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DOMINATION INTEGRITY IN TREES

Sundareswaran, R. and Swaminathan, V.

Abstract. C.A. Barefoot, et. al. [6] introduced the concept of the integrity

of a graph. It is an useful measure of vulnerability and it is defined as follows.
I(G) = min {|S| + m(G − S) : S ⊆ V (G)}, where m(G − S) denotes the
order of the largest component in G − S}. Unlike the connectivity measures,

integrity shows not only the difficulty to break down the network but also the
damage that has been caused. A subset S of V (G) is said to be an I-set if
I(G) = |S| + m(G − S). We define the concept of Domination Integrity of a
graph G is defined as DI(G) = min {|S|+m(G−S): where S is a dominating

set of G and m(G− S) denotes the order of the largest component in G− S}
and is denoted by DI(G). In this paper, we found the Domination Integrity
in trees.

1. Introduction

In an administrative set up, decisions are taken by a small group who have
effective communication links with other members of the organization. Domination
in graphs provides a model for such a concept. A subset D of V (G) of a graph is a
dominating set if for every u ∈ V −D, there exists a v ∈ D such that uv ∈ E(G).In
a network, a minimum dominating set of nodes provides a link with the rest of the
nodes. If D is a minimum dominating set and if the order of the largest component
of G−D is small, then the removal of D results in a chaos in the network because not
only the decision making process is paralyzed but also the communication between
the remaining members is minimized. So, we introduce the concept of Domination
Integrity of a graph as another measure of vulnerability of a graph.

2. Domination Integrity in Trees

Observation 2.1. If T is a tree of order at least 3, then γ(T ) > n+2−n1

3 , where

n1 denotes the number of end vertices of T [8]. Therefore, n+2−n1

3 +1 6 γ(T )+1 6
DI(T ).
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Observation 2.2. If T is a tree with l leaves, then n−l+2
3 6 γ(G) [8]. There-

fore, n−l+2
3 + 1 6 γ(G) + 1 6 DI(G).

Observation 2.3. For any tree T , α0(T ) 6 n−∆(T ). For : Let v ∈ V (T ) be
a vertex of maximum degree. Then S = V −N(v) is a vertex cover of T . Therefore,
α0(T ) 6 |S| = n−∆(T ).

Proposition 2.1. Let T be a tree. Then α0(T ) = n −∆(T ) if and only if T
is a wounded spider.

Proof. Let v ∈ V (T ) be a vertex of maximum degree in T .
Let u1, u2, · · · , u∆(T ) be the neighbours of v. Clearly, they are independent as

T is a tree. Let S = V − N(v). Since |N(v)| = ∆(T ), |S| = n − ∆(T ). Since S
is a vertex cover of T and since α0(T ) = n −∆(T ), S is a minimum vertex cover
of T . Let x ∈ S. Clearly, x and v are independent for any x ∈ S, x ̸= v (since
N(v) = V −S). If x is not adjacent to any vertex of N(v), then S−{x} is a vertex
cover of T , since all neighbours of x are in S, a contradiction as S is a minimum
vertex cover. Therefore, every vertex in S is adjacent to some vertex of N(v). Let
x, y ∈ S. Suppose x, y are adjacent. Then as x, y are adjacent to vertices in N(v).
It results a cycle, a contradiction.

If x, y ∈ S are adjacent to some vertex, say w ∈ N(v), then (S − {x, y}) ∪ {w}
is a vertex cover of cardinality less than |S|, a contradiction. Therefore, each
vertex in S except v is adjacent to exactly one vertex in N(v). Suppose there are
∆(T ) vertices in S − {v}. Then we get a subdivided star. |S| = ∆(T ) + 1 and
|V − S| = ∆(T ). In this case, V − S is a vertex cover of cardinality less than |S|,
a contradiction. Therefore, there exists at least one vertex in N(v) which is not
adjacent to any vertex in S.

Therefore, T is a wounded spider. Therefore, γ(T ) = n−∆(T ) = α0(T ). The
converse is obvious. �

Theorem 2.1. For any tree T , DI(T ) = n − ∆(T ) + 1 if and only if T is a
wounded spider.

Proof.
(i): Suppose T is a wounded spider. Then for a vertex v of maximum degree

∆(T ), V −N(v) is a γ-set of T . Also, N(v) is independent. Therefore, γ(T ) + 1 6
DI(T ) 6 n−∆(T ) + 1. Since γ(T ) = n−∆(T ), DI(T ) = n−∆(T ) + 1.

