COMPLEMENTARY TREE VERTEX EDGE DOMINATION

S.V. Siva Rama Raju, I.H. Nagaraja Rao, and A. Narasimha Rao

Abstract

The concept of complementary tree vertex edge dominating set (ctved-set) of a finite, connected graph G is introduced and characterization result for a non empty proper subset of the vertex set V of G to be a ctved-set is obtained. The minimum cardinality of a ctved-set is denoted by $\gamma_{c t v e}(G)$ and is called as ctved number of G. Bounds for this parameter as well, are obtained. Further, the graphs of order n for which the ctved numbers are $1,2, n-1$ are characterized. Trees having ctved $-n u m b e r s n-2, n-3$ are also characterized. Exact values of this parameter for some standard graphs are given.

1. Introduction

The concept of domination introduced by Ore [5] is an active topic in graph theory and has numerous applications to distributed computing, the web graph and adhoc networks. Haynes et al. ([2]) gave a comprehensive introduction to theoretical and applied facets of domination in graphs.

For ready reference, we here - under give the necessary notation, definitions used in the subsequent work.

All the graphs considered in this paper are undirected, simple, finite and connected.

2. Preliminaries

We, first give a few definitions, observations and results that are useful for development in the succeeding articles.

[^0]Definition. The girth of a graph G, denoted by $g(G)$ is defined as the length of a shortest cycle in G.

Definition. By a sector graph of order n, we mean a graph obtained by introducing a new vertex and joining it to each vertex of a path of order $n-1$ and is denoted by Λ_{n}.

Definition. A support vertex in G is a non pendant vertex adjacent to a pendant vertex.

Definition ([5]) A subset D of the vertex set V of G is said to be a dominating set of G if each vertex in $V-D$ is adjacent to some vertex of D. The domination number $\gamma(G)$ is the minimum cardinality of the dominating set of G.

Definition ([6]) A subset D of the vertex set V of G is a connected dominating set if it is a dominating set and the subgraph induced by $D($ i.e. $<D>$) is connected. The connected domination number denoted by $\gamma_{c}(G)$ is the cardinality of a minimum connected dominating set in G.

Definition ([3]) A dominating set D of a connected graph G is a non split dominating set, if the induced subgraph $\langle V-D\rangle$ is connected in G. The non split domination number $\gamma_{n s}(G)$ of G is the minimum cardinality of a non split dominating set in G.

Definition ([5]) A subset D of V is said to be a vertex edge dominating set(ved - set) of G if each edge in G has either one of its ends from D or one of its ends is adjacent to a vertex in D. The vertex edge domination number $\gamma_{v e}(G)$ is the minimum cardinality of the vertex edge dominating set of G.

Many variants of vertex - vertex, edge - edge, vertex - edge, edge - vertex dominating sets have been studied. In the present paper, we introduce a new variant of vertex - edge dominating set named as complementary tree vertex edge dominating set.

Definition 1.1. A ved - set D of a (connected) graph G is said to be a complementary tree vertex edge dominating set $($ ctved $-s e t)$ of G iff the subgraph induced by $V-D$ (i.e $<V-D>$) is a tree.

A ctved - set of minimum cardinality is called a minimum ctved - set (mctvedset) of G. This minimum cardinality is called the complementary tree vertex edge domination number of G and is denoted by $\gamma_{c t v e}(G)$. Any mctved - set of G is referred by $\gamma_{\text {ctve }}(G)-$ set.

For standard terminology and notation, we refer Bondy \& Murthy ([1]).
Unless otherwise stated, by G we mean a finite, simple, connected graph with n vertices and e edges.

3. Characterization and other relevant results

In this section, we initially state characterization result for a proper subset of the vertex set of G to be a ctved-set of G. There after we give the bounds for this parameter in terms of various other parameters.

Theorem 3.1. (Characterization Result) A non empty proper subset D of the vertex set V of a graph G is a ctved - set in G iff the following are satisfied:
(i) $F=\{x y \in E(G) /$ atleast one of x, y is in $D\}$ is an edge dominating set of G.
(ii) D is not a vertex cut in G
(ii) Any cycle in G has atleast one vertex from D.

