BULLETIN OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 1840-4367 Vol. 3(2013), 77-83 www.imvibl.org

> Former BULLETIN OF SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

COMPLEMENTARY TREE VERTEX EDGE DOMINATION

S.V. Siva Rama Raju, I.H. Nagaraja Rao, and A. Narasimha Rao

ABSTRACT. The concept of complementary tree vertex edge dominating set (*ctved*-set) of a finite, connected graph G is introduced and characterization result for a non empty proper subset of the vertex set V of G to be a *ctved*-set is obtained. The minimum cardinality of a *ctved*-set is denoted by $\gamma_{ctve}(G)$ and is called as *ctved* number of G. Bounds for this parameter as well, are obtained. Further, the graphs of order n for which the *ctved* numbers are 1, 2, n-1 are characterized. Trees having *ctved* – *numbers* n-2, n-3 are also characterized. Exact values of this parameter for some standard graphs are given.

1. Introduction

The concept of domination introduced by Ore [5] is an active topic in graph theory and has numerous applications to distributed computing, the web graph and adhoc networks. Haynes *et al.* ([2]) gave a comprehensive introduction to theoretical and applied facets of domination in graphs.

For ready reference, we here - under give the necessary notation, definitions used in the subsequent work.

All the graphs considered in this paper are undirected, simple, finite and connected.

2. Preliminaries

We, first give a few definitions, observations and results that are useful for development in the succeeding articles.

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. dominating set, vertex edge dominating set.

Received by editors 04.02.2013; revised version 04.05.2013; available online 13.05.2013.

Definition. The girth of a graph G, denoted by g(G) is defined as the length of a shortest cycle in G.

Definition. By a sector graph of order n, we mean a graph obtained by introducing a new vertex and joining it to each vertex of a path of order n-1 and is denoted by \bigwedge_n .

Definition. A support vertex in G is a non-pendant vertex adjacent to a pendant vertex.

Definition ([5]) A subset D of the vertex set V of G is said to be a dominating set of G if each vertex in V - D is adjacent to some vertex of D. The domination number $\gamma(G)$ is the minimum cardinality of the dominating set of G.

Definition ([6]) A subset D of the vertex set V of G is a connected dominating set if it is a dominating set and the subgraph induced by D(i.e. < D >) is connected. The connected domination number denoted by $\gamma_c(G)$ is the cardinality of a minimum connected dominating set in G.

Definition ([3]) A dominating set D of a connected graph G is a non split dominating set, if the induced subgraph $\langle V - D \rangle$ is connected in G. The non split domination number $\gamma_{ns}(G)$ of G is the minimum cardinality of a non split dominating set in G.

Definition ([5]) A subset D of V is said to be a vertex edge dominating set(ved - set) of G if each edge in G has either one of its ends from D or one of its ends is adjacent to a vertex in D. The vertex edge domination number $\gamma_{ve}(G)$ is the minimum cardinality of the vertex edge dominating set of G.

Many variants of vertex - vertex, edge - edge, vertex - edge, edge - vertex dominating sets have been studied. In the present paper, we introduce a new variant of vertex - edge dominating set named as complementary tree vertex edge dominating set.

Definition 1.1. A *ved*-*set* D of a (connected)graph G is said to be a complementary tree vertex edge dominating set(*ctved*-*set*) of G iff the subgraph induced by V - D(i.e $\langle V - D \rangle$) is a tree.

A ctved-set of minimum cardinality is called a minimum ctved-set(mctvedset) of G. This minimum cardinality is called the complementary tree vertex edge domination number of G and is denoted by $\gamma_{ctve}(G)$. Any mctved-set of G is referred by $\gamma_{ctve}(G)$ -set.

For standard terminology and notation, we refer Bondy & Murthy ([1]).

Unless otherwise stated, by G we mean a finite , simple, connected graph with n vertices and e edges.

3. Characterization and other relevant results

In this section, we initially state characterization result for a proper subset of the vertex set of G to be a *ctved*-set of G. There after we give the bounds for this parameter in terms of various other parameters.

