A COMMON FIXED POINT THEOREM IN NON-ARCHIMEDEAN MENGER PM-SPACES

R. A. Rashwan and Shimaa I. Moustafa

Abstract

In this paper we prove a common fixed point theorem for six compatible self mappings of type (A) in a complete non-Archimedean Menger PM-space.

1. Introduction and preliminaries

Non-Archimedean probabilistic metric spaces and some topological preliminaries on them were first studied by Isrătescu and Crivăt [7]. Some fixed point theorems for mappings on non-Archimedean Menger spaces have been proved by Isrătescu $[\mathbf{5}, \mathbf{6}]$ as a result of the generalization of some of the results of Sehgal and Bharucha-Ried [9] and Sherwood [10]. Recently, Cho [2] introduced the notion of compatible mappings of type (A) in non-Archimedean Menger PM-spaces and proved a common fixed point theorem for four compatible mappings of type (A) in a complete non-Archimedean Menger PM-space.

In this paper we prove a unique common fixed point theorem for six compatible self mappings of type (A) in a complete non-Archimedean Menger PM-space under new contraction condition.

Definition 1.1. $[\mathbf{5}, \mathbf{7}]$ Let X be any any nonempty set and L be the set of all left-continuous distribution functions. An order pair (x, \mathbf{F}) is called a nonArchimedean probabilistic metric space (briefly, a N. A. PM-space) if \mathbf{F} is a mapping from $X \times X$ to L satisfying the following conditions for all $x, y, z \in X$:
(PM-1): $F_{x, y}(t)=1$ for every $t>0$ if and only if $x=y$,

[^0](PM-2): $F_{x, y}(0)=0$,
(PM-3): $F_{x, y}=F_{y, x}$,
(PM-4): if $F_{x, y}\left(t_{1}\right)=1$ and $F_{y, z}\left(t_{2}\right)=1$, then $F_{x, z}\left(t_{1}+t_{2}\right)=1$.
Definition 1.2. [8] A T-norm is a function $t:[0,1] \times[0,1] \rightarrow[0,1]$ which satisfies:

(T1): $t(a, 1)=a$ and $t(0,0)=0$,	
(T2): $t(a, b)=t(b, a)$,	(commutativity)
(T3): $t(c, d) \geqslant t(a, b), c \geqslant a, d \geqslant b$,	(nondecreasing in each coordinate)
(T4): $t(t(a, b), c)=t(a, t(b, c))$.	(associativity)

Definition 1.3. [7] A non-Archimedean Menger PM-space is an ordered triplet (X, \mathbf{F}, t), where t is a t-norm and (X, \mathbf{F}) is a N. A. PM-space satisfying the following condition:

$$
F_{x, z}\left(\max \left\{t_{1}, t_{2}\right\}\right) \geqslant t\left(F_{x, y}\left(t_{1}\right), F_{y, z}\left(t_{2}\right)\right) \text { for all } x, y, z \in X \text { and } t_{1}, t_{2} \geqslant 0
$$

Definition 1.4. [2] A N. A. Menger PM-space (X, \mathbf{F}, t) is said to be of type $(C)_{g}$ if there exists a $g \in \Omega$ such that $g\left(F_{x, z}(t)\right) \leqslant g\left(F_{x, y}(t)\right)+g\left(F_{y, z}(t)\right)$ for all $x, y, z \in X, t \geqslant 0$, where

$$
\Omega=
$$

$\{g \mid g:[0,1] \rightarrow[0, \infty)$, is continuous, strictly decreasing with $g(1)=0 \operatorname{and} g(0)<\infty\}$.
Definition 1.5. [2] A N. A. Menger PM-space (X, \mathbf{F}, t) is said to be of type $(D)_{g}$ if there exists a $g \in \Omega$ such that $g\left(t\left(t_{1}, t_{2}\right)\right) \leqslant g\left(t_{1}\right)+g\left(t_{2}\right)$ for all $t_{1}, t_{2} \in[0,1]$.

Remark 1.1. [2]
(i): If the N. A. Menger PM-space (X, \mathbf{F}, t) is of type $(D)_{g}$ then it is of type $(C)_{g}$,
(ii): If (X, \mathbf{F}, t) is N . A. Menger PM -space and $t(r, s) \geqslant t_{\max }(r, s)=\max \{r+$ $s-1,1\}$, for all $r, s \in[0,1]$, then (X, \mathbf{F}, t) is of type $(D)_{g}$ for $g \in \Omega$ and $g(t)=1-t$.
Throughout this paper (X, \mathbf{F}, t) is a complete N . A. Menger PM-space with a continuous strictly increasing t-norm. Let $\phi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying the condition ϕ is upper semi-continuous from the right and $\phi(t)<t$ for $t>0$.

Definition 1.6. [2] A sequence $\left\{x_{n}\right\}$ in the N. A. Menger PM-space ($\left.X, \mathbf{F}, t\right)$ converges to a point x in X if and only if for each $\epsilon>0, \lambda>0$ there exists $M(\epsilon, \lambda)$ such that $g\left(F_{x_{n}, x}(\epsilon)\right)<g(1-\lambda)$ for all $n>M$.

Definition 1.7. [2] A sequence $\left\{x_{n}\right\}$ in the N. A. Menger PM-space is a Cauchy sequence if and only if for each $\epsilon>0, \lambda>0$ there exists $M(\epsilon, \lambda)$ such that $g\left(F_{x_{n}, x_{m}}(\epsilon)\right)<g(1-\lambda)$ for all $m \geqslant n>M$.

Example 1.1. [11] Let X be any set with at least two elements. If we define $F_{x, x}(t)=1$ for all $x \in X, t>0$ and $F_{x, y}(t)=\{0$ ift $\leqslant 1$ and1if $t>1\}$, where $x, y \in X$, $x \neq y$, then (X, \mathbf{F}, t) is the N. A. Menger PM-space with $t(a, b)=\min \{a, b\}$ or $(a . b)$.

Lemma 1.1. [1] If a function $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfies the condition (Φ), then we get
(i): for all $t \geqslant 0, \lim _{n \rightarrow \infty} \phi^{n}(t)=0$, where $\phi^{n}(t)$ is the n-th iteration of $\phi(t)$,
(ii): if t_{n} is a non-decreasing sequence of real numbers and $t_{n+1} \leqslant \phi\left(t_{n}\right)$, $n=1,2, \ldots$, then $\lim _{n \rightarrow \infty} t_{n}=0$. In particular, if $t \leqslant \phi(t)$, for each $t \geqslant 0$, then $t=0$.

