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Abstract. The concept of complementary tree vertex edge dominating set
(ctved-set) of a finite, connected graph G is introduced and characterization

result for a non empty proper subset of the vertex set V of G to be a ctved-set
is obtained. The minimum cardinality of a ctved-set is denoted by γctve(G)
and is called as ctved number of G. Bounds for this parameter as well, are
obtained. Further, the graphs of order n for which the ctved numbers are

1, 2, n− 1 are characterized. Trees having ctved− numbers n− 2, n− 3 are
also characterized. Exact values of this parameter for some standard graphs
are given.

1. Introduction

The concept of domination introduced by Ore [5] is an active topic in graph
theory and has numerous applications to distributed computing, the web graph
and adhoc networks. Haynes et al. ([2]) gave a comprehensive introduction to
theoretical and applied facets of domination in graphs.

For ready reference, we here - under give the necessary notation, definitions
used in the subsequent work.

All the graphs considered in this paper are undirected, simple, finite and con-
nected.

2. Preliminaries

We, first give a few definitions, observations and results that are useful for de-
velopment in the succeeding articles.
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Definition. The girth of a graph G, denoted by g(G) is defined as the length
of a shortest cycle in G.

Definition. By a sector graph of order n, we mean a graph obtained by in-
troducing a new vertex and joining it to each vertex of a path of order n − 1 and
is denoted by

∧
n.

Definition. A support vertex in G is a non pendant vertex adjacent to a pen-
dant vertex.

Definition ([5]) A subset D of the vertex set V of G is said to be a dominating
set of G if each vertex in V −D is adjacent to some vertex of D. The domination
number γ(G) is the minimum cardinality of the dominating set of G.

Definition ([6]) A subset D of the vertex set V of G is a connected domi-
nating set if it is a dominating set and the subgraph induced by D(i.e.< D >) is
connected. The connected domination number denoted by γc(G) is the cardinality
of a minimum connected dominating set in G.

Definition ([3]) A dominating set D of a connected graph G is a non split
dominating set, if the induced subgraph < V − D > is connected in G. The non
split domination number γns(G) of G is the minimum cardinality of a non split
dominating set in G.

Definition ([5]) A subset D of V is said to be a vertex edge dominating set(ved
- set) of G if each edge in G has either one of its ends from D or one of its ends
is adjacent to a vertex in D. The vertex edge domination number γve(G) is the
minimum cardinality of the vertex edge dominating set of G.

Many variants of vertex - vertex, edge - edge, vertex - edge, edge - vertex
dominating sets have been studied. In the present paper, we introduce a new
variant of vertex - edge dominating set named as complementary tree vertex edge
dominating set.

Definition 1.1. A ved−set D of a (connected)graph G is said to be a comple-
mentary tree vertex edge dominating set(ctved−set) of G iff the subgraph induced
by V −D(i.e < V −D >) is a tree.

A ctved−set of minimum cardinality is called a minimum ctved−set(mctved−
set) of G. This minimum cardinality is called the complementary tree vertex edge
domination number of G and is denoted by γctve(G). Any mctved − set of G is
referred by γctve(G)− set.

For standard terminology and notation, we refer Bondy & Murthy ([1]).
Unless otherwise stated, by G we mean a finite , simple, connected graph with

n vertices and e edges.



COMPLEMENTARY TREE VERTEX EDGE DOMINATION 79

3. Characterization and other relevant results

In this section, we initially state characterization result for a proper subset of
the vertex set of G to be a ctved -set of G. There after we give the bounds for this
parameter in terms of various other parameters.

Theorem 3.1. (Characterization Result) A non empty proper subset D of the
vertex set V of a graph G is a ctved− set in G iff the following are satisfied:
(i) F = {xy ∈ E(G)/atleast one of x, y is in D} is an edge dominating set of G.
(ii) D is not a vertex cut in G
(ii) Any cycle in G has atleast one vertex from D.