THEOREM 3.1. (Characterization Result) A non empty proper subset D of the vertex set V of a graph G is a ctved – set in G iff the following are satisfied: (i) $F = \{xy \in E(G) | atleast one of x, y is in D\}$ is an edge dominating set of G. (ii) D is not a vertex cut in G

(ii) Any cycle in G has atleast one vertex from D.

PROOF. Trivial

THEOREM 3.2. For a graph G,

$$\lceil \frac{2(n-1)-e}{2} \rceil \leqslant \gamma_{ctve}(G).$$

 $(\lceil x \rceil \text{ denotes the smallest integer} \ge x).$

PROOF. Suppose that D is a $\gamma_{ctve}(G) - set$. So, follows that $\langle V - D \rangle$ is a tree. Hence it has $n - \gamma_{ctve}(G)$ vertices and $n - \gamma_{ctve}(G) - 1$ edges. Clearly each edge in $\langle V - D \rangle$ is dominated by a vertex in D. This implies corresponding to each edge in $\langle V - D \rangle$, there is an edge in $G - \langle V - D \rangle$. Hence,

$$e \ge 2(n - \gamma_{ctve}(G) - 1) \Rightarrow \lceil \frac{2(n-1) - e}{2} \rceil \leqslant \gamma_{ctve}(G)$$

Note. The bound is attained if $G \cong C_n, n \ge 3$.

COROLLARY 3.1. If G is a tree, then

$$\left\lceil \frac{e}{2} \right\rceil \leqslant \gamma_{ctve}(G).$$

PROOF. The result follows since e = n - 1.

Note. The bound is attained in the case of P_4 .

PROPOSITION 3.1. (1) For any path P_n with $n \ge 5$, $\gamma_{ctve}(P_n) = n - 3$.

- (2) For any cycle C_n with $n \ge 5$, $\gamma_{ctve}(C_n) = n 3$.
- (3) For any complete bipartite graph $K_{m,p}$ with $m + p \ge 4$, $\gamma_{ctve}(K_{m,p}) = m + p - 3.$
- (4) For the complete bipartite graph $K_{2,1}$, $\gamma_{ctve}(K_{2,1}) = 2$.
- (5) For any star graph $K_{1,p}$, $\gamma_{ctve}(K_{1,p}) = 1$.
- (6) For any bistar graph $S_{m,p}$, $\gamma_{ctve}(S_{m,p}) = min\{m+1, p+1\}$.
- (7) For any complete graph $K_n (n \ge 3)$, $\gamma_{ctve}(K_n) = n 2$.
- (8) $\gamma_{ctve}(C_p o K_1) = p + 1$, where $C_p o K_1$ is the corona of C_p and K_1 and $(p \ge 5)$.
- (9) For any Wheel Graph W_p , $\gamma_{ctve}(W_p) = 2$.

THEOREM 3.3. For a graph G with $g(G) \ge 4$,

$$\gamma_{ctve}(G) \leq n - \Delta(G).$$

PROOF. Let v be a vertex in G such that $d_G(v) = \Delta(G)$. Then $(V-N[v]) \bigcup \{v_i\}$ $(v_i \text{ is a neighbour of } v)$ is a *ctved* - *set* in G. Hence, $\gamma_{ctve}(G) \leq n - \Delta(G)$. \Box

Note. The bound is attained in the case of $\langle v_1 v_2 v_3 v_4 v_1 \rangle \bigcup \{v_1 v_5\}$.

COROLLARY 3.2. For a graph G with $g(G) \ge 4 \& \delta(G) \ge 2$, $\gamma_{ctve}(G) \le n - \Delta(G) - 1.$

PROOF. Let $d_G(v) = \Delta(G)$. Then (V - N[v]) is a *ctved* - *set* in *G*. Hence, $\gamma_{ctve}(G) \leq n - \Delta(G) - 1$.

THEOREM 3.4. For any tree T with $n \ge 4$,

 $\gamma_{ctve}(T) \leq n - max\{d(u) : u \text{ is a support vertex in } T\}.$

PROOF. Let v be a support vertex in T. Then $(V - N[v]) \bigcup \{v_i\}(v_i \text{ is a non pendant neighbour of } v)$ is a *ctved* – *set* in T of cardinality n - d(v). Hence the inequality holds.