Lemma 1.2. [2] Let $\left\{y_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow \infty} F_{y_{n}, y_{n+1}}(t)=1$ for each $t>0$. If $\left\{y_{n}\right\}$ is not a Cauchy sequence in X, then there exist $\epsilon_{0}>0$, $t_{0}>0$ and two sequences $\left\{m_{i}\right\}$ and $\left\{n_{i}\right\}$ of positive integers such that
(i): $m_{i}>n_{i}+1$ and $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$,
(ii): $F_{y_{m_{i}}, y_{n_{i}}}\left(t_{0}\right)<1-\epsilon_{0}$ and $F_{y_{m_{i-1}}, y_{n_{i}}}\left(t_{0}\right) \geqslant 1-\epsilon_{0}, i=1,2, \ldots$.

Definition 1.8. [3] Let $A, S: X \rightarrow X$ be mappings. A and S are said to be compatible if

$$
\lim _{n \rightarrow \infty} g\left(F_{A S x_{n}, S A x_{n}}(t)\right)=0
$$

for all $t>0$, when $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=$ z for some $z \in X$.

Note that commuting and weakly commuting mappings are compatible but the converse is not true (see, [4]).

Definition 1.9. [2] Let $A, S: X \rightarrow X$ be mappings. A and S are said to be compatible of type (A) if

$$
\lim _{n \rightarrow \infty} g\left(F_{A S x_{n}, S S x_{n}}(t)\right)=0 \text { and } \lim _{n \rightarrow \infty} g\left(F_{S A x_{n}, A A x_{n}}(t)\right)=0
$$

for all $t>0$, when $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=$ z for some $z \in X$.

Now, we give some relations between compatible mappings and compatible mappings of type (A) in non-Archimedean Menger PM-spaces which appears in [2].

Proposition 1.1. Let $A, S: X \rightarrow X$ be continuous mappings. If A and S are compatible, then they are compatible of type (A).

Proposition 1.2. Let $A, S: X \rightarrow X$ be compatible mappings of type (A). If one of A and S is continuous, then they are compatible.

Proposition 1.3. Let $A, S: X \rightarrow X$ be continuous mappings. A and S are compatible if and only if they are compatible of type (A).

Proposition 1.4. Let $A, S: X \rightarrow X$ be mappings. If A and S are compatible of type (A) and $A z=S z$ for some $z \in X$, then $S A z=A A z=A S z=S S z$.

Proposition 1.5. Let $A, S: X \rightarrow X$ be compatible mappings of type (A) and let $\left\{x_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=z$ for some $z \in X$. Then we have the following:
(1): $\lim _{n \rightarrow \infty} A S x_{n}=S z$ if S is continuous at z,
(2): $S A z=A S z$ and $S z=A z$ if A and S are continuous at z.

2. Main Results

In this section, we prove a common fixed point theorem for six self mappings in N. A. Menger PM-space.

Let A, B, S, T, L and M be six self mappings on a N . A. Menger PM-space (X, \mathbf{F}, t) with,

$$
\begin{equation*}
L(X) \subseteq S T(X) \quad \text { and } \quad M(X) \subseteq A B(X) \tag{2.1}
\end{equation*}
$$

Also, there exists $g \in \Omega$ such that:

$$
\begin{aligned}
g\left(F_{L x, M y}^{2}(t) \leqslant\right. & \phi\left(\operatorname { m a x } \left\{g\left(F_{A B x, L x}(t)\right) g\left(F_{S T y, M y}(t)\right), \frac{1}{2} g\left(F_{A B x, M y}(t)\right) g\left(F_{S T y, L x}(t)\right)\right.\right. \\
& \frac{1}{2} g\left(F_{A B x, L x}(t)\right) g\left(F_{A B x, M y}(t)\right), g\left(F_{S T y, L x}(t)\right) g\left(F_{S T y, M y}(t)\right) \\
& g\left(F_{A B x, L x}(t)\right) g\left(F_{S T y, L x}(t)\right), \frac{1}{2} g\left(F_{A B x, M y}(t)\right) g\left(F_{S T y, M y}(t)\right) \\
& \left.\left.g\left(F_{A B x, L x}^{2}(t)\right), g\left(F_{S T y, M y}^{2}(t)\right), g\left(F_{A B x, S T y}^{2}(t)\right)\right\}\right)
\end{aligned}
$$

for every $x, y \in X$ and $t \geqslant 0$, where ϕ satisfies the condition Φ. Then by (2.1), since $L(X) \subseteq S T(X)$, for any $x_{0} \in X$, there exists a point $x_{1} \in X$ such that $L x_{0}=S T x_{1}$. As $M(X) \subseteq A B(X)$, for this point x_{1}, we can find $x_{2} \in X$ such that $M x_{1}=A B x_{2}$ and so on. Inductively, we can define a sequence $\left\{y_{n}\right\}$ in X such that

$$
\begin{align*}
& y_{2 n}=L x_{2 n}=S T x_{2 n+1} \\
& y_{2 n+1}=M x_{2 n+1}=A B x_{2 n+2}, \quad n=0,1,2, \ldots \tag{2.3}
\end{align*}
$$

Before proving our main theorem, we need to prove the following lemma:
Lemma 2.1. Let A, B, S, T, L and $M: X \rightarrow X$ be mappings satisfying the conditions (2.1) and (2.2), then the sequence $\left\{y_{n}\right\}$, defined by (2.3), such that

$$
\lim _{n \rightarrow \infty} g\left(F_{y_{n}, y_{n+1}}(t)\right)=0 \quad \text { for all } t>0
$$

is a Cauchy sequence in X.
Proof. Since g is continuous and $g(1)=0$, then $\lim _{n \rightarrow \infty} g\left(F_{y_{n}, y_{n+1}}(t)\right)=0$ implies
$\lim _{n \rightarrow \infty} F_{y_{n}, y_{n+1}}(t)=1$ for all $t>0$.
By Lemma 1.2, if $\left\{y_{n}\right\}$ is not Cauchy sequence in X, there exists $\epsilon_{0}>0, t_{0}>0$ and two sequences $\left\{m_{i}\right\},\left\{n_{i}\right\}$ of positive integers such that
(A): $m_{i}>n_{i}+1$ and $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$;
(B): $g\left(F_{y_{m_{i}}, y_{n_{i}}}\left(t_{0}\right)\right)>g\left(1-\epsilon_{0}\right)$ and $g\left(F_{y_{m_{i}-1}, y_{n_{i}}}\right) \leqslant g\left(1-\epsilon_{0}\right), \quad i=1,2, \ldots$.

