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METHOD FOR SOLVING CERTAIN DIFFERENTIAL -

DIFFERENCE EQUATION OF ORDER (1, 2)

Ananth Kumar S. R. and R. Rangarajan

Abstract. Laplace decomposition method is based on Laplace transform

method and Adomian decomposition method. In this paper we show that

the method is applicable to certain successive interval valued linear as well as
nonlinear differential-difference equations of order (1, 2), that means the dif-

ferential is of order one and the difference is of order two. It is also shown that

the method gives exact solution for linear problems and suitable approximate
solution for nonlinear problems. Three problems are selected to illustrate the

applicability of the method.

1. Introduction

In the recent times, many researchers [6,8] are interested in solving a singu-
larly perturbed second order integro-differential-difference equation with one inter-
val condition involving left extreme point of the boundary and another boundary
condition at the right extreme of the boundary. The singular perturbation param-
eter and the delay parameter are selected as small as possible. Such problems play
an important role in variety of physical problems such as microscale heat trans-
fer, diffusion in polymers, control of chaotic systems and so on (relevant references
quoted in [8]). In the present paper, we formulate a different problem, namely,
an integro-differential-difference equation with differential order one and difference
of order two with only interval condition. This can be done by considering the
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following integro-differential-difference equation of order (2, 2) :

ε u′′(t) = u′(t)− [f(t) + F1(u(t− ω), u′(t− ω)) + F2(u(t− 2ω), u′(t− 2ω))

+
∫ t

0

G(u(t1 − 2ω))dt1].

We allow some times G ≡ 0. Then it will be a differential-difference equation of
order (2, 2). Further, if we set ε = 0, then it becomes differential-difference equation
of order (1, 2). Since it is a first order differential-difference equation, we avoid the
boundary condition at the right extreme and work with only one interval condition:

u(t) = k, t ∈ (0, 2ω).

Again only interval condition is used for integro-differential-difference equation of
order (1, 2).

In the present paper, we apply Laplace decomposition method for such prob-
lems. The method is motivated by Adomian decomposition method for solving
differential equations [1,2,5,7,10], Laplace transform method for solving differential-
difference equations [4] and Laplace decomposition method as well as Laplace de-
composition with Pade approximation for solving integro-differential equations [3].
It is shown in [9] that the method gives exact solution for linear problems and
suitable approximate solution for nonlinear problems related to integro-differential-
difference equation with both differential and difference of order one as well as one
interval condition.

The plan of the paper is as follows. In Section 2, we formulate the interval
valued problem (2.1) and describe the Laplace decomposition method. In Section
3, we illustrate the method with three distinct problems. In the final Section, we
give concluding remarks about the suitability of the method for both linear and
nonlinear problems.

2. Formulation of the interval valued problem and description of the
Laplace decomposition method

Let us consider the following integro-differential-difference equation with
differential order one and difference of order two:

u′(t) = f(t) + F1(u(t− ω), u′(t− ω)) + F2(u(t− 2ω), u′(t− 2ω))

+
∫ t

0

G(u(t1 − 2ω))dt1 t > 2ω,(2.1)

and the following interval condition:

u(t) = k, 0 6 t 6 2ω.(2.2)

In the above equations (2.1) and (2.2), ω > 0 and k are known constants, the
functions f , F1, F2 and G are either linear or nonlinear functions depending upon
the particular problem discussed. In order to apply Laplace decomposition method,
further they are selected in such a way that, they can be approximated by Adomian
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polynomial suitable for the iterative computation of Laplace transform as well as
inverse Laplace transform for u(t).

First we note that,∫ 2ω

0

u′(t) e−st dt = 0 as a result we have
∫ ∞

2ω

u′(t) e−st dt = L {u′(t)}.

Hence multiply both sides of (2.1) by e−st and integrate between 2ω and ∞ to get∫ ∞

2ω

u′(t) e−st dt =
∫ ∞

2ω

f(t) e−st dt +
∫ ∞

2ω

F1(u(t− ω), u′(t− ω)) e−st dt

+
∫ ∞

2ω

F2(u(t− 2ω), u′(t− 2ω)) e−st dt

+
∫ ∞

2ω

e−st

∫ t

0

G(u(t1 − 2ω))dt1 dt.