Proof. Trivial �
Theorem 3.2. For a graph G,

⌈ 2(n − 1) − e
2 ⌉ 6 γctve(G).

(⌈x⌉ denotes the smallest integer > x).

Proof. Suppose that D is a γctve(G)− set. So, follows that < V −D > is a
tree. Hence it has n − γctve(G) vertices and n − γctve(G) − 1 edges. Clearly each
edge in < V −D > is dominated by a vertex in D. This implies corresponding to
each edge in < V −D >, there is an edge in G − < V −D >. Hence,

e > 2(n− γctve(G)− 1) ⇒ ⌈ 2(n − 1) − e
2 ⌉ 6 γctve(G)

�
Note. The bound is attained if G ∼= Cn, n > 3.

Corollary 3.1. If G is a tree, then

⌈ e
2⌉ 6 γctve(G).

Proof. The result follows since e = n− 1. �
Note. The bound is attained in the case of P4.

Proposition 3.1. (1) For any path Pn with n > 5 ,
γctve(Pn) = n− 3.

(2) For any cycle Cn with n > 5, γctve(Cn) = n− 3.
(3) For any complete bipartite graph Km,p with m+ p > 4 ,

γctve(Km,p) = m+ p− 3.
(4) For the complete bipartite graph K2,1, γctve(K2,1) = 2.
(5) For any star graph K1,p, γctve(K1,p) = 1.
(6) For any bistar graph Sm,p, γctve(Sm,p) = min{m+ 1, p+ 1}.
(7) For any complete graph Kn(n > 3), γctve(Kn) = n− 2.
(8) γctve(CpoK1) = p + 1, where CpoK1 is the corona of Cp and K1 and

(p > 5).
(9) For any Wheel Graph Wp, γctve(Wp) = 2.

Theorem 3.3. For a graph G with g(G) > 4,
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γctve(G) 6 n−∆(G).

Proof. Let v be a vertex inG such that dG(v) = ∆(G). Then (V−N [v])
∪
{vi}

(vi is a neighbour of v) is a ctved− set in G. Hence, γctve(G) 6 n−∆(G). �

Note. The bound is attained in the case of < v1v2v3v4v1 >
∪
{v1v5}.

Corollary 3.2. For a graph G with g(G) > 4 & δ(G) > 2,

γctve(G) 6 n−∆(G)− 1.

Proof. Let dG(v) = ∆(G). Then (V − N [v]) is a ctved − set in G. Hence,
γctve(G) 6 n−∆(G)− 1. �

Theorem 3.4. For any tree T with n > 4,

γctve(T ) 6 n − max{d(u) : u is a support vertex in T}.

Proof. Let v be a support vertex in T . Then (V − N [v])
∪
{vi}(vi is a non

pendant neighbour of v) is a ctved − set in T of cardinality n − d(v). Hence the
inequality holds. �

Note. The bound is attained for Pn, n > 4.

Observations 3.1. 1. γctve(G) 6 γctve(H), where H is a spanning subgraph
of G.
2. For a graph G with atleast two vertices, 1 6 γctve(G) 6 n− 1.

Theorem 3.5. G be a graph with vertex set V = {v1, v2, ..., vn}. Then γctve(G)
= n− 1 iff G = P2.

Proof. Assume that γctve(G) = n − 1. Then D = V − {vn} is a ctved − set

in G. If diam(G) > 3, then we have a ctved − set D
′ ⊂ D of cardinality atmost

n− 2. This contradicts our assumption. Hence diam(G) 6 2.
Let diam(G) = 2. Suppose that G has pendant vertices, say {u1, u2, ..., um}.

Since diam(G) = 2, all the pendant vertices are adjacent to u(say). Clearly all the
vertices in V − {u, u1, u2, ..., um} are adjacent to u.