If we define $g(t)=1-t$ for all $t \in[0,1]$, then (X, \mathbf{F}, t) is a N . A. Menger PM-space of type $(D)_{g}$ for any $t \geqslant t_{\text {max }}$.

$$
\begin{align*}
g\left(1-\epsilon_{0}\right) & <g\left(F_{y_{m_{i}}, y_{n_{i}}}\left(t_{0}\right)\right) \\
& \leqslant g\left(F_{y_{m_{i}}, y_{m_{i}-1}}\left(t_{0}\right)\right)+g\left(F_{y_{m_{i}-1}, y_{n_{i}}}\left(t_{0}\right)\right) \tag{2.4}\\
& \leqslant g\left(F_{y_{m_{i}}, y_{m_{i}-1}}\left(t_{0}\right)\right)+g\left(1-\epsilon_{0}\right) .
\end{align*}
$$

Letting $i \rightarrow \infty$ in (2.4), we have:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(F_{y_{m_{i}}, y_{n_{i}}}\left(t_{0}\right)\right)=g\left(1-\epsilon_{0}\right) . \tag{2.5}
\end{equation*}
$$

On the other hand, we have:

$$
\begin{align*}
g\left(1-\epsilon_{0}\right) & <g\left(F_{y_{m_{i}}, y_{n_{i}}}\left(t_{0}\right)\right) \tag{2.6}\\
& \leqslant g\left(F_{y_{n_{i}}, y_{n_{i}+1}}\left(t_{0}\right)\right)+g\left(F_{y_{n_{i}+1}, y_{m_{i}}}\left(t_{0}\right)\right) .
\end{align*}
$$

Now, we consider $g\left(F_{y_{n_{i}+1}, y_{m_{i}}}\left(t_{0}\right)\right)$ in (2.6), without loss of generality, assume that both n_{i} and m_{i} are even.
Using (2.2) at $x=x_{m_{i}}$ and $y=x_{n_{i}+1}$, gets:
$g\left(F_{L x_{m_{i}}, M x_{n_{i}+1}}^{2}\left(t_{0}\right)\right) \leqslant \phi\left(\max \left\{g\left(F_{A B x_{m_{i}}, L x_{m_{i}}}\left(t_{0}\right)\right) g\left(F_{S T x_{n_{i}+1}, M x_{n_{i}+1}}\left(t_{0}\right)\right)\right.\right.$,
$\frac{1}{2} g\left(F_{A B x_{m_{i}}, M x_{n_{i}+1}}\left(t_{0}\right)\right) g\left(F_{S T x_{n_{i}+1}, L x_{m_{i}}}\left(t_{0}\right)\right)$,
$\frac{1}{2} g\left(F_{A B x_{m_{i}}, L x_{m_{i}}}\left(t_{0}\right)\right) g\left(F_{A B x_{m_{i}}, M x_{n_{i}+1}}\left(t_{0}\right)\right)$,
$g\left(F_{S T x_{n_{i}+1}, L x_{m_{i}}}\left(t_{0}\right)\right) g\left(F_{S T x_{n_{i}+1}, M x_{n_{i}+1}}\left(t_{0}\right)\right)$,
$g\left(F_{A B x_{m_{i}}, L x_{m_{i}}}\left(t_{0}\right)\right) g\left(F_{S T x_{n_{i}+1}, L x_{m_{i}}}\left(t_{0}\right)\right)$,
$\frac{1}{2} g\left(F_{A B x_{m_{i}}, M x_{n_{i}+1}}\left(t_{0}\right)\right) g\left(F_{S T x_{n_{i}+1}, M x_{n_{i}+1}}\left(t_{0}\right)\right), g\left(F_{A B x_{m_{i}}, L x_{m_{i}}}^{2}\left(t_{0}\right)\right)$,
$\left.\left.g\left(F_{S T x_{n_{i}+1}, M x_{n_{i}+1}}^{2}\left(t_{0}\right)\right), g\left(F_{A B x_{m_{i}}, S T x_{n_{i}+1}}^{2}\left(t_{0}\right)\right)\right\}\right)$,
$g\left(F_{y_{m_{i}}, y_{n_{i}+1}}^{2}\left(t_{0}\right)\right) \leqslant \phi\left(\max \left\{g\left(F_{y_{m_{i}-1}, y_{m_{i}}}\left(t_{0}\right)\right) g\left(F_{y_{n_{i}}, y_{n_{i}+1}}\left(t_{0}\right)\right)\right.\right.$,
$\frac{1}{2} g\left(F_{y_{m_{i}-1}, y_{n_{i}+1}}\left(t_{0}\right)\right) g\left(F_{y_{n_{i}}, y_{m_{i}}}\left(t_{0}\right)\right), \frac{1}{2} g\left(F_{y_{m_{i}-1}, y_{m_{i}}}\left(t_{0}\right)\right) g\left(F_{y_{m_{i}-1}, y_{n_{i}+1}}\left(t_{0}\right)\right)$,
$g\left(F_{y_{n_{i}}, y_{m_{i}}}\left(t_{0}\right)\right) g\left(F_{y_{n_{i}}, y_{n_{i}+1}}\left(t_{0}\right)\right), g\left(F_{y_{m_{i}-1}, y_{m_{i}}}\left(t_{0}\right)\right) g\left(F_{y_{n_{i}}, y_{m_{i}}}\left(t_{0}\right)\right)$,
$\frac{1}{2} g\left(F_{y_{m_{i}-1}, y_{n_{i}+1}}\left(t_{0}\right)\right) g\left(F_{y_{n_{i}}, y_{n_{i}+1}}\left(t_{0}\right)\right)$,
$\left.\left.g\left(F_{y_{m_{i}-1}, y_{m_{i}}}^{2}\left(t_{0}\right)\right), g\left(F_{y_{n_{i}}, y_{n_{i}+1}}^{2}\left(t_{0}\right)\right), g\left(F_{y_{m_{i}-1}, y_{n_{i}}}^{2}\left(t_{0}\right)\right)\right\}\right)$,
Letting $i \rightarrow \infty$, we have:

$$
\begin{align*}
\lim _{i \rightarrow \infty} g\left(F_{y_{m_{i}}, y_{n_{i}+1}}^{2}\left(t_{0}\right)\right) & \leqslant \phi\left(\max \left\{0, \frac{1}{2} g\left(1-\epsilon_{0}\right) g\left(1-\epsilon_{0}\right), 0,0,0,0,0,0, g\left(1-\epsilon_{0}\right)^{2}\right\}\right) \\
& \leqslant \phi\left(g\left(1-\epsilon_{0}\right)^{2}\right) \tag{2.7}\\
& <g\left(\left(1-\epsilon_{0}\right)^{2}\right) .
\end{align*}
$$