Let us apply suitable shifting of variables to obtain

L {u′(t)} = e−2ωsL {f(t + 2ω)}+ e−ωsL {F1(u(t), u′(t))} − λ e−ωs

s
(1− e−ωs)

+ e−2ωsL {F2(u(t), u′(t))}+ e−2ωsL

{∫ t

0

G(u(t1))dt1

}
,

where λ = F1(k, 0) and note that,
∫ t+2ω

2ω
G(u(t1 − 2ω))dt1 =

∫ t

0
G(u(t1))dt1.

Finally, we arrive at

L {u(t)} =
k

s
− λ e−ωs

s2
+

λ e−2ωs

s2
+

e−2ωs

s
L {f(t + 2ω)}

+
e−ωs

s
L {F1(u(t), u′(t))}+

e−2ωs

s
L {F2(u(t), u′(t))}

+
e−2ωs

s2
L {G(u(t))} .(2.3)

In this paper, we seek the following type of decomposition for the series solution
u(t):

u(t) =
∞∑

n=0

un(t− nω)e(t− nω),(2.4)

where e(t) is a unit step function, given by

e(t− c) = 0, t < c,

e(t− c) = 1, t > c.

By using (2.4), u(t) takes the following form in each of the following intervals:

u(t) =
N∑

n=0

un(t− nω), Nω 6 t 6 (N + 1)ω(2.5)

N = 0, 1, 2, . . . .
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On applying Laplace transformation, we obtain the following Laplace decomposi-
tions:

L {u(t)} =
∞∑

n=0

e−nωsL {un(t)} ,(2.6)

L {F1(u(t), u′(t))} =
∞∑

n=0

e−nωsL {An(t)} ,(2.7)

L {F2(u(t), u′(t))} =
∞∑

n=0

e−nωsL {Bn(t)}(2.8)

and L {G(u(t))} =
∞∑

n=0

e−nωsL {Cn(t)} .(2.9)

In (2.7), An
′s are the nth Adomian Polynomials [3] of F1(u(t), u′(t)) as given below:

A0(t) = F1(x, y) |(u0(t),u′
0(t))

,

A1(t) =
∂F1

∂x

∣∣∣∣
(u0(t),u′

0(t))

u1(t) +
∂F1

∂y

∣∣∣∣
(u0(t),u′

0(t))

u′1(t),

A2(t) =
∂F1

∂x

∣∣∣∣
(u0(t),u′

0(t))

u2(t) +
∂F1

∂y

∣∣∣∣
(u0(t),u′

0(t))

u′2(t)

+
1
2!

[
∂2F1

∂x2

∣∣∣∣
(u0(t),u′

0(t))

u2
1(t) + 2

∂2F1

∂x∂y

∣∣∣∣
(u0(t),u′

0(t))

u1(t) u′1(t)

+
∂2F1

∂y2

∣∣∣∣
(u0(t),u′

0(t))

(u′1(t))
2

]
and so on. In (2.8), Bn

′s are the nth Adomian Polynomials [3] of F2(u(t), u′(t)).
Let us note that B0, B1, B2, . . . are same as A0, A1, A2, . . . except for the fact that
F1 should be replaced by F2 throughout. In (2.9), Cn

′s are the nth Adomian
Polynomials [3] of G(u(t)) as given below:

C0(t) = G(u0(t)),
C1(t) = G′((u0(t)))u1(t),

C2(t) = G′((u0(t)))u2(t) +
1
2!

G′′((u0(t)))u2
1(t)

and so on. Applying the Laplace decompositions (2.6)− (2.9) in (2.3), we obtain
∞∑

n=0

e−nωsL {un(t)} =
k

s
− λ e−ωs

s2
+

λ e−2ωs

s2
+

e−2ωs

s
L {f(t + 2ω)}

+
e−ωs

s

∞∑
n=0

e−nωsL {An(t)}+
e−2ωs

s

∞∑
n=0

e−nωsL {Bn(t)}

+
e−2ωs

s2

∞∑
n=0

e−nωsL {Cn(t)} .(2.10)
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One may compute L {un(t)} iteratively as follows :

L {u0(t)} =
k

s
; L {u1(t)} = − k

s2
+

1
s
L {A0(t)}

L {u2(t)} =
λ

s2
+

1
s
L {f(t + 2ω)}+

1
s
L {A1(t)}+

1
s
L {B0(t)}+

1
s2

L {C0(t)}

L {un+1(t)} =
1
s
L {An(t)}+

1
s
L {Bn−1(t)}+

1
s2

L {Cn−1(t)} ,

n = 2, 3, 4, . . . .

