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INEQUALITIES INVOLVING

CERTAIN BIVARIATE MEANS

EDWARD NEUMAN

Abstract. Inequalities involving two Seiffert means, logarithmic
mean, and the Neuman-Sándor mean are established. Those re-
sults are utilized to obtain four inequalities which have structure
of the Wilker and Huygens inequalities for the trigonometric and
hyperbolic functions.

1. INTRODUCTION

In recent years a significant progress has been made in theory of
means with a special emphasis on the inequalities satisfied by means
under discussion. Comparison results were always in the center of
attention of many researchers. Inequalities obeyed by particular means
were often used to obtain inequalities satisfied either by elementary or
higher transcendental functions. A list of published research in this
area is too long to be cited here.

This paper deals with inequalities satisfied by certain bivariate means.
Those included here are two Seiffert means, logarithmic mean, and a
mean which recently has been called by several researches the Neuman-
Sándor mean. Their definitions are recalled in Section 2. Therein we
also provide definitions of other bivariate means used in this paper.
Two families of one-parameter means are introduced in Section 3. Some
elementary properties of those means are also included in this section.
Four inequalities involving means, mentioned in Sections 2 and 3, are
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established in Section 4. These results are further utilized in Section 5
to obtain Wilker and Huygens type inequalities for trigonometric and
hyperbolic functions.

2. DEFINITIONS AND PRELIMINARIES

In this section we provide definitions of several bivariate means used
in the subsequent sections of this paper.

Let a, b > 0. In order to avoid trivialities we will always assume that
a ̸= b. The unweighted arithmetic mean A of a and b is defined as

A =
a+ b

2
.

The bivariate means discussed in this paper include the first and the
second Seiffert means, denoted by P and T , respectively, the Neuman-
Sándor mean M , and the logarithmic mean L. Recall that

P = A
v

sin−1 v
, T = A

v

tan−1 v
,

M = A
v

sinh −1v
, L = A

v

tanh −1v
,

(2.1)

where

v =
a− b

a+ b
. (2.2)

(see [16], [17], [11]). Clearly 0 < |v| < 1.
Other unweighted bivariate means used in this paper are the har-

monic meanH, geometric mean G, root-square mean Q and the contra-
harmonic mean C which are defined in usual way

H =
2ab

a+ b
, G =

√
ab, Q =

√
a2 + b2

2
, C =

a2 + b2

a+ b
. (2.3)

One can easily verify that the means defined in (2.3) all can be
expressed in terms of A and v. We have

H = A(1− v2), G = A
√
1− v2,

Q = A
√
1 + v2, C = A(1 + v2).

(2.4)

All the means mentioned above are comparable. It is known that

H < G < L < P < A < M < T < Q < C (2.5)

(see, e.g., [11]).
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The four means listed in (2.1) are special cases of the Schwab-
Borchardt mean SB which is defined as follows

SB(a, b) ≡ SB =


√
b2 − a2

cos−1(a/b)
if a < b,

√
a2 − b2

cosh−1(a/b)
if b < a.

(see, e.g., [2], [3]). This mean has been studied extensively in [11], [12],
and in [7]. It is well known that the mean SB is strict, nonsymmetric
and homogeneous of degree one in its variables.

It has been pointed out in [11] that

P = SB(G,A), T = SB(A,Q),

M = SB(Q,A), L = SB(A,G).
(2.6)

3. MEANS Λk AND Ωk

In this section we introduce two one-parameter families of bivari-
ate means which involve, as particular cases, the harmonic mean H,
contraharmonic mean C, and the centroidal mean D.