Since $g \in \Omega$, by (2.7) we have

$$
\begin{aligned}
\lim _{i \rightarrow \infty} F_{y_{m_{i}}, y_{n_{i}+1}}^{2}\left(t_{0}\right) & >\left(1-\epsilon_{0}\right)^{2}, \\
\lim _{i \rightarrow \infty} F_{y_{m_{i}}, y_{n_{i}+1}}\left(t_{0}\right) & >1-\epsilon_{0}, \\
g\left(\lim _{i \rightarrow \infty} F_{y_{m_{i}}, y_{n_{i}+1}}\left(t_{0}\right)\right) & <g\left(1-\epsilon_{0}\right) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} g\left(F_{y_{m_{i}}, y_{n_{i}+1}}\left(t_{0}\right)\right)<g\left(1-\epsilon_{0}\right) . \tag{2.8}
\end{equation*}
$$

Letting $i \rightarrow \infty$ in (2.6), substituting by (2.8) gives:

$$
\begin{aligned}
g\left(1-\epsilon_{0}\right) & <\lim _{i \rightarrow \infty} g\left(F_{y_{n_{i}}, y_{n_{i}+1}}\left(t_{0}\right)\right)+\lim _{i \rightarrow \infty} g\left(F_{y_{n_{i}+1}, y_{m_{i}}}\left(t_{0}\right)\right) \\
& <0+g\left(1-\epsilon_{0}\right),
\end{aligned}
$$

which is a contradiction. Therefore $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Theorem 2.1. Let (X, \boldsymbol{F}, t) be a complete non-Archimedean Menger PM-space and A, B, S, T, L and M be mappings from X into itself satisfying the conditions (2.1), (2.2) and the following:
(i): $A B=B A, S T=T S, L B=B L$ and $M T=T M$;
(ii): one of the mappings $S T, L, A B$ and M is continuous;
(iii): the pairs $\{L, A B\}$ and $\{M, S T\}$ are compatible of type (A).

Then A, B, S, T, L and M have a unique common fixed point in X.
Proof. Step 1. We show that $\lim _{n \rightarrow \infty} g\left(F_{y_{n}, y_{n+1}}(t)\right)=0$ forall $t>0$.
In fact, by (2.2) and (2.3), we have:

$$
\begin{aligned}
& g\left(F_{L x_{2 n}, M x_{2 n+1}}^{2}(t)\right) \leqslant \phi\left(\operatorname { m a x } \left\{g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, L x_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{A B x_{2 n}, M x_{2 n+1}}(t)\right), \\
& g\left(F_{S T x_{2 n+1}, L x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right), \\
& g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, L x_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right), \\
& \left.\left.g\left(F_{A B x_{2 n}, L x_{2 n}}^{2}(t)\right), g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}^{2}(t)\right), g\left(F_{A B x_{2 n}, S T x_{2 n+1}}^{2}(t)\right)\right\}\right) . \\
& g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right) \leqslant \phi\left(\operatorname { m a x } \left\{g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right) g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{y_{2 n-1}, y_{2 n+1}}(t)\right) g\left(F_{y_{2 n}, y_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right) g\left(F_{y_{2 n-1}, y_{2 n+1}}(t)\right), g\left(F_{y_{2 n}, y_{2 n}}(t)\right) g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right), \\
& g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right) g\left(F_{y_{2 n}, y_{2 n}}(t)\right), \frac{1}{2} g\left(F_{y_{2 n-1}, y_{2 n+1}}(t)\right) g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right), \\
& \left.\left.g\left(F_{y_{2 n-1}, y_{2 n}}^{2}(t)\right), g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right), g\left(F_{y_{2 n-1}, y_{2 n}}^{2}(t)\right)\right\}\right), \\
& \leqslant \phi\left(\operatorname { m a x } \left\{g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right) g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right), 0,\right.\right. \\
& \frac{1}{2} g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right)\left[g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right)+g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right)\right], 0,0, \\
& \frac{1}{2}\left[g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right)+g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right)\right] g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right), \\
& \left.\left.g\left(F_{y_{2 n-1}, y_{2 n}}^{2}(t)\right), g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right), g\left(F_{y_{2 n-1}, y_{2 n}}^{2}(t)\right)\right\}\right) .
\end{aligned}
$$

If $g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right) \leqslant g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right)$ for all $n \in N$ and $t>0$. Thus, $g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right) \leqslant \phi\left(\max \left\{g^{2}\left(F_{y_{2 n}, y_{2 n+1}}(t)\right), g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right), g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right)\right\}\right)$.
Since $g(t) \leqslant 1$ for all $t \in[0,1]$, then

$$
g^{2}\left(F_{y_{2 n}, y_{2 n+1}}(t)\right) \leqslant g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right) \leqslant g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right) .
$$

Therefore, $g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right) \leqslant \phi\left(g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right)\right)$. If we consider a decreasing sequence $M_{2 n}=g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right)$, we have $M_{2 n-1} \leqslant M_{2 n} \leqslant \phi\left(M_{2 n}\right)$. Therefore, by Lemma (2.1),

$$
\lim _{n \rightarrow \infty} M_{2 n}=\lim _{n \rightarrow \infty} g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right)=0 \text { for all } t>0
$$

On the other hand, if $g\left(F_{y_{2 n-1}, y_{2 n}}(t)\right)>g\left(F_{y_{2 n}, y_{2 n+1}}(t)\right)$, we have:

$$
\begin{aligned}
g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right) & <\phi\left(g\left(F_{y_{2 n-1}, y_{2 n}}^{2}(t)\right)\right) \\
& <\phi\left(\phi\left(g\left(F_{y_{2 n-2}, y_{2 n-1}}^{2}(t)\right)\right)\right) \\
& \vdots \\
& <\phi^{2 n}\left(g\left(F_{y_{0}, y_{1}}^{2}(t)\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus in all cases, we have:

$$
\lim _{n \rightarrow \infty} g\left(F_{y_{2 n}, y_{2 n+1}}^{2}(t)\right)=0 \text { for all } t>0
$$

Similarly,

$$
\lim _{n \rightarrow \infty} g\left(F_{y_{2 n+1}, y_{2 n+2}}^{2}(t)\right)=0 \text { for all } t>0
$$

Therefore,

$$
\lim _{n \rightarrow \infty} g\left(F_{y_{n}, y_{n+1}}^{2}(t)\right)=0 \text { for all } t>0
$$

