i}, 1 \leqslant i \leqslant r, n-\left|S_{i}\right| \geqslant \operatorname{deg}_{G}(u) \geqslant n-\left|S_{i}\right|-(r-1)$ and $n-\left|S_{j}\right| \geqslant \operatorname{deg}_{H}(u) \geqslant n-\left|S_{j}\right|-(t-r-1)$ for every $u \in S_{j}, r+1 \leqslant j \leqslant t$.

Observation 2.7. Let $\pi_{1}=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$ be an externally equitable independent partition of $G$ and $\pi_{2}=\left\{S_{r+1}, S_{r+2}, \ldots, S_{t}\right\}$ is an externally equitable independent partition of $H$. Then $\pi_{1} \cup \pi_{2}$ is an externally equitable independent partition of $G+H$ if and only if for every $i, 1 \leqslant i \leqslant r n-\left|S_{i}\right| \geqslant \operatorname{deg}_{G}(u) \geqslant$ $n-\left|S_{i}\right|-(r-1)$ for every $u \in S_{i}$ and $n-\left|S_{j}\right| \geqslant \operatorname{deg}_{H}(u) \geqslant n-\left|S_{j}\right|-(t-r-1)$ for every $u \in S_{j}, r+1 \leqslant j \leqslant t$. Let $k=\max \left\{\left|S_{i}\right|, 1 \leqslant i \leqslant r\right\}$ and $l=\min \left\{\left|S_{i}\right|, 1 \leqslant i \leqslant r\right\}$.
$n-k-(r-1) \leqslant \operatorname{deg}_{G}(u) \leqslant n-l$, for every $u \in V(G)$. Therefore $\delta(G) \geqslant n-k-(r-1)$ and $\Delta(G) \leqslant n-l$.

Illustration 2.2. Consider $G=K_{3}$ and $H=C_{8}$. Let $V\left(K_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $V\left(C_{8}\right)=\left\{v_{1}, v_{2}, \ldots v_{8}\right\} . \pi_{1}=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\}\right\}$ and $\pi_{2}=\left\{\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}\right.$, $\left.\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}\right\}$ are $\chi_{e e}$ partitions of $G$ and $H$ respectively. Let $S_{1}=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ and $S_{2}=\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$. If $\pi_{1} \cup \pi_{2}$ is an externally equitable independent partition of $G+H$, then $S_{1}$ and $S_{2}$ are 3 dominating sets of $H$ which is not possible since $\Delta(H)=2$. A similar argument shows that a $\chi_{e e}$ partition of $H$ cannot contain an element of cardinality three since any externally equitable independent set of cardinality three in $C_{8}$ is not a independent 2-dominating set of $C_{8}$. If $\pi_{2}$ contains an element of cardinality two then it is not a dominating set of $C_{8}$ since $\gamma\left(C_{8}\right)=3$. Therefore, every element of $\pi_{2}$ is a singleton and hence $\chi_{e e}\left(K_{3}+C_{8}\right)=11$.

ObSERVATION 2.8. $\chi_{e e}(G+H) \leqslant|V(G)|+|V(H)|$ and the upper bound is sharp as seen in the above example.

Observation 2.9. Given any positive integer k, there exist graph $G$ and $H$ such that $\chi_{e e}(G+H)-\left(\chi_{e e}(G)+\chi_{e e}(H)\right)=k$.

Proof. Case 1: $k$ is even. Let $G=K_{3}$ and $H=C_{2 k+2} . \chi_{e e}(G+H)=2 k+5$. $\chi_{e e}(G)=3$ and $\chi_{e e}(H)=2$. Hence the observation.

Case 2: $k$ is odd. Consider $G=K_{4}, H=D_{k+2, k} \cdot \chi_{e e}(G+H)=2 k+4+4=$ $2 k+8, \chi_{e e}(G)=4, \chi_{e e}(H)=k+4$. Therefore, $\chi_{e e}(G+H)-\left(\chi_{e e}(G)+\chi_{e e}(H)\right)=$ $k$.

