
BULLETIN OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN 1840-4367
Vol. 2(2012), 173-184

Former
BULLETIN OF SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

EXTERNALLY EQUITABLE COLORING IN GRAPHS

D. Lakshmanaraj and V. Swaminathan

Abstract. Let G = (V,E) be a simple graph. A partition of V (G) into in-

dependent,externally equitable sets is called externally equitable proper color
partition of G or externally equitable proper coloring of G. The minimum
cardinality of an externally equitable proper coloring of G is called exter-

nally equitable chromatic number of G and is denoted by χee(G). Since
Π = {{u1}, {u2}, · · · , {un}} where V (G) = {u1, u2, · · · , un} is an externally
equitable proper coloring of G, externally equitable proper color partition ex-
ists in any graph G . In this paper, this new parameter is introduced and

studied.

1. Introduction

The concept of equitability has been widely studied in coloring. A proper
color partition is said to be equitable if the cardinalities of the color classes differ
by at most one. E. Sampathkumar introduced degree equitability in graphs. A
subset S of the vertex set of a graph is said to be degree equitable if the degrees
of any two vertices of S differ by at most one. Arumugam et. al. [2] studied
degree equitable sets and degree equtable proper coloring of vertices of a graph.
K.M.Dharmalingam defined degree equitability and out degree equitability studied
dominating sets which are (i) degree equitable and (ii) out degree equitable. A
subset S of the vertex set V of a graph G is said to be externally equitable, if for
any x, y ∈ V − S, ||N(x) ∩ S| − |N(y) ∩ S|| 6 1.

2. Main Results

Definition 2.1. A partition of V (G) into independent,externally equitable
sets is called externally equitable proper color partition of G or externally equitable
proper coloring of G. The minimum cardinality of an externally equitable proper
coloring of G is called externally equitable chromatic number of G and is denoted
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174 LAKSHMANARAJ AND SWAMINATHAN

by χee(G). Since Π = {{u1}, {u2}, · · · , {un}} where V (G) = {u1, u2, · · · , un} is an
externally equitable proper coloring ofG, externally equitable proper color partition
exists in any graph G .

Illustration 2.1.
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{{u5, u6, u7, u8}, {u1}, {u2}, {u3}, {u4}} is an externally equitable independent par-
tition of V (G).

Remark 2.1. Since any χee− partition of G is a proper color partition of G,
χ(G) 6 χee(G) for any graph G.

2.1. χee− proper color partition for standard graphs.

Observation 2.1. (1) χee(Kn) = n
(2) χee(Pn) = χ(Pn) = 2.

(3) χee(Cn) = χ(Cn) =

{
2 if n is even

3 if n is odd

(4) χee(K1,n) = χ(K1,n) = 2.

Theorem 2.1. χee(Wn+1) =


n+ 1 when n > 7

4 when n = 3 or 5

3 when n = 4 or 6

Proof. When n = 3, W4 = K4 and hence χee(W4) = 4.
When n = 4, W5 is
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It is easily seen that {{u1, u3}, {u2, u4}, {u5} is a χee-partition ofW5. Therefore
χee(W5) = 3.

When n = 5, W6 is
It is easily seen that {{u1, u3}, {u2, u4}, {u5}, {u6}} is a χee-partition of W6.

Therefore χee(W6) = 4.
When n = 6, W7 is
It is easily seen that {{u1, u3, u5}, {u2, u4, u6}, {u7}} is a χee-partition of W7.

Therefore χee(W6) = 3. Let n > 7. Consider Wn+1. let {u1, u2, . . . , un} be the
vertices on the cycle of Wn+1 and v be the central vertex. In any χee-partition
of Wn+1 , {v} is an element of the partition. Let V1 be any other element of
the partition. Then |N(v) ∩ V1| = |V1|. Since for any x ∈ V (Wn+1) − V1, x ̸=
v, |N(x) ∩ V1| 6 2, we get that |V1| 6 3. If V1 contains ui+1, ui+3, ui+5, then
|N(ui+7 ∩ V1| = 0. A similar argument shows that |V1| ̸= 2. Therefore |V1| = 1.
Therefore χee(Wn+1) = n+ 1. �

Theorem 2.2. χee(Dr,s) =


max{r, s}+ 2 when |r − s| > 2

3 when |r − s| 6 1and r, s > 3

2 when r = 2, s = 1 or 2

or r = 1, s = 1 or s = 2

Proof. Case(i): |r−s| > 2. Let r = max{r, s}. Let u, v be the centers ofDr,s

and let u1, u2, . . . , ur be the pendant vertices at u and v1, v2, . . . , vs be the pendant
vertices at v. Let π = {V1, V2, . . . , Vt} be a χee-partition of Dr,s. If V1 contains two
pendants at u, then any pendant at v not in V1 will have no neighbours in V1 and
u /∈ V1 has two neighbours in V1, a contradiction. Therefore V1 contains all pendant
vertices at v. Suppose V1 does not contain a pendant at u. Then that pendant at
u will have no neighbour in V1, a contradiction since u has two neighbours in V1.
Therefore V1 contains all pendants at u. Then |N(u)∩V1| = r and |N(v)∩V1| = s
and |r − s| > 2, a contradiction. Therefore, V1 cannot contain two pendants at u.
Similarly, V1 cannot contain two pendant at v. Suppose V1 = {ui, vj} where 1 6
i 6 r, 1 6 j 6 s. Then V1 is externally equitable independent.Thus, V1 = {u1, v1} ,
V2 = {u2, v2}, V3 = {u3, v3}, · · · , Vs = {us, vs} are elements of any χee-partition of
Dr,s. The remaining pendants at u and the two centers must appear as singletons
in π. Therefore χee(Dr,s) = max{r, s}+ 2.

Case (ii): |r − s| 6 1 and r, s > 3. Let π = {{u1, u2, . . . , ur, v1, v2, . . . , vs},
{u}, {v}}. Then π is an externally equitable independent partition of Dr,s. There-
fore χee(Dr,s) 6 3. Suppose π = {V1, V2} be a χee-partition of Dr,s. Clearly u ∈ V1

and v ∈ V2. Therefore V2 contains all the pendants at u and V1 contains all the
pendants at v. Then |N(u1) ∩ V1| = 1 and |N(v) ∩ V1| = r, a contradiction, since
r > 3. Therefore χee(Dr,s) > 3. Therefore χee(Dr,s) = 3.

Case(iii): Suppose r = 2 and s = 1u
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Here π = {{u, v1}, {v, u1, u2}} is a χee-partition of D2,1.Therefore χee(D2,1) =
2.

Suppose r = 2 and s = 2
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Then π = {{u, v1, v2}, {v, u1, u2}} is a χee-partition of D2,2.
Therefore χee(D2,2) = 2. When r = 1, s = 1 then χee(D1,1) = P4 and χee(P4) =
2. �

Remark 2.2. There exists regular graph G such that χee(G) > χ(G).

For: let

uu

uu

uu uu

uu
�

�
�

�
��

�
�

�
�

��

@
@
@

@
@@

@
@
@
@

@@

u1

u2

u3
u4

u5

u′
1

u′
2

u′
3

u′
4

u′
5

G :

π = {{u1, v3}, {u2, v4}, {u3, v5}, {u4, v1}, {u5, v2}} is an externally equitable
independent partition of V (G). χ(G) = 3, χee(G) = 5, since
βee
0 (G) = 2.
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Proposition 2.1. Given any positive integer k there exists a graph G such
that χee(G)− χ(G) = k.

Proof. Let k > 6. Let G = D2,k. Then χee(G) = max{2, k} + 2 = k + 2,
χ(G) = 2. Therefore χee(G)−χ(G) = k. χ(D3,4) = 2 and χee(D3,4) = 3. Therefore
χee(G)− χ(G) = 1. �
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χ(G) = 4, χee(G) = 6. Therefore χee(G)− χ(G) = 2.
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χ(G) = 4, χee(G) = 7. Therefore χee(G)− χ(G) = 3.
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χ(G) = 4, χee(G) = 8. Therefore χee(G)− χ(G) = 4.
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χ(G) = 4, χee(G) = 9. Therefore χee(G)− χ(G) = 5.

Theorem 2.3. χee(G) = 1 if and only if G is Kn.