In what follows, let k ≥ 1. We define

Λk ≡ Λk(a, b) = A(1− 1

k
v2) (3.1)

and

Ωk ≡ Ωk(a, b) = A(1 +
1

k
v2). (3.2)

It follows from (3.1) that the function k → Λk is strictly increasing.
Similarly, (3.2) implies that the function k → Ωk is strictly decreas-
ing. Means Λk and Ωk are convex combinations of H and C. Indeed
substituting (2.2) into (3.1) and (3.2) we obtain

Λk =
k + 1

2k
H +

k − 1

2k
C (3.3)

and

Ωk =
k − 1

2k
H +

k + 1

2k
C. (3.4)

Some classical bivariate means belong to one of the family of means
defined in this section. For instance, H = Λ1 and C = Ω1. One can
easily verify that the cendroidal mean

D =
2(a2 + b2 + ab)

3(a+ b)

satisfies D = Ω3.
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It is an elementary task to show that

H ≤ Λk < A < Ωk ≤ C (3.5)

for all k ≥ 1.
Refinements of these inequalities are obtained in the following

Proposition 3.1. Let

γ = 1 +
√
1− v2 and δ = 1 +

√
1 + v2, (3.6)

where v is defined in (2.2). Then

H < Λk < G < Λl < A < Ωn < Q < Ωm < C, (3.7)

provided 1 < k < γ, l > γ, 1 < m < δ, and n > δ.

Proof. In the chain of inequalities (3.7) only the second, third, sixth,
and the seventh inequalities must be established. The remaining ones
follow from inequalities (3.5). For the proof of the second inequality in
(3.7) we utilize a second formula in (2.4) and (3.1) to obtain

1− 1

k
v2 <

√
1− v2.

Hence, after a little algebra

k2 − 2k + v2 < 0. (3.8)

Since the only positive root of the quadratic polynomial k2 − 2k + v2

is equal to γ, the domain of validity of the second inequality in (3.7)
follow. The domain of validity of the third inequality in (3.7) consists
of all positive numbers for which the direction of the sign of inequality
(3.8) is reversed. This yields the asserted result. Inequalities sixth and
seventh in (3.7) can be established in a similar fashion. Making use of
the third formula in (2.4) and (3.2), with k replaced by n, yields

1 +
1

n
v2 <

√
1 + v2.

Hence

n2 − 2n− v2 < 0. (3.9)

It is easy to see that the inequality (3.9) is satisfied for positive values
of n such n > δ. To complete the proof it suffices to solve the inequality
m2 − 2m− v2 > 0 for all values of m that are greater than 1. We omit
further details. �
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4. INEQUALITIES INVOLVING MEANS AND THEIR
RECIPROCALS

The goal is to establish four inequalities involving means defined in
(2.1). Before we will state and prove the first result of this section let
us recall two inequalities established in [12]

LT < A2 and PM < A2.

Inequalities obtained in the following theorem bear resemblance of
the last two ones.

Theorem 4.1. The following inequalities

LΩ3 < A2, (4.1)

TΛ3 < A2, (4.2)

PΩ6 < A2, (4.3)

MΛ6 < A2 (4.4)

are valid.

Proof. It follows from the last equation of (2.1) and from [1, 4.6.33]
that

A

L
=

tanh −1v

v
= 1 +

1

3
v2 +

1

5
v4 + . . . ,

where the nonzero terms of this series are all positive. This implies
that

A

L
> 1 +

1

3
v2 = Ω3.

The proof of (4.1) is complete. The last inequality also appears in [14].
See also [15]. For the proof of (4.2) we appeal to (2.1) again and
use [1, 4.4.62] to obtain

A

T
=

tan−1 v

v
= 1− 1

3
v2 +

1

5
v4 − . . . ,

where the nonzero members of this series alternate in sign. This in
turn yields

A

T
> 1− 1

3
v2 = Λ3

which gives the asserted inequality (4.2). The remaining two inequal-
ities (4.3) and (4.4) can be established in a similar manner using two
formulas of (2.1) together with the series expansion for the function
sin−1(v)/v (see [1, 4.4.40]) and the power series expansion for the func-
tion sinh −1(v)/v (see [1, 4.6.31]). We omit further details. �

A quadruple of inequalities, involving reciprocals of means which
appear in the last theorem, are contained in the following
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Corollary 4.2. We have

1

A
<

1

2

( 1
L
+

1

Ω3

)
,

1

A
<

1

2

( 1
T

+
1

Λ3

)
,

1

A
<

1

2

( 1
P

+
1

Ω6

)
,

1

A
<

1

2

( 1

M
+

1

Λ6

)
.