Proof. Trivial
Theorem 3.2. For a graph G,

$$
\left\lceil\frac{2(n-1)-e}{2}\right\rceil \leqslant \gamma_{c t v e}(G)
$$

$(\lceil x\rceil$ denotes the smallest integer $\geqslant x$).
Proof. Suppose that D is a $\gamma_{\text {ctve }}(G)-$ set. So, follows that $\langle V-D\rangle$ is a tree. Hence it has $n-\gamma_{c t v e}(G)$ vertices and $n-\gamma_{c t v e}(G)-1$ edges. Clearly each edge in $\langle V-D\rangle$ is dominated by a vertex in D. This implies corresponding to each edge in $\langle V-D\rangle$, there is an edge in $G-\langle V-D\rangle$. Hence,

$$
e \geqslant 2\left(n-\gamma_{c t v e}(G)-1\right) \Rightarrow\left\lceil\frac{2(n-1)-e}{2}\right\rceil \leqslant \gamma_{c t v e}(G)
$$

Note. The bound is attained if $G \cong C_{n}, n \geqslant 3$.
Corollary 3.1. If G is a tree, then

$$
\left\lceil\frac{e}{2}\right\rceil \leqslant \gamma_{\text {ctve }}(G)
$$

Proof. The result follows since $e=n-1$.
Note. The bound is attained in the case of P_{4}.
Proposition 3.1. (1) For any path P_{n} with $n \geqslant 5$, $\gamma_{\text {ctve }}\left(P_{n}\right)=n-3$.
(2) For any cycle C_{n} with $n \geqslant 5$, $\gamma_{\text {ctve }}\left(C_{n}\right)=n-3$.
(3) For any complete bipartite graph $K_{m, p}$ with $m+p \geqslant 4$, $\gamma_{\text {ctve }}\left(K_{m, p}\right)=m+p-3$.
(4) For the complete bipartite graph $K_{2,1}, \gamma_{c t v e}\left(K_{2,1}\right)=2$.
(5) For any star graph $K_{1, p}, \gamma_{\text {ctve }}\left(K_{1, p}\right)=1$.
(6) For any bistar graph $S_{m, p}, \gamma_{c t v e}\left(S_{m, p}\right)=\min \{m+1, p+1\}$.
(7) For any complete graph $K_{n}(n \geqslant 3)$, $\gamma_{\text {ctve }}\left(K_{n}\right)=n-2$.
(8) $\gamma_{c t v e}\left(C_{p} o K_{1}\right)=p+1$, where $C_{p} o K_{1}$ is the corona of C_{p} and K_{1} and ($p \geqslant 5$).
(9) For any Wheel Graph $W_{p}, \gamma_{c t v e}\left(W_{p}\right)=2$.

Theorem 3.3. For a graph G with $g(G) \geqslant 4$,

$$
\gamma_{c t v e}(G) \leqslant n-\Delta(G)
$$

Proof. Let v be a vertex in G such that $d_{G}(v)=\Delta(G)$. Then $(V-N[v]) \bigcup\left\{v_{i}\right\}$ (v_{i} is a neighbour of v) is a ctved - set in G. Hence, $\gamma_{c t v e}(G) \leqslant n-\Delta(G)$.

Note. The bound is attained in the case of $<v_{1} v_{2} v_{3} v_{4} v_{1}>\bigcup\left\{v_{1} v_{5}\right\}$.
Corollary 3.2. For a graph G with $g(G) \geqslant 4 \& \delta(G) \geqslant 2$,

$$
\gamma_{c t v e}(G) \leqslant n-\Delta(G)-1
$$

Proof. Let $d_{G}(v)=\Delta(G)$. Then $(V-N[v])$ is a ctved - set in G. Hence, $\gamma_{\text {ctve }}(G) \leqslant n-\Delta(G)-1$.

Theorem 3.4. For any tree T with $n \geqslant 4$,

$$
\gamma_{c t v e}(T) \leqslant n-\max \{d(u): u \text { is a support vertex in } T\} .
$$

Proof. Let v be a support vertex in T. Then $(V-N[v]) \bigcup\left\{v_{i}\right\}\left(v_{i}\right.$ is a non pendant neighbour of v) is a ctved - set in T of cardinality $n-d(v)$. Hence the inequality holds.

Note. The bound is attained for $P_{n}, n \geqslant 4$.

Observations 3.1. 1. $\gamma_{c t v e}(G) \leqslant \gamma_{c t v e}(H)$, where H is a spanning subgraph of G.
2. For a graph G with atleast two vertices, $1 \leqslant \gamma_{\text {ctve }}(G) \leqslant n-1$.