Suppose G has non pendant edges. Let x1y1, x2y2, ..., xtyt be the non pendant
edges in G. Then by the nature of u, {x1, x2, ..., xt, y1, y2, ..., yt} forms a ctved−set
in G of cardinality atmost n− 2, a contradiction to our assumption. Hence G has
no non pendant edges i.e G ∼= K1,p. By Proposition.2.4(5), γctve(G) = 1 < n − 1,
a contradiction.
Hence follows that diam(G) = 1. This implies G = P2.

The converse part is clear. �

Theorem 3.6. T be a tree with n > 4. Then γctve(T ) = 2 if and only if T is
obtained by adding zero or more leaves to exactly one support vertex in P4.

Proof. Assume that γctve(T ) = 2.
Let D = {v1, v2} be a ctved− set in T . By the property of D, < D > is connected
and exactly one of v1, v2 is a pendant vertex in T . W.l.g assume that v1 is a
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pendant vertex in T . Now diam(T ) = 3. Let < v1v2v3v4 > be a diametral path in
T . Clearly by the property of D, no vertex other than v3 can be adjacent to v2.
Since diam(T ) = 3, any vertex in V − {v1, v2, v4} is adjacent to v3. Hence T = P4

or T is obtained by adding zero or more leaves to exactly one support vertex which
is v3.

The converse part is clear. �

Theorem 3.7. For a graph G,

γctve(G) + ∆(G) 6 2n− 2.

Proof. Since ∆(G) 6 n− 1 and γctve(G) 6 n− 1, the result follows. �

Theorem 3.8. For any graph G, γctve(G) + ∆(G) = 2n − 2 if and only if
G = P2.

Proof. Suppose γctve(G) + ∆(G) = 2n − 2. This is possible only when
γctve(G) = n− 1 and ∆(G) = n− 1. Then by Theorem.2.8, G = P2.
The converse part is clear. �

Theorem 3.9. If G is a graph with δ(G) > 1, then γctve(G) = 2 if and only if
there is an edge f = uv in G satisfying the following :
(i) Each edge e′ in E − {uv} is vertex edge dominated(ve - dominated) by u or v.
(ii) e′ lies on a cycle containing the edge uv in G.
(iii) G is not a union of k − cycles(k 6 4) having uv as the common edge.

Proof. Assume that γctve(G) = 2. Let D = {u, v} be a ctved − set in G.
Clearly < D > is connected i.e uv is an edge in G. Let e′ = xy be an edge in
E−{uv}. By the definition of D, e′ = xy is ve - dominated by a vertex in D. Now,
we have two possibilities.

Case:1 x = u or y = v.
W.l.g assume that x = u i.e f, e′ are adjacent. Then < yxv > is a path in G. Since
G is connected there is a y − v path in G. If all the y − v paths in G are through
x then < V −D > is disconnected, a contradiction since D is a ctved − set in G.
Hence there is a y − v path in G edge disjoint with the path < yxv >. Now the
union of the former path with the later gives a cycle that contains the edges xy, uv.

Case:2 x ̸= u and y ̸= v.
If xy is ve - dominated by both u and v, then there is a cycle containing both the
edges xy, uv. If not, then as in the Case:1, we get a contradiction to the fact that
D is a ctved− set in G.

Hence condition (ii) holds. Clearly condition (iii) holds.
In the converse case, clearly D = {u, v} is a (connected)ve - dominating set

in G of cardinality two and obviously a ctved − set . Hence γctve(G) 6 2. If
γctve(G) = 1, then we get a contradiction to (iii). Hence γctve(G) = 2. �

Note. 1. Any ctve - dominating set in G is a ve - dominating set in G. Hence
γve(G) 6 γctve(G).
2. A non split dominating set for G is a ctved−set in G. Hence γctve(G) 6 γns(G).
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The following two are consequences.

Proposition 3.2. γve(Pn) = γctve(Pn) iff n 6 3.

Proposition 3.3. γve(Cn) = γctve(Cn) iff n 6 5.