Observation 2.10. Let $G$ and $H$ be two vertex disjoint graphs. Let $\pi_{1}=$ $\left\{V_{1}, V_{2}, \ldots V_{k}\right\}$ and $\pi_{2}=\left\{W_{1}, W_{2}, \ldots W_{r}\right\}$ be $\chi_{e e^{-}}$partitions of $G$ and $H$ respectively. Let $r_{i}=\min _{x \in V(G)-V_{i}}\left\{N(x) \cap V_{i}\right\}, 1 \leqslant i \leqslant k$. Let $s_{j}=\min _{x \in V(H)-W_{j}}\left\{N(y) \cap W_{j}\right\}$, $1 \leqslant j \leqslant r$. If $r=k$ and $r_{i}=s_{i}$ for every $i=1$ to $k$, then $\left\{V_{1} \cup W_{1}, V_{2} \cup\right.$ $\left.W_{2}, \ldots, V_{k} \cup W_{k}\right\}$ is an externally equitable independent partition of $G \cup H$. Hence $\chi_{e e}(G \cup H) \leqslant k$.

Proposition 2.8. Let $G$ and $H$ be two vertex disjoint graphs. Then $\max \left\{\chi_{e e}(G), \chi_{e e}(H)\right\} \leqslant \chi_{e e}(G \cup H)$.

Proof. Let $\pi=\left\{V_{1}, V_{2}, \ldots V_{k}\right\}$ be a $\chi_{e e}-$ partition of $G \cup H$. Let $\pi_{1}=$ $\left\{V_{1} \cap V(G), V_{2} \cap V(G), \ldots . V_{k} \cap V(G)\right\}$ and $\pi_{2}=\left\{V_{1} \cap V(H), V_{2} \cap V(H), \ldots . V_{k} \cap\right.$ $V(H)\}$. Clearly $\pi_{1}$ and $\pi_{2}$ are independent partitions of $G$ and $H$ respectively. Let $x, y \in V(G)-\left(V_{i} \cap V(G)\right), 1 \leqslant i \leqslant k$. Therefore $x, y \in V(G \cup H)-V_{i}$. Therefore $\left|\left(N(x) \cap V_{i}\right)-\left(N(y) \cap V_{i}\right)\right| \leqslant 1$. Since $x$ and $y$ are not adjacent with any vertex of $H, N(x) \cap V_{i}=N(x) \cap\left(V_{i} \cap V(G)\right)$ and $N(y) \cap V_{i}=N(y) \cap\left(V_{i} \cap V(G)\right)$. Therefore $\left|N(x) \cap\left(V_{i} \cap V(G)\right)-N(y) \cap\left(V_{i} \cap V(G)\right)\right| \leqslant 1$ for every $i, 1 \leqslant i \leqslant k$. Therefore $\pi_{1}$ is an externally equitable independent partition of $G$. Similarly $\pi_{2}$ is an externally equitable independent partition of $H$. Therefore $\chi_{e e}(G) \leqslant k$ and $\chi_{e e}(H) \leqslant k$. Therefore $\max \left\{\chi_{e e}(G), \chi_{e e}(H)\right\} \leqslant \chi_{e e}(G \cup H)$.

Remark 2.5. The bound is sharp as seen from the following example: Let $G=$ $K_{3}$ and $H=C_{8} . V(G)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots v_{8}\right\} . \chi_{e e}(G)=3$ and
$\chi_{e e}(H)=2$. $\left\{\left\{u_{1}, v_{1}, v_{3}, v_{5}, v_{7}\right\},\left\{u_{2}, v_{2}, v_{4}, v_{6}, v_{8}\right\},\left\{u_{3}\right\}\right\}$ is an externally equitable independent partition of $G \cup H$. Therefore $\chi_{e e}(G \cup H) \leqslant 3$. But $\chi_{e e}(G \cup H) \geqslant 3$, $\chi_{e e}(G \cup H)=3=\max \left\{\chi_{e e}(G), \chi_{e e}(H)\right\}$.