Theorem 3.5. G be a graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $\gamma_{c t v e}(G)$ $=n-1$ iff $G=P_{2}$.

Proof. Assume that $\gamma_{c t v e}(G)=n-1$. Then $D=V-\left\{v_{n}\right\}$ is a ctved - set in G. If $\operatorname{diam}(G) \geqslant 3$, then we have a ctved - set $D^{\prime} \subset D$ of cardinality atmost $n-2$. This contradicts our assumption. Hence $\operatorname{diam}(G) \leqslant 2$.

Let $\operatorname{diam}(G)=2$. Suppose that G has pendant vertices, say $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. Since $\operatorname{diam}(G)=2$, all the pendant vertices are adjacent to u (say). Clearly all the vertices in $V-\left\{u, u_{1}, u_{2}, \ldots, u_{m}\right\}$ are adjacent to u.

Suppose G has non pendant edges. Let $x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{t} y_{t}$ be the non pendant edges in G. Then by the nature of $u,\left\{x_{1}, x_{2}, \ldots, x_{t}, y_{1}, y_{2}, \ldots, y_{t}\right\}$ forms a ctved - set in G of cardinality atmost $n-2$, a contradiction to our assumption. Hence G has no non pendant edges i.e $G \cong K_{1, p}$. By Proposition.2.4(5), $\gamma_{\text {ctve }}(G)=1<n-1$, a contradiction.
Hence follows that $\operatorname{diam}(G)=1$. This implies $G=P_{2}$.
The converse part is clear.
Theorem 3.6. T be a tree with $n \geqslant 4$. Then $\gamma_{\text {ctve }}(T)=2$ if and only if T is obtained by adding zero or more leaves to exactly one support vertex in P_{4}.

Proof. Assume that $\gamma_{c t v e}(T)=2$.
Let $D=\left\{v_{1}, v_{2}\right\}$ be a ctved - set in T. By the property of $D,<D>$ is connected and exactly one of v_{1}, v_{2} is a pendant vertex in T. W.l.g assume that v_{1} is a
pendant vertex in T. Now $\operatorname{diam}(T)=3$. Let $\left\langle v_{1} v_{2} v_{3} v_{4}\right\rangle$ be a diametral path in T. Clearly by the property of D, no vertex other than v_{3} can be adjacent to v_{2}. Since $\operatorname{diam}(T)=3$, any vertex in $V-\left\{v_{1}, v_{2}, v_{4}\right\}$ is adjacent to v_{3}. Hence $T=P_{4}$ or T is obtained by adding zero or more leaves to exactly one support vertex which is v_{3}.

The converse part is clear.
Theorem 3.7. For a graph G,

$$
\gamma_{\text {ctve }}(G)+\Delta(G) \leqslant 2 n-2
$$

Proof. Since $\Delta(G) \leqslant n-1$ and $\gamma_{\text {ctve }}(G) \leqslant n-1$, the result follows.
Theorem 3.8. For any graph G, $\gamma_{c t v e}(G)+\Delta(G)=2 n-2$ if and only if $G=P_{2}$.

Proof. Suppose $\gamma_{\text {ctve }}(G)+\Delta(G)=2 n-2$. This is possible only when $\gamma_{\text {ctve }}(G)=n-1$ and $\Delta(G)=n-1$. Then by Theorem.2.8, $G=P_{2}$.
The converse part is clear.
Theorem 3.9. If G is a graph with $\delta(G)>1$, then $\gamma_{\text {ctve }}(G)=2$ if and only if there is an edge $f=u v$ in G satisfying the following :
(i) Each edge e^{\prime} in $E-\{u v\}$ is vertex edge dominated(ve - dominated) by u or v.
(ii) e^{\prime} lies on a cycle containing the edge $u v$ in G.
(iii) G is not a union of $k-\operatorname{cycles}(k \leqslant 4)$ having uv as the common edge.

Proof. Assume that $\gamma_{c t v e}(G)=2$. Let $D=\{u, v\}$ be a ctved - set in G. Clearly $\left\langle D>\right.$ is connected i.e $u v$ is an edge in G. Let $e^{\prime}=x y$ be an edge in $E-\{u v\}$. By the definition of $D, e^{\prime}=x y$ is $v e-$ dominated by a vertex in D. Now, we have two possibilities.