Theorem 3.10. Let T be a tree and D be the set of all pendant vertices in T .
Then D is a ctved − set of G iff each edge of degree atleast two is a support edge
in T .

Proof. Assume that each edge of degree two in T is a support edge. Then D
is a ved− set of T . Since < V −D > is a tree follows that D is a ctved− set in T .
Conversely, let e′ be an edge in T such that deg(e′) > 2. If e′ is not a support
edge in T , then none of the ends of e′ is adjacent to a vertex in D, which is a
contradiction.

Thus the result is proved. �

Theorem 3.11. Let T be a tree, then γctve(T ) = n − 2 if and only if T = P3

or T = P4.

Proof. Assume that γctve(T ) = n−2. Clearly T cannot have adjacent pendant
vertices. So any support vertex cannot be adjacent to more than one pendant
vertex. If T has a path < v1v2v3v4v5 >, then V − {v2, v3, v4} is a ctved− set in T
of cardinality at most n− 3, a contradiction to our assumption. So diam(G) 6 3.

Suppose diam(T ) = 3. Let < v1v2v3v4 > be a diametral path in T . If there
are pendant vertices adjacent to v2, v3, other than v1, v4, then γctve(T ) 6 n− 3, a
contradiction to our assumption. So T = < v1v2v3v4 > = P4.

Suppose diam(T ) = 2. If T has more than two pendant vertices, then γctve(T )
6 n − 2, a contradiction to our assumption. Hence T has exactly two pendant
vertices. So T = P3.

The converse part is clear. �

Corollary 3.3. For a tree T with n > 3,

γctve(T ) + ∆(T ) 6 2n− 3.

Furthermore, γctve(T ) + ∆(T ) = 2n− 3 if and only if T = K1,1 or T = S1,1.

Proof. The proof follows by the above result and the fact that ∆(T ) 6 n −
1. �

Corollary 3.4. For a tree T with n > 3, γctve(T ) 6 n− 3.

Proof. The proof follows by the above result and the fact that δ(T ) = 1. �

Theorem 3.12. For a tree T with n > 5, γctve(T ) = n − 3 if and only if any
of the following holds:
(i) There is a support vertex v adjacent to atmost two pendant vertices such that
∆(G) = d(v) = 3.
(ii) T = Pn
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Proof. Assume that γctve(T ) = n−3. Let V −{v1, v2, v3} be a γctve(T )−set.
By definition of ctved − set, atmost two of {v1, v2, v3} can be (adjacent)pendant
vertices and adjacent with the third vertex.

Case: 1 Suppose that two of {v1, v2, v3} are pendant vertices.
W.l.g assume the vertices to be v1, v2. Then they are adjacent with v3. Clearly v3
is a support vertex of degree atleast three. If d(v3) > 3, then (V −N [v3])

∪
{v}(v

is a non pendant neighbour of v3) is a ctved − set of cardinality atmost n − 4, a
contradiction to our assumption. So ∆(G) > 3.
Suppose that there is a vertex v of degree k, where k > 4. Clearly (V −N [v])

∪
{u}(u

is a non pendant neighbour of v) is a ctved − set of cardinality atmost n − 4, a
contradiction to our assumption. Therefore ∆(G) = 3 = d(v3), where v3 is a
support vertex in T .

Case: 2 Suppose exactly one of v1, v2, v3 is a pendant vertex.
W.l.g assume that v1 is a pendant vertex. By definition, one of v2, v3 is a support
vertex. W.l.g assume that v2 is the support vertex. Since n > 4, d(v2) > 3. If
d(v2) > 3, then as in the case:1,we get a contradiction to our assumption. Hence
in this case also claimant holds.

Case: 3 Suppose that none of {v1, v2, v3} is a pendant vertex. By defini-
tion of ctved − set, one of v1, v2, v3 is a common neighbour of the remaining two.
W.l.g assume that v2 is a common neighbour of v1, v3. By our supposition and by
proposition.2.4(i),T = Pn .

The converse part is clear. �
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