Conversely, let DI(T ) = n − ∆(T ) + 1. Then n − ∆(T ) + 1 = DI(T ) 6
α0(T ) + 1 6 n −∆(T ) + 1 (since α0(T ) 6 n −∆(T ), for any tree T ). Therefore,
n−∆(T ) = α0(T ). Hence, T is a wounded spider.

(ii): Suppose T is a wounded spider. Then for a vertex v of maximum degree
∆(T ), V (T )−N(v) is a γ-set of T . Also, N(v) is independent.
Therefore, γ(T ) + 1 6 DI(T ) 6 n −∆(T ) + 1. Since γ(T ) = n −∆(T ), DI(T ) =
n−∆(T ) + 1.

Conversely, let DI(T ) = n−∆(T ) + 1. Let v be a vertex of maximum degree
in T . Then V (T )−N(v) is a dominating set of T . V (T )− (V (T )−N(v)) = N(v)
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which is independent since T is a tree. Therefore, (V (T ) − N(v)) + m(V (T ) −
(V (T )−N(v)) = n−∆(T ) +m(N(v)) = n−∆(T ) + 1 = DI(T ).
Therefore, V −N(v) is a DI-set of T .
Suppose S is a γ-set of T such that |S| + m(V (T ) − S) = DI(T ). Therefore,
γ(T ) +m(V (T )− S) = n−∆(T ) + 1. Since, m(V (T )− S) > 1, γ(T ) 6 n−∆(T ).

Suppose γ(T ) < n − ∆(T ). Then m(V (T ) − S) > 2. Let M be a maximum
order component of V (T )− S of cardinality > 2.

Suppose |M | > 3. Let y1, y2, y3 ∈ V (M). Let x1, x2, x3 ∈ S dominate y1, y2, y3
respectively. Without loss of generality, let y1 be adjacent to y2 and y2 be adjacent
to y3. Let S1 = S − {y2}. Then m(V (T ) − S1) 6 m(V (T ) − S) − 2. Therefore,
|S| + m(V (T ) − S1) 6 |S| + 1 + m(V (T ) − S) − 1 = DI(T ) − 1, a contradiction.
Therefore, |M | 6 2. But m(V (T ) − S) > 2. Therefore, |M | = 2. Let V (M) =
{y1, y2}. Let x1, x2 ∈ S dominate y1, y2 respectively. Let S1 be a subset of S
dominate M . Then clearly, S1 is independent. Further, any vertex in S cannot
dominate more than one vertex in M (otherwise, which results in a cycle). Let
y1, y2 ∈ M such that y1y2 ∈ E(T ). Let x1, x2 ∈ S1 dominate y1, y2 respectively. If
x1 dominates a vertex in a component M1 in V (T )− S, then x2 cannot dominate
any vertex in M1. Let every component of V (T )−S other than M is of cardinality
1.

Since |S|+m(V (T )− S) > DI(T ) = n−∆(T ) + 1, γ(T ) + 2 > n−∆(T ) + 1.
That is, γ(T ) > n−∆(T ). But γ(T ) < n−∆(T ). Therefore, γ(T ) = n−∆(T )−1.

Case(1): γ(T ) < ∆(T ).
If x1 is not adjacent to any vertex of V − S other than y1 (similarly if x2 is not
adjacent to any other vertex of V (T )−S other than y2), then S1 = S−{x1}∪{y1} is
a γ-set of T , m(V (T )−S) = 1 and DI(T ) 6 |S1|+m(V −S1) = n−∆(T )−1+1 =
n − ∆(T ), a contradiction. Therefore, x1 is adjacent to y3 ̸= y1, y2 and x2 is
adjacent to y4 ̸= y1, y2. If y4 = y3, then T is a cycle. Therefore, y4 ̸= y3. Let S =
{x1, x2, x3, · · · , xγ(T )} and V (T )−S = {y1, y2, y3, · · · , y∆(T )+1}. If deg(xi) = ∆(T )
for some i > 3, then xi can be adjacent to exactly one vertex in {y1, y2, y3, y4}.
Therefore, |N(xi) ∩ (V (T ) − S)| 6 ∆(T ) − 2. xi can not be adjacent to x1, x2,
otherwise, T is a cycle. Suppose xi is adjacent to xj and xk, j, k > 4. Then
S being a γ-set, xj and xk must have private neighbours in V − S which is not
possible. Suppose deg(xi) = ∆(T ). Then x1 is adjacent with all vertices of V − S
except one vertex. In this case, which results a cycle, a contradiction. A similar
argument can be given to show that deg(x2) ̸= ∆(T ).