Proof. Suppose χee(G) = 1. Then no two vertices of G are adjacent. There-
fore G =Kn. Converse is obvious. �
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Theorem 2.4. χee(G) = 2 if and only if G is bipartite and the degrees of any two
elements of the same partition differ by at most one.

Proof. Suppose χee(G) = 2. Then V (G) = X ∪ Y where X and Y are
independent and any two vertices of X have almost equal number of neighbors in
Y and vice versa .(that is, for every u, v ∈ X, ||N(u) ∩ Y | − |N(v) ∩ Y || 6 1 and
for every u, v ∈ Y , ||N(u) ∩X| − |N(v) ∩X|| 6 1). The converse is obvious. �

Example 2.1. t
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G is a bipartite Graph. Therefore χ(G) = 2. But χee(G) = 3 and the color classes
are {{u1, u2}, {v1, v3, v4, v5}, {v2, v3}}.

Theorem 2.5. n
βee
0 (G) 6 χee(G) 6 n− βee

0 (G) + 1.

Proof. Let χee(G) = k. Let π be a partition of V (G) into k externally
equitable independent sets V1, V2, · · · , Vk. Then |Vi| 6 βee

0 (G) ∨ i, 1 6 i 6 k.
n = |V1|+ |V2|+ |V3|+ · · ·+ |Vk| 6 kβee

0 (G). Therefore n
βee
0 (G) 6 k . Let S be

a βee
0 - set of G. Let π = {S, {v1}, {v2}, . . . , {vt}} where

V − S = {v1, v2, . . . , vt} and t = n − βee
0 (G). Then π is an externally equitable

independent partition of G. Therefore χee(G) 6 n− βee
0 (G) + 1. �

Proposition 2.2. Let S be any externally equitable independent set of C+
n . Let

V (Cn) = {u1, u2, u3, . . . , un} and V (C+
n ) = {u1, u2, u3, . . . , un, u

′

1, u
′

2, u
′

3, . . . , u
′

n}
where u

′

i is the pendant vertex of C+
n adjacent with ui, 1 6 i 6 n.Then S cannot

contain any pair of vertices of the form ui, ui+2, 1 6 i 6 n (i+ 2 taken mod n).

Proof. Suppose ui, ui+2 ∈ S. Then |N(ui+1)∩S| > 2. Therefore, |N(x)∩S| >
1, for every x ∈ V − S. Therefore S is a dominating set of C+

n . Since S is

independent, ui+1 /∈ S and as S is a dominating set of C+
n we get that u

′

i+1 ∈ S.
Therefore |N(ui+1) ∩ S| = 3. Hence |N(x) ∩ S| > 2 , for every x ∈ V − S. Since
V − S contains pendant vertices, this is not possible. �

Proposition 2.3. When n ∼= 1, 2 (mod 3), χee(C
+
n ) > 4.
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Proof. Suppose n ∼= 1 (mod 3). Let π = {V1, V2, V3} be a χee- partition of
C+

n . Let V (Cn) = {u1, u2, . . . , un}. By Proposition 2.2, |Vi ∩ V (Cn)| 6 n−1
3 ,

1 6 i 6 3. Therefore
i=3∑
i=1

|Vi ∩ V (Cn)| 6 n− 1 a contradiction,

since V1 ∪ V2 ∪ V3 = V (C+
n ). Suppose n ∼= 2(mod 3). Arguing as before

i=3∑
i=1

|Vi ∩

V (Cn)| 6 n− 2 a contradiction. Therefore χee(C
+
n ) > 4, when n ∼= 1, 2(mod 3). �

Proposition 2.4. Let n ∼= 0 (mod 3). Let V1 be an externally equitable
independent set of C+

n . Let V (Cn) = {u1, u2, u3, . . . , un} . Suppose |V1 ∩V (Cn)| =
n
3 and suppose u

′

j ∈ V1 for some j such that uj /∈ V1. Then |V1| = n.