Note. The bound is attained for P_n , $n \ge 4$.

Observations 3.1. 1. $\gamma_{ctve}(G) \leq \gamma_{ctve}(H)$, where *H* is a spanning subgraph of *G*.

2. For a graph G with at least two vertices, $1\leqslant \gamma_{ctve}(G)\leqslant n-1.$

THEOREM 3.5. G be a graph with vertex set $V = \{v_1, v_2, ..., v_n\}$. Then $\gamma_{ctve}(G) = n - 1$ iff $G = P_2$.

PROOF. Assume that $\gamma_{ctve}(G) = n - 1$. Then $D = V - \{v_n\}$ is a *ctved* - *set* in *G*. If $diam(G) \ge 3$, then we have a *ctved* - *set* $D' \subset D$ of cardinality atmost n-2. This contradicts our assumption. Hence $diam(G) \le 2$.

Let diam(G) = 2. Suppose that G has pendant vertices, say $\{u_1, u_2, ..., u_m\}$. Since diam(G) = 2, all the pendant vertices are adjacent to u(say). Clearly all the vertices in $V - \{u, u_1, u_2, ..., u_m\}$ are adjacent to u.

Suppose G has non pendant edges. Let $x_1y_1, x_2y_2, ..., x_ty_t$ be the non pendant edges in G. Then by the nature of u, $\{x_1, x_2, ..., x_t, y_1, y_2, ..., y_t\}$ forms a *ctved*-set in G of cardinality at most n-2, a contradiction to our assumption. Hence G has no non pendant edges i.e $G \cong K_{1,p}$. By Proposition.2.4(5), $\gamma_{ctve}(G) = 1 < n-1$, a contradiction.

Hence follows that diam(G) = 1. This implies $G = P_2$.

The converse part is clear.

THEOREM 3.6. T be a tree with $n \ge 4$. Then $\gamma_{ctve}(T) = 2$ if and only if T is obtained by adding zero or more leaves to exactly one support vertex in P_4 .

PROOF. Assume that $\gamma_{ctve}(T) = 2$. Let $D = \{v_1, v_2\}$ be a *ctved* – *set* in *T*. By the property of D, < D > is connected and exactly one of v_1, v_2 is a pendant vertex in *T*. W.l.g assume that v_1 is a

pendant vertex in T. Now diam(T) = 3. Let $\langle v_1 v_2 v_3 v_4 \rangle$ be a diametral path in T. Clearly by the property of D, no vertex other than v_3 can be adjacent to v_2 . Since diam(T) = 3, any vertex in $V - \{v_1, v_2, v_4\}$ is adjacent to v_3 . Hence $T = P_4$ or T is obtained by adding zero or more leaves to exactly one support vertex which is v_3 .

The converse part is clear.

THEOREM 3.7. For a graph G,

$$\gamma_{ctve}(G) + \Delta(G) \leq 2n - 2.$$

PROOF. Since $\Delta(G) \leq n-1$ and $\gamma_{ctve}(G) \leq n-1$, the result follows.

THEOREM 3.8. For any graph G, $\gamma_{ctve}(G) + \Delta(G) = 2n - 2$ if and only if $G = P_2.$

PROOF. Suppose $\gamma_{ctve}(G) + \Delta(G) = 2n - 2$. This is possible only when $\gamma_{ctve}(G) = n - 1$ and $\Delta(G) = n - 1$. Then by Theorem.2.8, $G = P_2$. The converse part is clear. \square

THEOREM 3.9. If G is a graph with $\delta(G) > 1$, then $\gamma_{ctve}(G) = 2$ if and only if there is an edge f = uv in G satisfying the following :

(i) Each edge e' in $E - \{uv\}$ is vertex edge dominated (ve - dominated) by u or v. (ii) e' lies on a cycle containing the edge uv in G.

(iii) G is not a union of $k - cycles(k \leq 4)$ having uv as the common edge.