The exact or approximate solution is obtained by using inverse laplace transform.

3. Illustrative examples

In this section, three test problems are worked out to illustrate the applica-
bility of the method.

Example 3.1. Consider the following linear differential-difference equation
with differential order one and difference of order two:

2u′(t)− u(t− ω) = u(t− 2ω), t > 2ω,(3.1)

with the interval condition

u(t) = 1, 0 6 t 6 2ω.(3.2)

Following the method for (3.1)− (3.2) , we directly arrive at

L {u(t)} =
1
s
− e−ωs

2s2
+

e−2ωs

2s2
+

e−ωs

2s
L {u(t)}+

e−2ωs

2s
L {u(t)} .(3.3)

Now applying the Laplace decomposition (2.6) in (3.3), we obtain
∞∑

n=0

e−nωsL {un(t)} =
1
s
− e−ωs

2s2
+

e−2ωs

2s2
+

e−ωs

2s

∞∑
n=0

e−nωsL {un(t)}

+
e−2ωs

2s

∞∑
n=0

e−nωsL {un(t)} .(3.4)

Equating the terms with co-efficient of e−nωs on both sides of (3.4) we get L {un(t)}.
An application of inverse Laplace transform will yield un(t):

u0(t) = 1 ; u1(t) = 0 and for n > 2 we have,

un(t) =
bn

2 c∑
r=1

(
n− r − 1

r − 1

)
tn−r

2n−r−1 · (n− r)!
, n > 2.(3.5)

As the next step of the method, using (3.5), we have

u(t) = 1 +
∞∑

n=2

bn
2 c∑

r=1

(
n− r − 1

r − 1

)
(t− nω)n−re(t− nω)

2n−r−1 · (n− r)!
, t > 0.(3.6)
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Further, using (3.6) we can find the exact solution of (3.1) in the interval wise:

u(t) = 1 +
N∑

n=2

bn
2 c∑

r=1

(
n− r − 1

r − 1

)
(t− nω)n−r

2n−r−1 · (n− r)!
, Nω 6 t 6 (N + 1)ω

N = 2, 3, 4, . . . .

When ω → 0, equation (3.1) becomes first order differential equation and when we
use (3.6), the solution becomes

u(t) = 1 +
∞∑

n=1

[(
n− 1

0

)
+

(
n− 1

0

)
+ · · ·+

(
n− 1
n− 1

)]
tn

2n−1 · n!

= 1 +
∞∑

n=1

tn

n!
= et.

Example 3.2. Consider the following nonlinear differential-difference equation
with differential order one and difference of order two.

u′(t) = 2− u(t− ω) + au3(t− 2ω), t > 2ω,(3.7)

with the interval condition:

u(t) = 1, 0 6 t 6 2ω.(3.8)

Following the method for (3.7)− (3.8) , we directly arrive at

L {u(t)} =
1
s

+
e−ωs

s2
+

e−2ωs

s2
− e−ωs

s
L {u(t)} − a

e−2ωs

s
L

{
u3(t)

}
.

(3.9)

Let us compute Laplace decomposition series

L
{
u3(t)

}
=

∞∑
n=0

e−nωsL {An(t)} ,(3.10)

where Ai
′s are Adomian Polynomials,

A0(t) = u3
0(t),

A1(t) = 3u2
0(t)u1(t),

A2(t) = 3u2
0(t)u2(t) + 3u0(t)u2

1(t),
A3(t) = 3u2

0(t)u3(t) + 3u0(t)u1(t)u2(t) + u3
1(t) and so on.