Proof. Let n ∼= 0(mod 3). Let without loss of generality u1, u4, . . . , un−2 ∈ V1

and u
′

2 ∈ V1 . Therefore Then |N(u2) ∩ V1| = 2. Therefore, V1 is a dominating set

of C+
n . Therefore u

′

3, u
′

5, u
′

6 . . . , u
′

n−1, u
′

n ∈ V1 and hence |V1| = n. �

Proposition 2.5. Let n ∼= 0(mod 3). Suppose π = {V1, V2, V3} be
a χee- partition of C+

n . Then |Vi ∩ V (Cn)| = n
3 , for all i = 1, 2 and 3.

Proof. Clearly |Vi∩V (Cn)| 6 n
3 , for all i = 1, 2 and 3. Suppose |Vi∩V (Cn)| <

n
3 . Therefore for some j ̸= i, 1 6 j 6 3, |Vi∩V (Cn)| > n

3 (since
i=3∑
i=1

|Vi∩V (Cn)| = n)

a contradiction. Therefore, |Vi ∩ V (Cn)| = n
3 , for all i = 1, 2 and 3. �

Proposition 2.6. Let n ∼= 0(mod 3). Then χee(C
+
n ) > 3.

Proof. Suppose χee(C
+
n ) = 3. Let π = {V1, V2, V3} be a χee- partition of

C+
n .Then |Vi ∩ V (Cn)| = n

3 , for all i = 1, 2 and 3.Since V1 ∪ V2 ∪ V3 = V (C+
n ) for

any j, 1 6 j 6 n, u
′

j ∈ Vi, for some i, 1 6 i 6 3. Suppose u
′

j ∈ V1. Then by

Lemma 2.32, |V1| = n. Also, there exists u
′

r /∈ Vi, for some r, 1 6 r 6 n. Therefore

u
′

r ∈ V2 or V3. Therefore by lemma 2.2.32, |V2| = n or |V3| = n. Since V (C+
n ) = 2n,

one of V2, V3 is empty a contradiction. Therefore χee(C
+
n ) > 4. �

Proposition 2.7. χee(C
+
n ) 6 4.

Proof. Case(i): Let n = 3k. Then {{u1, u4, u
′

2, u
′

3, u
′

5, u
′

6, . . . , u
′

3k},
{u2, u5, u8, . . . , u3k−1}, {u3, u7, u10, . . . , u3k−2, u

′

1}, {u6, u9, u12, . . . , u3k, u
′

4}} is an
externally equitable independent partition of C+

n . Therefore, χee(C
+
n ) 6 4.

Case(ii): Let n = 3k + 1. Then {{u1, u4, u
′

2, u
′

3, u
′

5, u
′

6, . . . , u
′

3k+1},
{u2, u6, u9, . . . , u3k, u

′

4}, {u3, u7, u10, . . . , u3k+1}, {u5, u8, u11, . . . , u3k−1, u
′

1}} is an
externally equitable independent partition of C+

n .
Therefore χee(C

+
n ) 6 4.

Case(iii): Let n = 3k + 2. Then {u1, u4, u
′

2, u
′

3, u
′

5, u
′

6, . . . , u
′

3k+2},
{u′

2, u6, u9, . . . , u3k, u
′

4}, {u3, u7, u10, . . . , u3k+1, u
′

1}, {u5, u8, u11, . . . , u3k+2} is an
externally equitable independent partition of C+

n .
Therefore χee(C

+
n ) 6 4. �
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Theorem 2.6. χee(C
+
n ) = 4.

Proof. Follows from proposition 2.3 to 2.7.
�

Remark 2.3. Let G = (V,E) be a simple graph. Let S be an externally
equitable independent set of G and for any u ∈ V − S, |N(u) ∩ S| > 2. Then S is
a dominating set of G. In particular, if |N(u) ∩ S| = r > 2 then S is a (r − 1)−
dominating set of G.

Remark 2.4. If S is an externally equitable independent set of G and for
any u ∈ V − S |N(u) ∪ S| > 3 then S does not contain any pendant vertex.
((ie) degG(v) > 2, for any v ∈ V − S)

Observation 2.2. Let G and H be two vertex disjoint graphs. Any externally
equitable independent set S of G+H contains either vertices from V (G) or V (H)
and not from both. Also, if S ⊆ V (G), then for any u ∈ V (H), |N(u) ∩ S| = |S|.
Hence, |N(v) ∩ S| = |S| − 1 or |S| for any v ∈ V − S. Therefore S is a (|S| − 1)-
dominating set of G. If for any x ∈ V (G)− S, degG(x) 6 |S| − 2 then S is not an
externally equitable independent set of G+H.