Theorem 2.7. Let $G$ and $H$ be two vertex disjoint graphs. Let $\pi_{1}$ and $\pi_{2}$ be two partitions of $G$ and $H$ respectively satisfying the following. Let $\pi_{1}=$ $\left\{V_{1}, V_{2}, \ldots V_{k}\right\}, \pi_{2}=\left\{W_{1}, W_{2}, \ldots W_{r}\right\}$. Any vertex in $V(G)-V_{i}$ is adjacent with either $a$ or $a+1$ vertices of $V_{i} 1 \leqslant i \leqslant k$ and any vertex in $V(H)-W_{j}$ is adjacent with either a or $a+1$ vertices of $W_{j} 1 \leqslant i \leqslant r$. Then $\chi_{e e}(G \cup H) \leqslant$ $\max \left\{\chi_{e e}(G), \chi_{e e}(H)\right\}$.

Proof. Let with out loss of generality $k \geqslant r$. Consider $\pi=\left\{V_{1} \cup W_{1}, V_{2} \cup\right.$ $\left.W_{2}, \ldots, V_{r} \cup W_{r}, \ldots, V_{k}\right\}$. Clearly $\pi$ is an externally equitable independent partition of $G \cup H$. Therefore $\chi_{e e}(G \cup H) \leqslant k=\max \left\{\chi_{e e}(G), \chi_{e e}(H)\right\}$.

Remark 2.6. Let $G$ and $H$ be two vertex disjoint graphs. Let $\pi_{1}$ and $\pi_{2}$ be two partitions of $G$ and $H$ respectively satisfying the following. Let $\pi_{1}=$ $\left\{V_{1}, V_{2}, \ldots V_{k}\right\}, \pi_{2}=\left\{W_{1}, W_{2}, \ldots W_{r}\right\}$. Any vertex in $V(G)-V_{i}$ is adjacent with either $a$ or $a+1$ vertices of $V_{i} 1 \leqslant i \leqslant k$ and any vertex in $V(H)-W_{j}$ is adjacent with either $a$ or $a+1$ vertices of $W_{j} 1 \leqslant i \leqslant r$. Then $\chi_{e e}(G \cup H) \leqslant \max \{k, r\}$.

## References

[1] R. B. Allan and R. C. Laskar, On domination and independent domination numbers of a graph, Discrete Math. 23 (1978), 73-76.
[2] A. Anitha, S. Arumugam and E. Sampathkumar, Degree Equitable Sets in a Graph, International J.Math. Combin., 3(2009), 32-47.
[3] A. Anitha, S. Arumugam, S. B. Rao and E. Sampathkumar, Degree Equitable Chromatic number of a a Graph, JCMCC, 75(2010), 187-199.
[4] C. Berge, Theory of graphs and its applications, Dunod, Paris, 1958.
[5] K. M. Dharmalingam, Studies in Graph Theory - Equitable domiantion and Bottleneck domination, Ph.D Thesis, 2006.
[6] K. M. Dharmalingam and V.Swaminathan, Degree Equitable domiantion in Graphs, Kragujevac J. Math., 35(1)(2011),191-197.
[7] G. H. Fricke, Teresa W. Haynes, S. T. Hetniemi, S. M. Hedetniemi and R. C. Laskar, Excellent trees, Bull. Inst. Combin. Appl., 34 (2002), 27-38.
[8] F. Harary, Graph Theory, ddison Wesley, Reading Mass, 1972.
[9] S. T. Hedetniemi and R. C. Laskar, Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Math. 86(1990) 257-277.
[10] Peter Dankelmann Durban Gayla S. Domke, Wayne Goddard, Paul Grobler, Johannes H. Hattingh and Henda C. Swart, Maximum Sizes of Graphs with Given Domination, ParametersPreprint submitted to Elsevier Science 15 October 2004.
[11] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
[12] W.Meyer, Equitable coloring, Amer.Math. Monthly, 80 (1973), 920-922.

Associate Professor, Department of Mathematics, Sethu Institute of Technology, Virudhunagar District, Madurai, India

Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, India

E-mail address: sulanesri@yahoo.com


[^0]:    2010 Mathematics Subject Classification. Primary 05C.
    Key words and phrases. externally equitable sets, externally equitable proper coloring, externally equitable chromatic number.