Case: $1 x=u$ or $y=v$.
W.l.g assume that $x=u$ i.e f, e^{\prime} are adjacent. Then $\langle y x v\rangle$ is a path in G. Since G is connected there is a $y-v$ path in G. If all the $y-v$ paths in G are through x then $<V-D>$ is disconnected, a contradiction since D is a ctved - set in G. Hence there is a $y-v$ path in G edge disjoint with the path $\langle y x v\rangle$. Now the union of the former path with the later gives a cycle that contains the edges $x y, u v$.

Case:2 $x \neq u$ and $y \neq v$.
If $x y$ is $v e$-dominated by both u and v, then there is a cycle containing both the edges $x y, u v$. If not, then as in the Case:1, we get a contradiction to the fact that D is a ctved - set in G.

Hence condition (ii) holds. Clearly condition (iii) holds.
In the converse case, clearly $D=\{u, v\}$ is a (connected) ve - dominating set in G of cardinality two and obviously a ctved - set. Hence $\gamma_{c t v e}(G) \leqslant 2$. If $\gamma_{c t v e}(G)=1$, then we get a contradiction to (iii). Hence $\gamma_{c t v e}(G)=2$.

Note. 1. Any ctve - dominating set in G is a ve-dominating set in G. Hence $\gamma_{v e}(G) \leqslant \gamma_{c t v e}(G)$.
2. A non split dominating set for G is a ctved - set in G. Hence $\gamma_{c t v e}(G) \leqslant \gamma_{n s}(G)$.

The following two are consequences.
Proposition 3.2. $\gamma_{v e}\left(P_{n}\right)=\gamma_{\text {ctve }}\left(P_{n}\right)$ iff $n \leqslant 3$.
Proposition 3.3. $\gamma_{v e}\left(C_{n}\right)=\gamma_{\text {ctve }}\left(C_{n}\right)$ iff $n \leqslant 5$.
Theorem 3.10. Let T be a tree and D be the set of all pendant vertices in T. Then D is a ctved - set of G iff each edge of degree atleast two is a support edge in T.

Proof. Assume that each edge of degree two in T is a support edge. Then D is a ved - set of T. Since $\langle V-D>$ is a tree follows that D is a ctved - set in T. Conversely, let e^{\prime} be an edge in T such that $\operatorname{deg}\left(e^{\prime}\right) \geqslant 2$. If e^{\prime} is not a support edge in T, then none of the ends of e^{\prime} is adjacent to a vertex in D, which is a contradiction.

Thus the result is proved.
Theorem 3.11. Let T be a tree, then $\gamma_{c t v e}(T)=n-2$ if and only if $T=P_{3}$ or $T=P_{4}$.

Proof. Assume that $\gamma_{\text {ctve }}(T)=n-2$. Clearly T cannot have adjacent pendant vertices. So any support vertex cannot be adjacent to more than one pendant vertex. If T has a path $<v_{1} v_{2} v_{3} v_{4} v_{5}>$, then $V-\left\{v_{2}, v_{3}, v_{4}\right\}$ is a ctved - set in T of cardinality at most $n-3$, a contradiction to our assumption. So $\operatorname{diam}(G) \leqslant 3$.

Suppose $\operatorname{diam}(T)=3$. Let $\left.<v_{1} v_{2} v_{3} v_{4}\right\rangle$ be a diametral path in T. If there are pendant vertices adjacent to v_{2}, v_{3}, other than v_{1}, v_{4}, then $\gamma_{c t v e}(T) \leqslant n-3$, a contradiction to our assumption. So $\left.T=<v_{1} v_{2} v_{3} v_{4}\right\rangle=P_{4}$.

Suppose $\operatorname{diam}(T)=2$. If T has more than two pendant vertices, then $\gamma_{c t v e}(T)$ $\leqslant n-2$, a contradiction to our assumption. Hence T has exactly two pendant vertices. So $T=P_{3}$.

The converse part is clear.
Corollary 3.3. For a tree T with $n \geqslant 3$,

$$
\gamma_{\text {ctve }}(T)+\Delta(T) \leqslant 2 n-3 .
$$

Furthermore, $\gamma_{\text {ctve }}(T)+\Delta(T)=2 n-3$ if and only if $T=K_{1,1}$ or $T=S_{1,1}$.
Proof. The proof follows by the above result and the fact that $\Delta(T) \leqslant n-$ 1.