Observation 2.3. Let G and H be two vertex disjoint graphs. Let S be
an externally equitable independent set of G. Then G is an externally equitable
independent set of G∪H if and only if for every x ∈ V −S, |N(x)∪S| 6 1. Similar
results holds for H also. Also, if S is an externally equitable independent set of
G ∪H and S is a dominating set of G, then |N(x) ∩ S| = 1, for every x ∈ V − S.

Observation 2.4. Let G and H be two vertex disjoint graphs. Let S be an
externally equitable independent set of G +H. Then S is an externally equitable
independent set of G if S ⊆ V (G) or an externally equitable independent set of H
if S ⊆ V (H).

Observation 2.5. Let π = {S1, S2, . . . , Sr} be a χee partition of G.
S1, S2, . . . , Sr are externally equitable independent partition of G+H if and only
if every u ∈ Si, 1 6 i 6 r, n− |Si| > degG(u) > n− |Si| − (r − 1).

Observation 2.6. Let π = {S1, S2, . . . , St} be externally equitable indepen-
dent partition of G+H. Let S1, S2, . . . , Sr be an externally equitable independent
sets of G and Sr+1, Sr+2, . . . , St be externally equitable independent sets of H.
Then π1 = {S1, S2, . . . , Sr} is an externally equitable independent partition of G
and π2 = {Sr+1, Sr+2, . . . , St} be an externally equitable independent partition of
H . Also for every u ∈ Si, 1 6 i 6 r, n − |Si| > degG(u) > n − |Si| − (r − 1) and
n− |Sj | > degH(u) > n− |Sj | − (t− r − 1) for every u ∈ Sj , r + 1 6 j 6 t .

Observation 2.7. Let π1 = {S1, S2, . . . , Sr} be an externally equitable inde-
pendent partition of G and π2 = {Sr+1, Sr+2, . . . , St} is an externally equitable
independent partition of H . Then π1 ∪ π2 is an externally equitable indepen-
dent partition of G+H if and only if for every i, 1 6 i 6 r n− |Si| > degG(u) >
n−|Si|−(r−1) for every u ∈ Si and n−|Sj | > degH(u) > n−|Sj |−(t−r−1) for every
u ∈ Sj , r + 1 6 j 6 t . Let k = max{|Si|, 1 6 i 6 r} and l = min{|Si|, 1 6 i 6 r}.
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n−k−(r−1) 6 degG(u) 6 n−l, for every u ∈ V (G). Therefore δ(G) > n−k−(r−1)
and ∆(G) 6 n− l.

Illustration 2.2. Consider G = K3 and H = C8. Let V (K3) = {u1, u2, u3}
and V (C8) = {v1, v2, . . . v8}. π1 = {{u1}, {u2}, {u3}} and π2 = {{v1, v3, v5, v7},
{v2, v4, v6, v8}} are χee partitions of G and H respectively. Let S1 = {v1, v3, v5, v7}
and S2 = {v2, v4, v6, v8}. If π1∪π2 is an externally equitable independent partition
of G +H, then S1 and S2 are 3 dominating sets of H which is not possible since
∆(H) = 2. A similar argument shows that a χee partition of H cannot contain
an element of cardinality three since any externally equitable independent set of
cardinality three in C8 is not a independent 2-dominating set of C8. If π2 contains
an element of cardinality two then it is not a dominating set of C8 since γ(C8) = 3.
Therefore, every element of π2 is a singleton and hence χee(K3 + C8) = 11.

Observation 2.8. χee(G + H) 6 |V (G)| + |V (H)| and the upper bound is
sharp as seen in the above example.

Observation 2.9. Given any positive integer k, there exist graph G and H
such that χee(G+H)− (χee(G) + χee(H)) = k.

Proof. Case 1: k is even. Let G = K3 and H = C2k+2. χee(G+H) = 2k+5.
χee(G) = 3 and χee(H) = 2. Hence the observation.