PROOF. Assume that $\gamma_{ctve}(G) = 2$. Let $D = \{u, v\}$ be a *ctved* – *set* in G. Clearly $\langle D \rangle$ is connected i.e uv is an edge in G. Let e' = xy be an edge in $E - \{uv\}$. By the definition of D, e' = xy is ve - dominated by a vertex in D. Now, we have two possibilities.

Case:1 x = u or y = v.

W.l.g assume that x = u i.e f, e' are adjacent. Then $\langle yxv \rangle$ is a path in G. Since G is connected there is a y - v path in G. If all the y - v paths in G are through x then $\langle V - D \rangle$ is disconnected, a contradiction since D is a *ctved* - *set* in G. Hence there is a y - v path in G edge disjoint with the path $\langle yxv \rangle$. Now the union of the former path with the later gives a cycle that contains the edges xy, uv. **Case:2** $x \neq u$ and $y \neq v$.

If xy is ve - dominated by both u and v, then there is a cycle containing both the edges xy, uv. If not, then as in the Case:1, we get a contradiction to the fact that D is a ctved - set in G.

Hence condition (ii) holds. Clearly condition (iii) holds.

In the converse case, clearly $D = \{u, v\}$ is a (connected)ve - dominating set in G of cardinality two and obviously a ctved - set. Hence $\gamma_{ctve}(G) \leq 2$. If $\gamma_{ctve}(G) = 1$, then we get a contradiction to (iii). Hence $\gamma_{ctve}(G) = 2$. \square

Note. 1. Any *ctve* - dominating set in G is a *ve* - dominating set in G. Hence $\gamma_{ve}(G) \leqslant \gamma_{ctve}(G).$

2. A non split dominating set for G is a *ctved* – *set* in G. Hence $\gamma_{ctve}(G) \leq \gamma_{ns}(G)$.

The following two are consequences.

PROPOSITION 3.2. $\gamma_{ve}(P_n) = \gamma_{ctve}(P_n)$ iff $n \leq 3$.

PROPOSITION 3.3. $\gamma_{ve}(C_n) = \gamma_{ctve}(C_n)$ iff $n \leq 5$.

THEOREM 3.10. Let T be a tree and D be the set of all pendant vertices in T. Then D is a ctved – set of G iff each edge of degree atleast two is a support edge in T.

PROOF. Assume that each edge of degree two in T is a support edge. Then D is a ved - set of T. Since $\langle V - D \rangle$ is a tree follows that D is a ctved - set in T. Conversely, let e' be an edge in T such that $deg(e') \ge 2$. If e' is not a support edge in T, then none of the ends of e' is adjacent to a vertex in D, which is a contradiction.

Thus the result is proved.

THEOREM 3.11. Let T be a tree, then $\gamma_{ctve}(T) = n - 2$ if and only if $T = P_3$ or $T = P_4$.

PROOF. Assume that $\gamma_{ctve}(T) = n-2$. Clearly T cannot have adjacent pendant vertices. So any support vertex cannot be adjacent to more than one pendant vertex. If T has a path $\langle v_1v_2v_3v_4v_5 \rangle$, then $V - \{v_2, v_3, v_4\}$ is a *ctved* – *set* in T of cardinality at most n-3, a contradiction to our assumption. So $diam(G) \leq 3$.

Suppose diam(T) = 3. Let $\langle v_1 v_2 v_3 v_4 \rangle$ be a diametral path in T. If there are pendant vertices adjacent to v_2, v_3 , other than v_1, v_4 , then $\gamma_{ctve}(T) \leq n-3$, a contradiction to our assumption. So $T = \langle v_1 v_2 v_3 v_4 \rangle = P_4$.

Suppose diam(T) = 2. If T has more than two pendant vertices, then $\gamma_{ctve}(T) \leq n-2$, a contradiction to our assumption. Hence T has exactly two pendant vertices. So $T = P_3$.

The converse part is clear.

COROLLARY 3.3. For a tree T with $n \ge 3$,

$$\gamma_{ctve}(T) + \Delta(T) \leq 2n - 3.$$

Furthermore, $\gamma_{ctve}(T) + \Delta(T) = 2n - 3$ if and only if $T = K_{1,1}$ or $T = S_{1,1}$.

