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HEAT TRANSFER ON MHD VISCOUS FLOW

OVER A STRETCHING SHEET

WITH PRESCRIBED HEAT FLUX

A. Adhikari and D.C. Sanyal

Abstract. A steady three-dimensional Magnetohydrodynamic (MHD) bound-
ary layer viscous flow and heat transfer due to a permeable stretching sheet
with prescribed surface heat flux is studied in presence of a uniform ap-

plied magnetic field transverse to the flow. Using the implicit finite-difference
scheme, known as the Keller-box method, the nonlinear ordinary differential
equations are solved. The velocity and temperature profiles, skin friction co-

efficient and wall temperature are discussed for various parameters.

1. Introduction

The problem of boundary layer flow over a fixed flat plate was discussed by
Blasius [1]. Sakiadis [2] first considered the boundary layer flow over a stretching
sheet which was extended by Crane [3] for the two-dimensional case when the
velocity was proportional to the distance from the plate. Gupta et al. [4] and
Magyari et al. [5] studied the heat and mass transfer over a stretching sheet subject
to suction or injection. Using integral methods, the problem of mixed convection
along a vertical surface in the presence of a uniform transverse magnetic field in a
porous medium was investigated by Cheng [6]. Two-dimensional stagnation flows
adjacent to a vertical heated surface with both prescribed wall temperature and
prescribed wall heat flux was considered by Ramachandran et al.[7].
The exact solution for viscous flow induced by a shrinking sheet was investigated by
Miklavcic et al.[8] and established non-unique solutions for certain range of suction
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parameter for both two-dimensional and axisymmetric cases. Using the homotopy
analysis method (HAM), Sajid et al. [9] extended the above problem for MHD
viscous flow. Lok et al.[10] studied MHD stagnation point flow towards a shrinking
sheet in micropolar fluid.
In this paper, the steady three-dimensional MHD boundary layer viscous flow and
heat transfer due to a permeable stretching sheet with prescribed surface heat flux
is studied in presence of a transverse uniform applied magnetic field.

2. Basic Equations

Consider a steady, three-dimensional, laminar, viscous flow of an incompressible
electrically conducting fluid bounded by a stretching sheet. Here we assume that
the magnetic Reynolds number is small and the electric field is zero so that the
induced magnetic field can be neglected. The magnetic field B0 is applied in z-
direction. The governing equations are ([20] , [21]) then
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The boundary Conditions are:

(6) at z = 0 : u = ax, v = a(m− 1)y, w = −W,
∂T

∂z
= −qw

κ
,

(7) at z → ∞ : u = 0, T = T∞.

where (u, v, w) the fluid velocity, ν = µ
ρ the kinematic viscosity, µ the dynamic

viscosity, σ the electrical conductivity, α the thermal diffusivity, κ the thermal
conductivity, ρ the fluid density, p the fluid pressure, a>0 the stretching constant,
qw the surface heat flux, W the suction velocity, m=1 when the sheet stretches in
x-direction (two-dimensional) and m=2 when the sheet stretches axisymmetrically,
Tw the sheet temperature and T∞ is the free stream temperature.
Applying the following similarity transformations

u = axf/(η), v = a(m− 1)yf/(η), w = −
√
aν.mf(η),
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(8) η =

√
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into the equations (1)-(5), it is seen that equation (1) is satisfied while equation (4)
can be integrated to give

(9)
p

ρ
= ν
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2
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Equations (2), (3) and (5) transform to

(10) f/// −M2f/ − (f/)2 +mff// = 0,

(11)
θ//

Pr
+mfθ/ = 0,

where η the independent dimensionless similarity variable and θ is the dimensionless
temperature. The primes denotes the differentiation w.r.t. η. The f/(η) and θ(η)
give the velocity and temperature respectively.
The boundary conditions (6) and (7) respectively reduce to:

(12) f(0) = s, f/(0) = 1, θ/(0) = −1,

(13) f/(∞) = 0, θ(∞) = 0,

where Pr = ν
α is the Prandtl number, s = W

m
√
aν

is the suction parameter, M =

B0

√
σ
ρa is the Hartmann number.