(4.5)

Proof. First inequality in (4.5) follows from (4.1). To this aim we raise
both sides of the latter to the power of −1/2 and next apply inequality
of the arithmetic and geometric means to obtain

1

A
<

( 1
L
· 1

Ω3

)1/2
<

1

2

( 1
L
+

1

Ω3

)
.

The remaining three inequalities in (4.5) can be derived in the same
way using inequalities (4.2)-(4.4). We omit further details. �

5. APPLICATIONS TO WILKER AND HUYGENS TYPE
INEQUALITIES

In this section we will utilize results of previous section to establish
Wilker and Huygens type inequalities. Those results are derived with
the aid of four inequalities obtained in the previous section.

We begin giving a short overview of the Wilker and Huygens inequal-
ities. The following result(

sin t

t

)2

+
tan t

t
> 2 (5.1)

(0 < |t| < π
2
) is due to Wilker [18]. Several Wilker type inequalities

appear in mathematical literature. For more details see [5,6,8,9,13,19,
20] and the references therein. A hyperbolic counterpart of Wilker’s
inequality (

sinh t

t

)2

+
tanh t

t
> 2 (5.2)

(t ̸= 0) has been established by L. Zhu [21]. See also [22] and [13].
Another inequality which recently has been studied extensively is

due to Huygens [4]

2
sin t

t
+

tan t

t
> 3 (5.3)

(0 < |t| < π
2
). Huygens inequality for the hyperbolic functions

2
sinh t

t
+

tanh t

t
> 3 (5.4)

(t ̸= 0) was established by Neuman and Sándor in [13].



INEQUALITIES FOR CERTAIN BIVARIATE MEANS 55

For generalizations and refinements of inequalities (5.1) - (5.4) the
interested reader is referred to [19], [8], [10], [13] and the references
therein.

In the proofs of the inequalities in this section we will utilize a result
obtained in [10]. In order to present this result let us introduce more
notation.

Throughout the sequel the letters r and s will stand for two positive
numbers which satisfy the following conditions

r < 1 < s (5.5)

and

1 < rαsβ, (5.6)

where the last inequality must be satisfied for some positive numbers
α and β.

In the proofs of the main results of this section we will utilize the
following version of Theorem 3.1 in [10]:

Theorem A. Let λ > 0 and let µ > 0. Then

1 <
λ

λ+ µ
rp +

µ

λ+ µ
sq (5.7)

if

q > 0 and p ≤ q
αµ

βλ
. (5.8)

We are in a position to establish the following

Theorem 5.1. Let λ and µ be positive numbers and let the numbers p
and q satisfy the following conditions

q > 0 and p ≤ q
µ

λ
. (5.9)

Then the following inequalities

1 <
λ

λ+ µ

( 1

1 + 1
3
tanh 2t

)p
+

µ

λ+ µ

( t

tanh t

)q
(5.10)

(t ̸= 0),

1 <
λ

λ+ µ

( t

tan t

)p
+

µ

λ+ µ

( 1

1− 1
3
tan2 t

)q
(5.11)

(0 < |t| < π/4),

1 <
λ

λ+ µ

( 1

1 + 1
6
sin2 t

)p
+

µ

λ+ µ

( t

sin t

)q
(5.12)
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(0 < |t| < π/2), and

1 <
λ

λ+ µ

( t

sinh t

)p
+

µ

λ+ µ

( 1

1− 1
6
sinh 2t

)q
(5.13)

(0 < |t| < sinh −1(1)) are valid.

Proof. We shall establish inequality (5.13) only. The remaining ones
(5.10)-(5.12) can be established by the same method as the one em-
ployed below. Let

r =
A

M
and s =

A

Λ6

.

It follows from (4.4) that r and s satisfy conditions (5.5) and (5.6), the
latter with α = β. Making use of the third formula in (2.1) and (3.1)
with k = 6 we obtain

r =
sinh −1v

v
and s =

1

1− 1
6
v2

,

where 0 < |v| < 1. With the substitution v = sinh t (0 < |t| <
sinh −1(1)) formulas for r and s become

r =
t

sinh t
and s =

1

1− 1
6
sinh 2t

To obtain the desired result it suffices to apply Theorem A. �
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