Suppose deg(yi) = ∆(T ), for some i, 1 6 i 6 ∆(T ) + 1. Since y3, y4, · · · ,
y∆(T )+1 are all isolates in < V − S > and since |S| < ∆(T ), deg(yi) < ∆(T ), for
every i, 3 6 i 6 ∆(T ) + 1. Suppose deg(y1) = ∆(T ).
Then |N(y1) ∩ S| = ∆(T ) + 1. Since γ(T ) 6 ∆(T ) − 1 , y1 is adjacent to every
vertex of S and γ(T ) must be equal to ∆(T )− 1. Therefore, y1 is adjacent to both
x1 and x2, which results in a cycle, a contradiction.( A similar argument shows
that deg(y2) < ∆(T )).

Case(2): γ(T ) = ∆(T ).
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γ(T ) = n − ∆(T ) − 1 = ∆(T ). Therefore, n = 2∆(T ) + 1. As in case (1),
S = {x1, x2, x3, · · · , xγ(T )} and V − S = {y1, y2, y3, · · · , yγ(T )+1}, x1 is adjacent to
y1, y3 and x2 is adjacent to y2, y4. Suppose deg(xi) = ∆(T ),
1 6 i 6 ∆(T ). In this case, as |V (T )−S| = ∆(T )+1, we get that xi is adjacent with
every vertex of V − S except one vertex. This results in a cycle, a contradiction.
Therefore deg(xi) < ∆(T ), for every i. Let deg(yj) = ∆(T ), 1 6 j 6 ∆(T ) + 1.
Then yj is adjacent to every vertex in S which is not possible since which results a
cycle. Therefore, deg(yj) < ∆(T ), 1 6 j 6 ∆(T ) + 1, a contradiction.

Case(3): γ(T ) > ∆(T ).
S = {x1, x2, x3, · · · , xγ(T )} and V (T )−S = {y1, y2, y3, · · · , y∆(T )+1|}. If deg(xi) =
∆(T ) and xi is adjacent to k vertices {xi1, xi2, · · · , xik} in S, then xi1, xi2, · · · , xik

must have private neighbours say yi1, yi2, · · · , yik. Therefore, xi is adjacent to
∆(T )−k vertices in (V −S)−{yi1, yi2, · · · , yik} whose cardinality is ∆(T )−k+1.
Therefore, xi is adjacent to all but one of the vertices y1, y2, y3, and y4 which results
a cycle, a contradiction.
If deg(y1) = ∆(T ) (deg(y2) = ∆(T )), then y1 is adjacent to x3, x4, · · · , x∆(T ).
{x1, x2, x3, x4, · · · , x∆(T )} is an independent set, since otherwise which results a
cycle, a contradiction. If x3 is adjacent to some vertex of S, then x3 has a private
neighbour in V −S. Therefore, x3 is adjacent to some vertex yj , 5 6 j 6 ∆(T )+1.
Suppose x3 is not adjacent to any vertex in S. If x2 is not adjacent to any yj ,
5 6 j 6 ∆(T )+1, then S1 = (S−{x3})∪{y1} is a γ-set of T withm(V (T )−S1) = 1.
Therefore, DI(T ) 6 |S1| + m(V − S1) = γ(T ) + 1 < n − ∆(T ) + 1, a contradic-
tion. Therefore, x3 is adjacent to some vertex yj , 5 6 j∆(T ) + 1. Hence, every
vertex xi, 3 6 i 6 ∆(T ) is adjacent to at least one vertex yj , 5 6 j 6 ∆(T ) + 1.
If xi1, xi2 ∈ {x3, x4, · · · , x∆(T )} are adjacent to the same vertex yj , then we get
a cycle, a contradiction. Therefore, each of x3, x4, · · · , x∆(T ) is adjacent to dis-
tinct vertices in{y5, y6, · · · , y∆(T )+1}. Since |{x3, x4, · · · , x∆(T )}| = ∆(T ) − 2 and
|{y5, y6, · · · , y∆(T )+1}| = ∆(T )−3, a contradiction. Similar argument can be given
for any yi, 2 6 i 6 ∆(T )+1 and deg(yi) = ∆(T ). Therefore, the cardinality of any
component in V − S is less than or equal to 2. Suppose there exists at least two
components of cardinality 2.