By Lemma (2.1), $\left\{y_{n}\right\}$ is Cauchy sequence in X. Since X is complete, the sequence $\left\{y_{n}\right\}$ converges to a point $z \in X$ and so the subsequences $L x_{2 n}, M x_{2 n+1}, A B x_{2 n}$ and $S T x_{2 n+1}$ of $\left\{y_{n}\right\}$ also converge to the limit z.
Step 2. We show the existence of the common fixed point of the six mappings under consideration at $S T$ be continuous.
Since M and $S T$ are compatible of type (A), then by proposition (1.5),

$$
\operatorname{MST}_{2 n+1}, S T S T x_{2 n+1} \rightarrow S T z
$$

Using (2.2) at $x=x_{2 n}$ and $y=S T x_{2 n+1}$, yields

$$
\begin{aligned}
& \quad g\left(F_{L x_{2 n}, M S T x_{2 n+1}}^{2}(t)\right) \leqslant \phi\left(\operatorname { m a x } \left\{g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T S T x_{2 n+1}, M S T x_{2 n+1}}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, M S T x_{2 n+1}}(t)\right) g\left(F_{S T S T x_{2 n+1}, L x_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{A B x_{2 n}, M S T x_{2 n+1}}(t)\right), \\
& g\left(F_{S T S T x_{2 n+1}, L x_{2 n}}(t)\right) g\left(F_{S T S T x_{2 n+1}, M S T x_{2 n+1}}(t)\right), \\
& g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T S T x_{2 n+1}, L x_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, M S T x_{2 n+1}}(t)\right) g\left(F_{S T S T x_{2 n+1}, M S T x_{2 n+1}}(t)\right), \\
& \left.\left.g\left(F_{A B x_{2 n}, L x_{2 n}}^{2}(t)\right), g\left(F_{S T S T x_{2 n+1}, M S T x_{2 n+1}}(t)\right), g\left(F_{A B x_{2 n}, S T S T x_{2 n+1}}^{2}(t)\right)\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have:

$$
\begin{aligned}
g\left(F_{z, S T z}^{2}(t)\right) & \leqslant \phi\left(\max \left\{0, \frac{1}{2} g^{2}\left(F_{z, S T z}(t)\right), 0,0,0,0,0,0, g\left(F_{z, S T z}^{2}(t)\right)\right\}\right) \\
& \leqslant \phi\left(g\left(F_{z, S T z}^{2}(t)\right)\right)
\end{aligned}
$$

By Lemma (1.1), we have $g\left(F_{z, S T z}^{2}(t)\right)=0$ for all $t>0$, that is, $F_{z, S T z}^{2}(t)=$ 1 for all $t>0$. Therefore, $z=S T z$.

Again by using (2.2) with $x=x_{2 n}$ and $y=z$, we have:

$$
\begin{aligned}
g\left(F_{L x_{2 n}, M z}^{2}(t)\right) \leqslant & \phi\left(\operatorname { m a x } \left\{g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T z, M z}(t)\right), \frac{1}{2} g\left(F_{A B x_{2 n}, M z}(t)\right)\right.\right. \\
& g\left(F_{S T z, L x_{2 n}}(t)\right), \frac{1}{2} g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{A B x_{2 n}, M z}(t)\right), \\
& g\left(F_{S T z, L x_{2 n}}(t)\right) g\left(F_{S T z, M z}(t)\right), g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) \\
& g\left(F_{S T z, L x_{2 n}}(t)\right), \frac{1}{2} g\left(F_{A B x_{2 n}, M z}(t)\right) g\left(F_{S T z, M z}(t)\right), \\
& \left.\left.g\left(F_{A B x_{2 n}, L x_{2 n}}^{2}(t)\right), g\left(F_{S T z, M z}^{2}(t)\right), g\left(F_{A B x_{2 n}, S T z}^{2}(t)\right)\right\}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
g\left(F_{z, M z}^{2}(t)\right) \leqslant \phi\left(g\left(F_{z, M z}^{2}(t)\right)\right)
$$

Hence, $z=M z$. Since $M(X) \subseteq A B(X)$, there exists a point $w \in X$ such that $M z=A B w=z$. At $x=w$ and $y=z$ in (2.2), we have:

$$
\begin{aligned}
g\left(F_{L w, M z}^{2}(t)\right) \leqslant & \phi\left(\operatorname { m a x } \left\{g\left(F_{A B w, L w}(t)\right) g\left(F_{S T z, M z}(t)\right), \frac{1}{2} g\left(F_{A B w, M z}(t)\right) g\left(F_{S T z, L w}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{A B w, L w}(t)\right) g\left(F_{A B w, M z}(t)\right), g\left(F_{S T z, L w}(t)\right) g\left(F_{S T z, M z}(t)\right) \\
& g\left(F_{A B w, L w}(t)\right) g\left(F_{S T z, L w}(t)\right), \frac{1}{2} g\left(F_{A B w, M z}(t)\right) g\left(F_{S T z, M z}(t)\right), \\
& \left.\left.g\left(F_{A B w, L w}^{2}(t)\right), g\left(F_{S T z, M z}^{2}(t)\right), g\left(F_{A B w, S T z}^{2}(t)\right)\right\}\right) \\
g\left(F_{L w, z}^{2}(t)\right) \leqslant & \phi\left(\max \left\{0,0,0,0, g^{2}\left(F_{z, L w}(t)\right), 0, g\left(F_{z, L w}^{2}(t)\right), 0,0\right\}\right) \\
\leqslant & \phi\left(g\left(F_{z, L w}^{2}(t)\right)\right)
\end{aligned}
$$

which means that $L w=z$. Since L and $A B$ are compatible of type (A) and $L w=A B w=z$, by proposition (1.4), $L z=L A B w=A B L w=A B z$. Again by using (2.2), we have $L z=z$. Therefore, $L z=A B z=M z=S T z=z$, i.e., z is a common fixed point of the mappings $L, A B, M$ and $S T$.
Step 3. We show the existence of the common fixed point at L be continuous.
As L is continuous and $(L, A B)$ is compatible of type (A), then $L^{2} x_{2 n}, A B L x_{2 n} \rightarrow$ $L z$. Putting $x=L x_{2 n}$ and $y=x_{2 n+1}$ in (2.2), we have:

$$
\begin{aligned}
& g\left(F_{L L x_{2 n}, M x_{2 n+1}}^{2}(t)\right) \leqslant \phi\left(\operatorname { m a x } \left\{g\left(F_{A B L x_{2 n}, L L x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{A B L x_{2 n}, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, L L x_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{A B L x_{2 n}, L L x_{2 n}}(t)\right) g\left(F_{A B L x_{2 n}, M x_{2 n+1}}(t)\right), \\
& g\left(F_{S T x_{2 n+1}, L L x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right), \\
& g\left(F_{A B L x_{2 n}, L L x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, L L x_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{A B L x_{2 n}, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right), \\
& \left.\left.g\left(F_{A B L x_{2 n}, L L x_{2 n}}^{2}(t)\right), g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}^{2}(t)\right), g\left(F_{A B L x_{2 n}, S T x_{2 n+1}}^{2}(t)\right)\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
g\left(F_{L z, z}^{2}(t)\right) & \leqslant \phi\left(\max \left\{0, \frac{1}{2} g^{2}\left(F_{L z, z}(t)\right), 0,0,0,0,0,0, g\left(F_{L z, z}^{2}(t)\right)\right\}\right) \\
& \leqslant \phi\left(g\left(F_{L z, z}^{2}(t)\right)\right)
\end{aligned}
$$

That is, $L z=z$.
Since $L(X) \subseteq S T(X)$, there exists a point $w_{1} \in X$ such that $L z=S T w_{1}=z$. At $x=x_{2 n}$ and $y=w_{1}$ in (2.2), we have:

```
\(g\left(F_{L x_{2 n}, M w_{1}}^{2}(t)\right) \leqslant \phi\left(\max \left\{g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T w_{1}, M w_{1}}(t)\right)\right.\right.\),
\(\frac{1}{2} g\left(F_{A B x_{2 n}, M w_{1}}(t)\right) g\left(F_{S T w_{1}, L x_{2 n}}(t)\right)\),
\(\frac{1}{2} g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{A B x_{2 n}, M w_{1}}(t)\right)\),
\(g\left(F_{S T w_{1}, L x_{2 n}}(t)\right) g\left(F_{S T w_{1}, M w_{1}}(t)\right)\),
\(g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T w_{1}, L x_{2 n}}(t)\right)\),
\(\frac{1}{2} g\left(F_{A B x_{2 n}, M w_{1}}(t)\right) g\left(F_{S T w_{1}, M w_{1}}(t)\right)\),
\(\left.\left.g\left(F_{A B x_{2 n}, L x_{2 n}}^{2}(t)\right), g\left(F_{S T w_{1}, M w_{1}}^{2}(t)\right), g\left(F_{A B x_{2 n}, S T w_{1}}^{2}(t)\right)\right\}\right)\).
```

Letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
g\left(F_{z, M w_{1}}^{2}(t)\right) & \leqslant \phi\left(\max \left\{0,0,0,0,0, \frac{1}{2} g^{2}\left(F_{z, M w_{1}}(t)\right), g\left(F_{z, M w_{1}}^{2}(t)\right), 0,0\right\}\right) \\
& \leqslant \phi\left(g\left(F_{z, M w_{1}}^{2}(t)\right)\right)
\end{aligned}
$$

which means that $M w_{1}=z$. AS M and $S T$ are compatible of type (A) and $M w_{1}=S T w_{1}=z$, by proposition $2.4, M z=M S T w_{1}=S T M w_{1}=S T z$. As in step 3 we have $M z=z$. Therefore, $L z=M z=S T z=z$.
As $M(X) \subseteq A B(X)$, there exists a point $w \in X$ such that $M z=A B w=z$. At $x=w$ and $y=z$ in (2.2), we have:

$$
\begin{aligned}
g\left(F_{L w, M z}^{2}(t)\right) \leqslant & \phi\left(\operatorname { m a x } \left\{g\left(F_{A B w, L w}(t)\right) g\left(F_{S T z, M z}(t)\right), \frac{1}{2} g\left(F_{A B w, M z}(t)\right) g\left(F_{S T z, L w}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{A B w, L w}(t)\right) g\left(F_{A B w, M z}(t)\right), g\left(F_{S T z, L w}(t)\right) g\left(F_{S T z, M z}(t)\right), \\
& g\left(F_{A B w, L w}(t)\right) g\left(F_{S T z, L w}(t)\right), \frac{1}{2} g\left(F_{A B w, M z}(t)\right) g\left(F_{S T z, M z}(t)\right), \\
& \left.\left.g\left(F_{A B w, L w}^{2}(t)\right), g\left(F_{S T z, M z}^{2}(t)\right), g\left(F_{A B w, S T z}^{2}(t)\right)\right\}\right), \\
g\left(F_{L w, z}^{2}(t)\right) \leqslant & \phi\left(\max \left\{0,0,0,0, g^{2}\left(F_{z, L w}(t)\right), 0, g\left(F_{z, L w}^{2}(t)\right), 0,0\right\}\right), \\
\leqslant & \phi\left(g\left(F_{z, L w}^{2}(t)\right)\right),
\end{aligned}
$$

which means that $L w=z$. Since L and $A B$ are compatible of type (A) and $L w=A B w=z$, by proposition (1.4), $z=L z=L A B w=A B L w=A B z$. Therefore, $L z=A B z=M z=S T z=z$, i.e., z is a common fixed point of the mappings $L, A B, M$ and $S T$.
Step 4. At the continuity of $A B$.
Since L and $A B$ are compatible of type (A), then by proposition (1.5),

$$
L A B x_{2 n}, A B A B x_{2 n} \rightarrow A B z .
$$

Using (2.2) at $x=A B x_{2 n}$ and $y=x_{2 n+1}$, we have:
$g\left(F_{L A B x_{2 n}, M x_{2 n+1}}^{2}(t)\right) \leqslant \phi\left(\max \left\{g\left(F_{A B A B x_{2 n}, L A B x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right)\right.\right.$,
$\frac{1}{2} g\left(F_{A B A B x_{2 n}, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, L A B x_{2 n}}(t)\right)$,
$\frac{1}{2} g\left(F_{A B A B x_{2 n}, L A B x_{2 n}}(t)\right) g\left(F_{A B A B x_{2 n}, M x_{2 n+1}}(t)\right)$,
$g\left(F_{S T x_{2 n+1}, L A B x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right)$,
$g\left(F_{A B A B x_{2 n}, L A B x_{2 n}}(t)\right) g\left(F_{S T x_{2 n+1}, L A B x_{2 n}}(t)\right)$,
$\frac{1}{2} g\left(F_{A B A B x_{2 n}, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right)$,
$\left.\left.g\left(F_{A B A B x_{2 n}, L A B x_{2 n}}^{2}(t)\right), g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}^{2}(t)\right), g\left(F_{A B A B x_{2 n}, S T x_{2 n+1}}^{2}(t)\right)\right\}\right)$.
Letting $i \rightarrow \infty$, yields

$$
\begin{aligned}
g\left(F_{A B z, z}^{2}(t)\right) & \leqslant \phi\left(\max \left\{0, \frac{1}{2} g^{2}\left(F_{A B z, z}(t)\right), 0,0,0,0,0,0, g\left(F_{A B z, z}^{2}(t)\right)\right\}\right) \\
& \leqslant \phi\left(g\left(F_{A B z, z}^{2}(t)\right)\right)
\end{aligned}
$$