PROOF. The proof follows by the above result and the fact that $\Delta(T) \leq n - 1$.

COROLLARY 3.4. For a tree T with $n \ge 3$, $\gamma_{ctve}(T) \le n-3$.

PROOF. The proof follows by the above result and the fact that $\delta(T) = 1$. \Box

THEOREM 3.12. For a tree T with $n \ge 5$, $\gamma_{ctve}(T) = n - 3$ if and only if any of the following holds:

(i) There is a support vertex v adjacent to atmost two pendant vertices such that $\Delta(G) = d(v) = 3$.

(*ii*) $T = P_n$

PROOF. Assume that $\gamma_{ctve}(T) = n-3$. Let $V - \{v_1, v_2, v_3\}$ be a $\gamma_{ctve}(T) - set$. By definition of ctved - set, at most two of $\{v_1, v_2, v_3\}$ can be (adjacent)pendant vertices and adjacent with the third vertex.

Case: 1 Suppose that two of $\{v_1, v_2, v_3\}$ are pendant vertices.

W.l.g assume the vertices to be v_1, v_2 . Then they are adjacent with v_3 . Clearly v_3 is a support vertex of degree atleast three. If $d(v_3) > 3$, then $(V - N[v_3]) \bigcup \{v\}(v$ is a non pendant neighbour of v_3 is a ctved – set of cardinality atmost n - 4, a contradiction to our assumption. So $\Delta(G) \ge 3$.

Suppose that there is a vertex v of degree k, where $k \ge 4$. Clearly $(V-N[v]) \bigcup \{u\}(u$ is a non pendant neighbour of v) is a ctved – set of cardinality at most n-4, a contradiction to our assumption. Therefore $\Delta(G) = 3 = d(v_3)$, where v_3 is a support vertex in T.

Case: 2 Suppose exactly one of v_1, v_2, v_3 is a pendant vertex. W.l.g assume that v_1 is a pendant vertex. By definition, one of v_2, v_3 is a support vertex. W.l.g assume that v_2 is the support vertex. Since $n \ge 4$, $d(v_2) \ge 3$. If $d(v_2) > 3$, then as in the case:1,we get a contradiction to our assumption. Hence in this case also claimant holds.

Case: 3 Suppose that none of $\{v_1, v_2, v_3\}$ is a pendant vertex. By definition of ctved - set, one of v_1, v_2, v_3 is a common neighbour of the remaining two. W.l.g assume that v_2 is a common neighbour of v_1, v_3 . By our supposition and by proposition.2.4(i), $T = P_n$.

The converse part is clear.

Acknowledgement. The authors express their gratitude to the referees for the useful suggestions.

References

- J.A.Bondy & U.S.R Murthy, Graph theory with Applications, The Macmillan Press Ltd, (1976).
- [2] Haynes T.W., Hedetneimi S.T. and Slater P.J. (eds.), Fundamentals of Dominations in Graphs,, Marcel Dekker, New York, 1998.
- [3] Kulli V.R, Janakiram B., The non split domination number of a graph., Indian J. Pure Appl. Math., vol. 31(5) (2000), 545 - 550.
- [4] Laskar R., Peters K., Vertex and edge dominating parameters in Graphs., Congr. Numer. vol. 48 (1985), 291-305
- [5] Ore O., Theory of Graphs. Amer. Math. Soc. Colloq. Publ., Vol. 38, Providence (1962).
- [6] Sampathkumar E., Walikar H.B., The connected domination number of a graph. J. Math. Phy. Sci., 13(6), (1979), 607-613.

Department Of Mathematics, M.V.G.R.College of Engineering, Chinthalavalasa, Vizianagaram., India.

E-mail address: shivram2006@yahoo.co.in

Department Of Mathematics, G.V.P.College for P.G.Courses, Rushikonda, Visakhapatnam, India.

E-mail address: ihnrao@yahoo.com

DEPARTMENT OF MATHEMATICS, ADITYA DEGREE COLLEGE, VISAKHAPATNAM., INDIA. *E-mail address:* anr1357anr@gmail.com