3. Numerical Method

The equations (10) and (11) subject to the boundary conditions (12) and (13) are
solved numerically using an implicit finite-difference scheme scheme known as the
Keller-box method [12, 13, 14]. The method has following four basic steps:

I Reduce Equations (10) and (11) to a first order equation;
II Write the difference equations using central differences;
III Linearise the resulting algebraic equations by Newton’s method and write

them in Matrix-vector form;
IV Use the Block-tridiagonal elimination technique to solve the linear system.
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3.1. The Finite Difference Scheme. In this secion, steps (I) and (II) are
combined. First we inroduce new dependent variables u(x, η), v(x, η), t(x, η) and
q(x, η) = θ(x, η) such that

(14) f/ = u, u/ = v, q/ = t,

so that equations (10) and (11) reduce to

(15) v/ −M2u− u2 +mfv = 0,

(16) t/ +mPrft = 0.

We now consider the net rectangle in the x− η plane as shown in figure 1 and the
net points defined as follows:

(17) x0 = 0, xn = xn−1 + kn, n = 1, 2, . . . N,

(18) η0 = 0, ηj = ηj−1 + hj , j = 1, 2, . . . J, ηj = η∞,

where kn is the △x - spacing and hj is the △η - spacing. Here n and j are the
sequence of numbers that indicate the coordinate location, not tensor indices or
exponents.

Figure 1. Net Rectangle for difference approximation.

Here we use the following finite-differences:

(19) ()nj−0.5 = 0.5[()nj + ()nj−1],

(20) ()n−0.5
j = 0.5[()nj + ()n−1

j ],
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Now we write the finite-difference for the midpoint (xn, ηj−0.5) of the segment P1P2

using (19)− (22) . This process is called ”centering about (xn, ηj−0.5)”. We get by
ommitting upper indices n:
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The boundary condiions at x = xN are

(28) fN
0 = s, uN

0 = 1, tN0 = −1, uN
J = 0, vNJ = 0, qNJ = 0.

3.2. Newton’s method for linearisation. To linearise the nonlinear system
(23)-(27), we introduce the following i-th iterate at x = xn:
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Substituting these in (23)-(27) and then retaining only the linear terms in δf
(i)
j ,

δu
(i)
j , δv

(i)
j , δq

(i)
j and δt

(i)
j , we get the following linear tridiagonal system:

(30) δfj − δfj−1 −
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2
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(31) δuj − δuj−1 −
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2
(δvj + δvj−1) = (r2)j ,
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(32) δqj − δqj−1 −
hj

2
(δtj + δtj−1) = (r3)j ,

(33) (a1)jδvj+(a2)jδvj−1+(a3)jδfj+(a4)jδfj−1+(a5)jδuj+(a6)jδuj−1 = (r4)j ,

(34) (b1)jδtj + (b2)jδtj−1 + (b3)jδfj + (b4)jδfj−1 = (r5)j ,

where (a1)j = 1+ 1
2mhjfj−0.5, (a2)j = (a1)j−2, (a3)j =

1
2mhjvj−0.5, (a4)j =

(a3)j , (a5)j = − 1
2M
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2 − mhjfj−0.5vj−0.5, (r5)j = tj−1 − tj −
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For all iterates, we take

(35) δf0 = 0, δu0 = 0, δt0 = 0, δuJ = 0, δqJ = 0.

3.3. The Block tridiagonal matrix. The linearised difference system (30)−
(34) has a block tridiagonal structure as follows:
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[B2] [A2] [C2]

. . . . . .
[BJ−1] [AJ−1] [CJ−1]

[BJ ] [CJ ]




[δ1]
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 =
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[r2]
. . .
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[rJ ]


or,

(36) Aδ = r,

where

[A1] =


0 0 1 0 0
d 0 0 d 0
0 −1 0 0 d

(a2)j 0 (a3)j (a1)j 0
0 0 (b3)j 0 (b1)j

 ,

[Aj ] =


d 0 1 0 0
−1 0 0 d 0
0 −1 0 0 d

(a6)j 0 (a3)j (a1)j 0
0 0 (b3)j 0 (b1)j

 , 2 6 j 6 J ;
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[Bj ] =


0 0 −1 0 0
0 0 0 d 0
0 0 0 0 d
0 0 (a4)j (a2)j 0
0 0 (b4)j 0 (b2)j

 , 2 6 j 6 J ;

[Cj ] =


d 0 0 0 0
1 0 0 0 0
0 1 0 0 0

(a5)j 0 0 0 0
0 0 0 0 0

 , 1 6 j 6 J − 1.