Case(i): γ(T ) < ∆(T ).
Let xi, (1 6 i 6 γ(T )) be of degree ∆(T ). Let xi be adjacent to t vertices in S
and ∆(T )− t vertices in V −S. Each of these ∆(T )− t vertices belong to different
components of V −S. If t neighbours of xi in S can not be adjacent to any of these
∆(T )− 1 components, there can be at most ∆(T )− 1 components (since there are
at least two components of order 2). The t neighbours of xi must be adjacent to one
vertex in each of (∆(T )−1)− (∆(T )− t) = t−1 components (since the neighbours
being not isolates of S must have private neighbours in V − S). Therefore, these
are two neighbours of xi which are adjacent to vertices in the same components
of V − S. Since xi is adjacent to these two neighbours, which results a cycle, a
contradiction.
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Let yj , 1 6 j 6 ∆(T ) + 1 be of degree ∆(T ). Since yj is adjacent to at most one
vertex in V − S, |N(yj) ∩ S| > ∆(T ) − 1. If γ(T ) < ∆(T ) − 1, then we get a
contradiction. Therefore, γ(T ) = ∆(T ) − 1. In this case, yj is adjacent to every
vertex in S. Since x1, x2 are adjacent to y1, y2 respectively and y1 is adjacent to
y2, which results a cycle, a contradiction.

Case(ii): γ(T ) = ∆(T ).
As in Case(i), no xi, 1 6 i 6 γ(T ) can be of degree ∆(T ). Suppose yj , 1 6 j 6
∆(T ) + 1 be of degree ∆(T ). Let yj belong to a maximum order component in
V (T ) − S. Then |N(yj) ∩ S| = ∆(T ) − 1 . Therefore, yj is adjacent to the ver-
tices xi1, xi2 which are adjacent to vertices in another maximum order component.
Therefore, we get a cycle, a contradiction. Suppose yj belongs to a singleton com-
ponent of V (T )−S. Then yj is adjacent to both the vertices xi1 and xi2 which are
adjacent to the vertices of a maximum order component. Therefore, which results
a cycle, a contradiction.

Case(iii): γ(T ) > ∆(T ).
Let S = {x1, x2, x3, · · · , xγ(T )} and V − S = {y1, y2, y3, · · · , y∆(T )+1}. Since T has
no isolates, V (T )− S is a dominating set of T . Therefore |V (T )− S| > γ(T ) + 1.
That is, ∆(T ) + 1 > γ(T ) > ∆(T ). Therefore, γ(T ) = ∆(T ) + 1. Let {y1, y2} be a
maximum order component in V − S. Let y1 be adjacent to x1 and y2 be adjacent
to x2. Clearly x1 and x2 are independent.
If deg(xi) = ∆(T ), 1 6 i 6 ∆(T ) + 1, proceeding as in case(ii) we get a contradic-
tion.
Let deg(yj) = ∆(T ) for some 1 6 j 6 ∆(T ) + 1. Therefore, yj is adjacent to every
xi except one vertex, 1 6 i 6 ∆(T ) + 1. Suppose deg(y1) = ∆(T ). Let y1 be
adjacent to x3, x4, · · · , x∆(T ). There exists a component of cardinality 2 in V − S
other than {y1, y2}. Let yj be adjacent to yj+1 (3 6 j 6 ∆(T ) + 1). Let yj and
yj+1 be dominated by xk and xl, (xk ̸= xl). At least one of xk and xl does not
belong to {x3, x4, · · · , x∆(T )} .

Subcase(i): Both xk and xl do not belong to {x3, x4, · · · , x∆(T )} .

Case(A): xk = x1 and xl = x2. In this case, we get a cycle, a contradiction.

Case(B): xk = x1 and xl = x∆(T )+1. x1, x2, · · · , x∆(T ) are all independent. If S
is itself independent, then V (T )− S is a minimum dominating set and m(S) = 1.
Therefore, DI(T ) = ∆(T )+2. But DI(T ) = γ(T )+2 = ∆(T )+3, a contradiction.
In this case, which results a cycle, a contradiction.