Case 2: k is odd. Consider G = K4, H = Dk+2,k. χee(G+H) = 2k+4+4 =
2k+8, χee(G) = 4, χee(H) = k+4. Therefore, χee(G+H)− (χee(G)+χee(H)) =
k. �

Observation 2.10. Let G and H be two vertex disjoint graphs. Let π1 =
{V1, V2, . . . .Vk} and π2 = {W1,W2, . . . .Wr} be χee- partitions of G and H respec-
tively. Let ri = min

x∈V (G)−Vi

{N(x)∩Vi}, 1 6 i 6 k. Let sj = min
x∈V (H)−Wj

{N(y)∩Wj},

1 6 j 6 r. If r = k and ri = si for every i = 1 to k, then {V1 ∪ W1, V2 ∪
W2, . . . , Vk ∪Wk} is an externally equitable independent partition of G∪H. Hence
χee(G ∪H) 6 k.

Proposition 2.8. Let G and H be two vertex disjoint graphs. Then
max{χee(G), χee(H)} 6 χee(G ∪H).

Proof. Let π = {V1, V2, . . . .Vk} be a χee− partition of G ∪ H. Let π1 =
{V1 ∩ V (G), V2 ∩ V (G), . . . .Vk ∩ V (G)} and π2 = {V1 ∩ V (H), V2 ∩ V (H), . . . .Vk ∩
V (H)}. Clearly π1 and π2 are independent partitions of G and H respectively. Let
x, y ∈ V (G)− (Vi ∩ V (G)), 1 6 i 6 k. Therefore x, y ∈ V (G ∪H)− Vi. Therefore
|(N(x) ∩ Vi)− (N(y) ∩ Vi)| 6 1. Since x and y are not adjacent with any vertex of
H, N(x)∩Vi = N(x)∩ (Vi∩V (G)) and N(y)∩Vi = N(y)∩ (Vi∩V (G)). Therefore
|N(x)∩ (Vi ∩ V (G))−N(y)∩ (Vi ∩ V (G))| 6 1 for every i, 1 6 i 6 k. Therefore π1

is an externally equitable independent partition of G. Similarly π2 is an externally
equitable independent partition of H. Therefore χee(G) 6 k and χee(H) 6 k.
Therefore max{χee(G), χee(H)} 6 χee(G ∪H). �

Remark 2.5. The bound is sharp as seen from the following example: Let G =
K3 and H = C8. V (G) = {u1, u2, u3} and V (H) = {v1, v2, . . . v8}. χee(G) = 3 and
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χee(H) = 2. {{u1, v1, v3, v5, v7}, {u2, v2, v4, v6, v8}, {u3}} is an externally equitable
independent partition of G ∪H. Therefore χee(G ∪H) 6 3. But χee(G ∪H) > 3,
χee(G ∪H) = 3 = max {χee(G), χee(H)}.

Theorem 2.7. Let G and H be two vertex disjoint graphs. Let π1 and π2

be two partitions of G and H respectively satisfying the following. Let π1 =
{V1, V2, . . . .Vk}, π2 = {W1,W2, . . . .Wr}. Any vertex in V (G) − Vi is adjacent
with either a or a + 1 vertices of Vi 1 6 i 6 k and any vertex in V (H) − Wj is
adjacent with either a or a + 1 vertices of Wj 1 6 i 6 r. Then χee(G ∪ H) 6
max{χee(G), χee(H)}.

Proof. Let with out loss of generality k > r. Consider π = {V1 ∪ W1, V2 ∪
W2, . . . , Vr∪Wr, . . . , Vk}. Clearly π is an externally equitable independent partition
of G ∪H. Therefore χee(G ∪H) 6 k = max{χee(G), χee(H)}. �

Remark 2.6. Let G and H be two vertex disjoint graphs. Let π1 and π2

be two partitions of G and H respectively satisfying the following. Let π1 =
{V1, V2, . . . .Vk}, π2 = {W1,W2, . . . .Wr}. Any vertex in V (G)− Vi is adjacent with
either a or a+ 1 vertices of Vi 1 6 i 6 k and any vertex in V (H)−Wj is adjacent
with either a or a+ 1 vertices of Wj 1 6 i 6 r. Then χee(G ∪H) 6 max{k, r}.
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