Corollary 3.4. For a tree T with $n \geqslant 3, \gamma_{\text {ctve }}(T) \leqslant n-3$.
Proof. The proof follows by the above result and the fact that $\delta(T)=1$.
Theorem 3.12. For a tree T with $n \geqslant 5, \gamma_{\text {ctve }}(T)=n-3$ if and only if any of the following holds:
(i) There is a support vertex v adjacent to atmost two pendant vertices such that $\Delta(G)=d(v)=3$.
(ii) $T=P_{n}$

Proof. Assume that $\gamma_{\text {ctve }}(T)=n-3$. Let $V-\left\{v_{1}, v_{2}, v_{3}\right\}$ be a $\gamma_{c t v e}(T)-$ set. By definition of ctved - set, atmost two of $\left\{v_{1}, v_{2}, v_{3}\right\}$ can be (adjacent)pendant vertices and adjacent with the third vertex.

Case: 1 Suppose that two of $\left\{v_{1}, v_{2}, v_{3}\right\}$ are pendant vertices.
W.l.g assume the vertices to be v_{1}, v_{2}. Then they are adjacent with v_{3}. Clearly v_{3} is a support vertex of degree atleast three. If $d\left(v_{3}\right)>3$, then $\left(V-N\left[v_{3}\right]\right) \bigcup\{v\}(v$ is a non pendant neighbour of v_{3}) is a ctved - set of cardinality atmost $n-4$, a contradiction to our assumption. So $\Delta(G) \geqslant 3$.
Suppose that there is a vertex v of degree k, where $k \geqslant 4$. Clearly $(V-N[v]) \bigcup\{u\}(u$ is a non pendant neighbour of v) is a ctved - set of cardinality atmost $n-4$, a contradiction to our assumption. Therefore $\Delta(G)=3=d\left(v_{3}\right)$, where v_{3} is a support vertex in T.

Case: 2 Suppose exactly one of v_{1}, v_{2}, v_{3} is a pendant vertex.
W.l.g assume that v_{1} is a pendant vertex. By definition, one of v_{2}, v_{3} is a support vertex. W.l.g assume that v_{2} is the support vertex. Since $n \geqslant 4, d\left(v_{2}\right) \geqslant 3$. If $d\left(v_{2}\right)>3$, then as in the case:1, we get a contradiction to our assumption. Hence in this case also claimant holds.

Case: 3 Suppose that none of $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a pendant vertex. By definition of ctved - set, one of v_{1}, v_{2}, v_{3} is a common neighbour of the remaining two. W.l.g assume that v_{2} is a common neighbour of v_{1}, v_{3}. By our supposition and by proposition.2.4(i), $T=P_{n}$.

The converse part is clear.
Acknowledgement. The authors express their gratitude to the referees for the useful suggestions.

References

[1] J.A.Bondy \& U.S.R Murthy, Graph theory with Applications, The Macmillan Press Ltd, (1976).
[2] Haynes T.W., Hedetneimi S.T. and Slater P.J. (eds.), Fundamentals of Dominations in Graphs,, Marcel Dekker, New York,1998.
[3] Kulli V.R, Janakiram B., The non split domination number of a graph., Indian J. Pure Appl. Math., vol. 31(5) (2000), 545-550.
[4] Laskar R., Peters K., Vertex and edge dominating parameters in Graphs., Congr. Numer. vol. 48 (1985), 291-305
[5] Ore O., Theory of Graphs. Amer. Math. Soc. Colloq. Publ., Vol. 38, Providence (1962).
[6] Sampathkumar E., Walikar H.B., The connected domination number of a graph. J. Math. Phy. Sci., 13(6), (1979), 607-613.

Department Of Mathematics, M.V.G.R.College of Engineering, Chinthalavalasa, Vizianagaram., India. E-mail address: shivram2006@yahoo.co.in

Department Of Mathematics, G.V.P.College for P.G.Courses, Rushikonda, Visakhapatnam, India. E-mail address: ihnrao@yahoo.com

Department Of Mathematics, Aditya Degree College, Visakhapatnam., India. E-mail address: anr1357anr@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C69.
 Key words and phrases. dominating set, vertex edge dominating set.
 Received by editors 04.02.2013; revised version 04.05.2013; available online 13.05.2013.