Then, $A B z=z$.
Again by using (2.2) with $x=z$ and $y=x_{2 n+1}$, we have:
$g\left(F_{L z, M x_{2 n+1}}^{2}(t)\right) \leqslant \phi\left(\max \left\{g\left(F_{A B z, L z}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right)\right.\right.$,
$\frac{1}{2} g\left(F_{A B z, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, L z}(t)\right)$,
$\frac{1}{2} g\left(F_{A B z, L z}(t)\right) g\left(F_{A B z, M x_{2 n+1}}(t)\right), g\left(F_{S T x_{2 n+1}, L z}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right)$,
$g\left(F_{A B z, L z}(t)\right) g\left(F_{S T x_{2 n+1}, L z}(t)\right)$,
$\frac{1}{2} g\left(F_{A B z, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right)$,
$\left.\left.g\left(F_{A B z, L z}^{2}(t)\right), g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}^{2}(t)\right), g\left(F_{A B z, S T x_{2 n+1}}^{2}(t)\right)\right\}\right)$.
Letting $n \rightarrow \infty$, we have

$$
g\left(F_{L z, z}^{2}(t)\right) \leqslant \phi\left(g\left(F_{L z, z}^{2}(t)\right)\right) .
$$

Hence, $L z=z$.
Since $L(X) \subseteq S T(X)$, there exists a point $w_{1} \in X$ such that $L z=S T w_{1}=z$. At $x=z$ and $y=w_{1}$ in (2.2), we have:
$g\left(F_{L z, M w_{1}}^{2}(t)\right) \leqslant \phi\left(\max \left\{g\left(F_{A B z, L z}(t)\right) g\left(F_{S T w_{1}, M w_{1}}(t)\right)\right.\right.$,
$\frac{1}{2} g\left(F_{A B z, M w_{1}}(t)\right) g\left(F_{S T w_{1}, L z}(t)\right)$,
$\frac{1}{2} g\left(F_{A B z, L z}(t)\right) g\left(F_{A B z, M w_{1}}(t)\right), g\left(F_{S T w_{1}, L z}(t)\right) g\left(F_{S T w_{1}, M w_{1}}(t)\right)$,
$g\left(F_{A B z, L z}(t)\right) g\left(F_{S T w_{1}, L z}(t)\right), \frac{1}{2} g\left(F_{A B z, M w_{1}}(t)\right) g\left(F_{S T w_{1}, M w_{1}}(t)\right)$,
$\left.\left.g\left(F_{A B z, L z}^{2}(t)\right), g\left(F_{S T w_{1}, M w_{1}}^{2}(t)\right), g\left(F_{A B z, S T w_{1}}^{2}(t)\right)\right\}\right)$.
$g\left(F_{z, M w_{1}}^{2}(t)\right) \leqslant \phi\left(\max \left\{0,0,0,0,0, g^{2}\left(F_{z, M w_{1}}(t)\right), 0, g\left(F_{z, M w_{1}}^{2}(t)\right), 0\right\}\right)$,
$\leqslant \phi\left(g\left(F_{z, M w_{1}}^{2}(t)\right)\right)$.
which means that $M w_{1}=z$. Since M and $S T$ are compatible of type (A) and $M w_{1}=S T w_{1}=z$, by proposition $2.4, M z=M S T w_{1}=S T M w_{1}=S T z$. Again by using (2.2), we have $M z=z$. Therefore, $L z=A B z=M z=S T z=z$, i.e., z is a common fixed point of the mappings $L, A B, M$ and $S T$. By a similar way we can prove the theorem at M continuous.

Step 5. Putting $x=B z, y=x_{2 n+1}$ in (2.2), we get:

$$
\begin{aligned}
& g\left(F_{L B z, M x_{2 n+1}}^{2}(t)\right) \leqslant \\
& \phi\left(\operatorname { m a x } \left\{g\left(F_{A B B z, L B z}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{A B B z, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, L B z}(t)\right), \\
& \frac{1}{2} g\left(F_{A B B z, L B z}(t)\right) g\left(F_{A B B z, M x_{2 n+1}}(t)\right), \\
& g\left(F_{S T x_{2 n+1}, L B z}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right), \\
& g\left(F_{A B B z, L B z}(t)\right) g\left(F_{S T x_{2 n+1}, L B z}(t)\right), \\
& \frac{1}{2} g\left(F_{A B B z, M x_{2 n+1}}(t)\right) g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}(t)\right), \\
& \left.\left.g\left(F_{A B B z, L B z}^{2}(t)\right), g\left(F_{S T x_{2 n+1}, M x_{2 n+1}}^{2}(t)\right), g\left(F_{A B B z, S T x_{2 n+1}}^{2}(t)\right)\right\}\right) .
\end{aligned}
$$

As $B L=L B$ and $A B=B A$, so $L(B z)=B(L z)=B z$ and $A B B z=$ $B(A B z)=B z$. Letting $n \rightarrow \infty$, we have:

$$
\begin{aligned}
g\left(F_{B z, z}^{2}(t)\right) & \leqslant \phi\left(\max \left\{0, \frac{1}{2} g^{2}\left(F_{B z, z}(t)\right), 0,0,0,0,0,0, g\left(F_{B z, z}^{2}(t)\right)\right\}\right), \\
& \leqslant \phi\left(g\left(F_{B z, z}^{2}(t)\right)\right) .
\end{aligned}
$$