Here d = −hj

2 ,

[δ1] =


δv0
δq0
δf1
δv1
δt1

 , [δj ] =


δuj−1

δqj−1

δfj
δvj
δtj

 , 2 6 j 6 J ; [rj ] =


(r1)j
(r2)j
(r3)j
(r4)j
(r5)j

 , 1 6 j 6 J.

Forward sweep:
To solve equation (36) , assume the matrix A to be nonsingular and it can be
factored as

(37) A = LU,

where

L =


[α1]
[B2] [α2]

. . . . . .
[αJ−1]
[BJ ] [αJ ]

 , U =


I [Γ1]

I [Γ2]
. . . . . .

I [ΓJ−1]
I

 ,

[I] is the identity matrix of order 5, and [αj ], [Γj ] are 5×5 matrices whose elements
are determined by the following equations:

(38) [α1] = [A1],

(39) [A1][Γ1] = [C1],

(40) [αj ] = [Aj ]− [Bj ][Γj−1], j = 2, 3, · · · J,
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(41) [αj ][Γj ] = [Cj ], j = 2, 3, · · · J − 1.

Backward sweep:

(42) LUδ = r,

Let

(43) Uδ = w,

so that

(44) Lw = r,

where

w =


[w1]
[w2]
· · ·

[wJ−1]
[wJ ]

 ,

and the [wj ] are 5 × 1 column matrices. The elements w can be solved from the
equation (44) by

(45) [α1][w1] = [r1],

(46) [αj ][wj ] = [rj ]− [Bj ][wj−1], 2 6 j 6 J.

With these [wj ] and from equation (43) we get [δj ]:

(47) [δJ ] = [wJ ],

(48) [δj ] = [wj ]− [Γj ][δj+1], 1 6 j 6 J − 1.

These iterations will be stopped when

(49) |δv(i)0 | < ε,

where ε is the desired level of accuracy.
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4. Results and Discussions

With the help of the implicit finite-difference scheme known as the Keller-box
method [12, 13, 14], the equation (10) and (11) subject to the boundary condi-
tions (12) and (13) are solved numerically. Taking the step size ∆η = 0.01 in η and
within the interval [0, η∞], where η∞ is the boundary layer thickness, we run the
programme in MATLAB up to the desired level of accuracy which the difference
between the input and output values of v(x, 0) (or f//(0)) i.e.,equal to 0.00001.
For the validation of the numerical method used in this study,the case of M2 = 4
and s = 1 are compared with those of Ali et al. [15], where the skin friction coef-
ficient are f//(0) = 2.3028 for m = 1, and f//(0) = 2.8916 for m = 2 by changing
one of the boundary conditions (f/(0) = −1) in (12). The present results are found
to be in good agreement with those of [15].

Figure 2. Velocity profiles for different s.

The effects of suction parameter s on velocity and temperature profiles are shown
in figures 2 and 3. When the value of s increases the velocity profile also increases
(Fig.2). But the temperature profile decreases with the increase of s (Fig.3).

The effects of Hartmann number M on velocity and temperature profiles can be
observed from the figures 4 and 5 respectively. It is shown that the velocity profiles
decreases with the increase of M (Fig.4). When m = 1 (the sheet stretches in
x-direction two-dimensionally)the temperature profiles increase with the increase
of M; but the reverse effect has been observed when m = 2 (the sheet stretches
axisymmetrically)(Fig.5).
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Figure 3. Temperature profiles for different s.

Figure 4. Velocity profiles for different M.

The temperature profiles decreases with the increase of Pr for both m = 1 and
m = 2 (fig.6).This occurs because when Pr increases, the thermal diffusivity de-
creases, and it leads to the decrease of the energy transfer ability that decreases
the thermal boundary layer.
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Figure 5. Temperature profiles for diffrent M.

Figure 6. Temperature profiles for different Pr.

The variation of skin friction coefficient f//(0) and Nusselt number 1
θ(0) with s are

respectively plotted in the figures 7 and 8. It is seen that f//(0) and 1
θ(0) decrease

with M2 for both the cases m = 1 and m = 2.
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Figure 7. Skin friction coefficient with s.

Figure 8. Nusselt number with s.
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