Case(C): xk = x2 and xl = x∆(T )+1. This case is similar to Case(B). Hence
Case(C) results in a contradiction.

Subcase(ii): xk /∈ {x3, x4, · · · , x∆(T )} and xl ∈ {x3, x4, · · · , x∆(T )}.
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Suppose xk = x1 and xl = xi, 3 6 i 6 ∆(T ). In this case, we get a cycle, a
contradiction. A similar argument when xk = x2 and xl = xi, 3 6 i 6 ∆(T ), which
results a cycle, a contradiction. Let xk = x∆(T )+1 and xl = xi, 3 6 i 6 ∆(T ). In
this case, arguing in Subcase(i) in Case(B), which results a cycle, a contradiction.
A similar arguments can be given when deg(yj) = ∆(T ), 2 6 j 6 ∆(T )+1, leading
to a contradiction. Therefore, Case(ii) does not arise. Therefore, γ(T ) = n−∆(T ).
Therefore, T is a wounded spider. �

Proposition 2.2. For any graph G without isolates, DI(G) = n − m + 1 if
and only if G is a galaxy.

Proof. Let G be a galaxy. It is easy to verify that DI(G) = n−m+ 1.
Conversely, suppose DI(G) = n − m + 1. For any graph G without isolates,
n − m + 1 6 γ(G) + 1 6 DI(G) = n − m + 1 (since, for any (n,m)-graph G,
n−m−n0 6 γ(G) 6 n−∆(G), where n0 denotes the number of isolates in G [9].)
Therefore, γ(G) = n−m. Therefore, G is a galaxy. �

Proposition 2.3. Let T be a tree which is not a star satisfying the condition
that d(u, v) ≡ 2 (mod 3) for any two end vertices u, v ∈ V (T ). Then DI(T ) =
n−n1+8

3 , where n1 is the number of end vertices in T .

Proof. Suppose T is a tree satisfying the hypothesis. Then there exists a
dominating set D of T such that V − D contains all the end vertices of T and
d(u, v) ≡ 0 ( mod 3) for any u, v ∈ D [8]. All the end vertices in V − D are
independent in V − D. Suppose V − D contains a P3. Let V (P3) = {x1, x2, x3}.
Then x1, x2, x3 are neither supports nor end vertices. Let y1, y2, y3 belonging to
D dominate respectively x1, x2, x3. Clearly, y1, y2, y3 are all independent. Since
d(y1, y3) = 4, a contradiction. Therefore, there exists at least two vertices say y1, y2
which dominate x1, x2, x3, a contradiction, since which results a cycle. Therefore,
V − D does not contain a path of length 3. Therefore, m(V − D) 6 2. Suppose
m(V −D) = 1. Since, < D > is independent, which results a star, a contradiction.
Therefore, m(V −D) = 2. Therefore, DI(T ) 6 |D|+2. That is, DI(T ) 6 n−n1+8

3 .

If DI(T ) < n−n1+8
3 = γ(T )+ 2, then DI(T ) = γ(T )+ 1. Therefore, γ(T ) = α0(T ).

As per condition in theorem 4.1 in [9] for γ(T ) = α0(T ), the subgraph G∗ =
G−N [Ω(G)] is bipartite, the components are G∗ are bipartite graphs L1, L2, · · · , Lk

with γ(Lj) = α0(Lj) and δ(Lj) > 1 for every j, 1 6 j 6 k . Further Lj ’s
are either stars with at least three vertices or nor stars in which the removal of
pendent vertices result in a connected graph with minimum degree 2. Here G∗ has
components K ′

2s which does not satisfy the condition for γ(T ) = α0(T ). Therefore,
DI(T ) ̸= γ(T ) + 1.
Therefore, DI(T ) = γ(T ) + 2 = n−n1+8

3 . �

Remark 2.1. The converse is not true. Consider the tree T .

u u
u

u
u u
u u

uu1 u2 u4u3

u5 u6 u7
u8 u9
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DI(T ) = 4; n = 9; n1 = 5. DI(T ) = n−n1+8
3 = 4. Here u5 and u8 are end

vertices such that d(u5, u8) ̸≡ 2 (mod 3). n−n1+2
3 = 2 < γ(T ).

Remark 2.2. There are trees for which DI(T ) = γ(T )+2 but γ(T ) > n−n1+2
3 .