Now by using (2.6) and (3.10) in (3.9), we get,
∞∑

n=0

e−nωsL {un(t)} =
1
s

+
e−ωs

s2
+

e−2ωs

s2
− e−ωs

s

∞∑
n=0

e−nωsL {un(t)}

− a
e−2ωs

s

∞∑
n=0

e−nωsL {An(t)} .(3.11)

Equating the terms with co-efficient of e−nωs on both sides of (3.11) we get
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L {un(t)}. An application of inverse Laplace transform will yield un(t).
For 4ω 6 t 6 5ω, the approximate solution is

u(t) =
4∑

n=0

un(t− nω)

= 1 + (1− a)(t− 2ω)− (1− a)
(t− 3ω)2

2!

+ (1− a)
(t− 4ω)3

3!
+ 3a(1− a)

(t− 4ω)2

2!
.(3.12)

When ω → 0 and a = 0, equation (3.7) becomes linear first order differential
equation,

(3.13) u′(t) = 2− u(t)

and the exact solution is given by 2− e−t.

In this case applying Laplace decomposition method to (3.13), we get

un(t) = (−1)n tn−1

(n− 1)!
, n > 2

and hence

u(t) = 1 +
∞∑

n=2

un(t)

= 1 + t− t2

2!
+

t3

3!
− t4

4!
+ · · ·+ (−1)n tn−1

(n− 1)!
+ · · ·

= 2− e−t.

Example 3.3. Consider the following integro-differential-difference equation
with differential order one and difference of order two.

u′(t) = u(t− ω)u′(t− ω) +
∫ t

0

sin(u(t1 − 2ω)) dt1, t > 2ω,

(3.14)

with the interval condition:

u(t) = 1, 0 6 t 6 2ω.(3.15)

Following the method for (3.14)− (3.15) , we directly arrive at

L {u(t)} =
1
s

+
e−ωs

s
L {u(t)u′(t)}+

e−2ωs

s2
L {sin(u(t))} .(3.16)

The next step is to compute the following Laplace decomposition series for
L {u(t)u′(t)} and L {sin(u(t))} :
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L {u(t)u′(t)} =
∞∑

n=0

e−nωsL {Bn(t)} ,(3.17)

where Bi
′s are Adomian Polynomials,

Bn(t) = u0(t)u′n(t) + u1(t)u′n−1(t) + · · ·+ un(t)u′0(t), for n > 0

and L {sin(u(t))} =
∞∑

n=0

e−nωsL {Cn(t)} ,(3.18)

where Ci
′s are Adomian Polynomials given below,

C0(t) = sin(u0(t)).
C1(t) = u1(t) cos(u0(t)).

C2(t) = u2(t) cos(u0(t))−
1
2
u2

1(t) sin(u0(t)).

C3(t) = u3(t) cos(u0(t))− u1(t)u2(t) sin(u0(t))−
1
6
u3

1(t) cos(u0(t))

and so on.

Now by using (2.6), (3.17) and(3.18) in (3.16), we get,
∞∑

n=0

e−nωsL {un(t)} =
1
s

+
e−ωs

s

∞∑
n=0

e−nωsL {Bn(t)}

+
e−2ωs

s2

∞∑
n=0

e−nωsL {Cn(t)} .(3.19)

Equating the terms with co-efficient of e−nωs on both sides of (3.19) we get
L {un(t)}. An application of inverse Laplace transform will yield un(t).
For 4ω 6 t 6 5ω, the approximate solution is

u(t) ≈
4∑

n=0

un(t− nω)

= 1 + sin(1)
(t− 2ω)2

2!
+ sin(1)

(t− 3ω)2

2!

+ sin(1)
(t− 4ω)2

2!
+ sin(1) cos(1)

(t− 4ω)4

4!
.(3.20)

In this way, we can continue and workout higher level approximate solutions.

4. Conclusion

The above three illustrative examples clearly demonstrate the fact that
Laplace decomposition method transforms a differential-difference equation or a
integro-differential-difference equation with differential order one and difference or-
der two with a given interval condition into an algebraic equation suitable for
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applying inverse Laplace transformation technique. Finally this results into a se-
ries expression involving unit step functions which represents the solution. It is
interesting to note that one can get exact solution in the case of a linear problem.
However in the case of a nonlinear problem, one can compute iteratively approx-
imate solutions without any hassles. If the nonlinear problem has a closed form
solution, then after certain stage, every iteration leads to the same exact solution.
Hence this method is suitable for both linear and nonlinear problems.
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