Since $A B z=z$ and $B z=z$, then $A z=z$. Thus,

$$
\begin{equation*}
z=L z=A z=B z \tag{2.9}
\end{equation*}
$$

Step 6. Putting $x=x_{2 n}$ and $y=T z$ in (2.2), we get:

$$
\begin{aligned}
& g\left(F_{L x_{2 n}, M T z}^{2}(t)\right) \leqslant \phi\left(\operatorname { m a x } \left\{g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T T z, M T z}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, M T z}(t)\right) g\left(F_{S T T z, L x_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{A B x_{2 n}, M T z}(t)\right), g\left(F_{S T T z, L x_{2 n}}(t)\right) g\left(F_{S T T z, M T z}(t)\right), \\
& g\left(F_{A B x_{2 n}, L x_{2 n}}(t)\right) g\left(F_{S T T z, L x_{2 n}}(t)\right), \\
& \frac{1}{2} g\left(F_{A B x_{2 n}, M T z}(t)\right) g\left(F_{S T T z, M T z}(t)\right), \\
& \left.\left.g\left(F_{A B x_{2 n}, L x_{2 n}}^{2}(t)\right), g\left(F_{S T T z, M T z}^{2}(t)\right), g\left(F_{A B x_{2 n}, S T T z}^{2}(t)\right)\right\}\right) .
\end{aligned}
$$

As $M T=T M$ and $S T=T S$, so $M(T z)=T(M z)=T z$ and $S T T z=$ $T(S T z)=T z$. Letting $n \rightarrow \infty$, we have: $g\left(F_{z, T z}^{2}(t)\right) \leqslant \phi\left(g\left(F_{z, T z}^{2}(t)\right)\right)$. Since $S T z=z$ and $T z=z$, then $S z=z$. Thus,

$$
\begin{equation*}
z=M z=S z=T z \tag{2.10}
\end{equation*}
$$

Combining (2.9) and (2.10), we have, $A z=B z=L z=M z=T z=S z=z$. Hence, the six mappings have a common fixed point in X.
Step 7. (Uniqueness)
Let z_{1} be another common fixed point of the mappings. Putting $x=z$ and $y=z_{1}$ in (2.2), yields:

```
\(g\left(F_{L z, M z_{1}}^{2}(t)\right) \leqslant \phi\left(\max \left\{g\left(F_{A B z, L z}(t)\right) g\left(F_{S T z_{1}, M z_{1}}(t)\right)\right.\right.\),
\(\frac{1}{2} g\left(F_{A B z, M z_{1}}(t)\right) g\left(F_{S T z_{1}, L z}(t)\right)\),
\(\frac{1}{2} g\left(F_{A B z, L z}(t)\right) g\left(F_{A B z, M z_{1}}(t)\right), g\left(F_{S T z_{1}, L z}(t)\right) g\left(F_{S T z_{1}, M z_{1}}(t)\right)\),
\(g\left(F_{A B z, L z}(t)\right) g\left(F_{S T z_{1}, L z}(t)\right), \frac{1}{2} g\left(F_{A B z, M z_{1}}(t)\right) g\left(F_{S T z_{1}, M z_{1}}(t)\right)\),
```

$\left.\left.g\left(F_{A B z, L z}^{2}(t)\right), g\left(F_{S T z_{1}, M z_{1}}^{2}(t)\right), g\left(F_{A B z, S T z_{1}}^{2}(t)\right)\right\}\right)$.

$$
\begin{aligned}
& \quad g\left(F_{z, z_{1}}^{2}(t)\right) \leqslant \phi\left(\operatorname { m a x } \left\{g\left(F_{z, z}(t)\right) g\left(F_{z_{1}, z_{1}}(t)\right), \frac{1}{2} g\left(F_{z, z_{1}}(t)\right) g\left(F_{z_{1}, z}(t)\right),\right.\right. \\
& \frac{1}{2} g\left(F_{z, z}(t)\right) g\left(F_{z, z_{1}}(t)\right), g\left(F_{z_{1}, z}(t)\right) g\left(F_{z_{1}, z_{1}}(t)\right), \\
& g\left(F_{z, z}(t)\right) g\left(F_{z_{1}, z}(t)\right), \frac{1}{2} g\left(F_{z, z_{1}}(t)\right) g\left(F_{z_{1}, z_{1}}(t)\right), \\
& \left.\left.g\left(F_{z, z}^{2}(t)\right), g\left(F_{z_{1}, z_{1}}^{2}(t)\right), g\left(F_{z, z_{1}}^{2}(t)\right)\right\}\right) . \\
& \quad g\left(F_{z, z_{1}}^{2}(t)\right) \leqslant \phi\left(\max \left\{0, g^{2}\left(F_{z, z_{1}}(t)\right), 0,0,0,0,0,0, g\left(F_{z, z_{1}}^{2}(t)\right)\right\}\right), \\
& \leqslant \phi\left(g\left(F_{z, z_{1}}^{2}(t)\right)\right) .
\end{aligned}
$$

Thus $z=z_{1}$ and z is the unique common fixed point of the mappings.

Acknowledgements : The authors would like to thank the referees for his comments and suggestions on the manuscript.

References

[1] S. S. Chang, Fixed point theorems for generalized Meir-Keeler type mappings, J. Sichuan Univ., Natural Sci. Edition, 2 (1983), 17-23.
[2] Y.J. Cho, K.S. Ha, S.S. Chang, Common fixed point theorems for compatible mappings of type (A) in non-Archimedean Menger PM-spaces, Math. Japon. 46 (1) (1997), 169-179.
[3] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771-779.
[4] G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japon., 38 (2)(1993), 381-390.
[5] V. I. Istrătescu, Fixed point theorems for some classes of contraction mappings on nonArchimedean probablistic spaces, Publ. Math. (Debrecen) 25 (1978), 29-34.
[6] I. Istrătescu, On some fixed point theorems with applications to the non-Archimedean Menger spaces, Attidella Acad. Naz. Lincei 58 (1975), 374379.
[7] V. I. Istrătescu and N. Crivat, On some classes of non-Archimedean probabilistic metric spaces, Seminar de spatii metrice probabiliste, Universitatea Timisoara, Nr. 12 (1974).
[8] B. Schweizer and A. Skiar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.
[9] V.M. Sehgal and A.T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. Systems Theory 6 (1972), 97-102.
[10] H. Sherwood, Complete probabilistic metric spaces, Z. Wahrsch, Verw Gebiete 20 (1971), 117-128.
[11] A. Singh, R. C. Dimiri and S. Bhatt, A common fixed point theorem for weakly compatible mappings in non-Archimedean Menger PM-spaces, Mat. Vesnik (Belgrad), 63 (4) (2011), 285-294.

Received by editors 12.04.2012; revised version 27.05.2012; available on internet 30.06.2012)

[^0]: 2010 Mathematics Subject Classification. 47H10; 54H25.
 Key words and phrases. Non-Archimedean Menger probabilistic metric spaces, Compatible mappings, Compatible mappings of type (A), Common fixed points.

 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt, e-mail: rr_rashwan54@yahoo.com

 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt, e-mail: shimaa13620011@yahoo.com