For example, DI(P14) = ⌈ 14
3 ⌉+ 2 = 7 = γ(T ) + 2. γ(T ) = ⌈ 14

3 ⌉ = 5.
n−n1+2

3 = 14−2+2
3 = 14

3 and γ(P14) >
n−n1+2

3 .

Remark 2.3. For a star K1,n , d(u, v) ≡ 2 (mod 3) for any two end vertices
u, v ∈ V (T ) and γ(K1,n) = 1; DI(K1,n) = γ(K1,n) + 1 = 2.

Remark 2.4. If DI(T ) = γ(T ) + 2 = n−n1+8
3 , then T ∈ R,where R is the

collection of trees which satisfy the condition that d(u, v) ≡ 2 (mod 3) for every
two end vertices u, v ∈ V (T ).

Definition 2.1. The Binomial tree Bn is an ordered tree defined recursively.
The binomial tree B0 consists of a single vertex. The binomial tree Bn consists of
two binomial trees Bn−1 that are linked together: the root of one is the leftmost
child of the root of the other. In the following figure, we call the vertex u top vertex
of Bn.

u u u u uu u u

u u u uu u u

B0 B1 B2 B3

Theorem 2.2. Let n > 1 be a positive integer. Then DI(Bn) = 2n−1 + 1.

Proof. Since Bn = B+
n−1, n > 1, γ(Bn) = |V (Bn−1)| = 2n−1(n > 1). The

removal of V (Bn−1) from Bn, results in totally disconnected graph and Bn−1 is a
minimum dominating set for Bn. Therefore DI(Bn) = 2n−1 + 1. �

Definition 2.2. Using the notation of [7], define Hk
n as the rooted complete

k-ary tree of height n − 1, each vertex except the leaves has k children, and all
leaves are distance n− 1 from the root. Thus Hn

k has order (kn − 1)/(k − 1).

Theorem 2.3. [7] For k > 2, the integrity of the complete k-ary tree of height

n− 1 is given by I(Hk
n) =

{
k(n+1)/2−1

k−1 if n is odd
(2k−1)kn/2−1−1

k−1 if n is even

Theorem 2.4. [7] The integrity of the complete binary tree of height n− 1 is

given by I(H2
n) =

{
2(n+1)/2 − 1 if n is odd

3.2n/2−1 − 1 if n is even

Theorem 2.5.
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γ(H2
n) =


2(2(n/3)−1)

7 if n ≡ 0 (mod 3)

1 +
22(2( n−1

3 )−1)

7 if n ≡ 1 (mod 3)

1 + 23(2(
n−2
3

)−1)
7 if n ≡ 2 (mod 3)

Proof. Consider H2
3n. The vertices at the levels 3n − 1, 3n − 4, · · · , 2 are to

be taken to get a minimum dominating set. Since the number of vertices at level t

is 2t−1. Therefore, γ(H2
3n) = 21 + 24 + · · ·+ 23n−2 = 2(2(n/3)−1)

7 , n > 1.

Consider H2
3n−1. The vertices at the levels 3n− 2, 3n− 5, · · · , 4, 1 are to be taken

to get a minimum dominating set. γ(H2
3n−1) = 20 + 23 + · · · + 23n−3 = 1 +

22(2(
n−1
3

)−1)
7 , n > 1.

Consider H2
3n−2. The vertices at the levels 3n− 3, 3n− 6, · · · , 3, 1 are to be taken

to get a minimum dominating set.

γ(H2
3n−2) = 20 + 22 + · · ·+ 23n−4 = 1 +

23(2( n−2
3 )−1)

7 , n > 1. �

Corollary 2.1. In H2
n, the removal of a γ-set, results in a disconnected graph

in which the maximum order of the component is 3.
Therefore, DI(H2

n) = γ(H2
n) + 3.

Observation 2.4. A similar argument leads to the calculation of γ(Hk
n) and

DI((Hk
n). Observe that the number of vertices at level t is kt−1.

Therefore, γ(Hk
n) =


k(k(n/3)−1)

7 if n ≡ 0 (mod 3)

1 +
k2(k( n−1

3 )−1

7 if n ≡ 1 (mod 3)

1 + k3(k(n−2
3

)−1)
7 if n ≡ 2 (mod 3)

and

DI(Hk
n) = γ(H2

n) + (k + 1).
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