SOME REMARKS ABOUT R-LABELINGS OF POSETS

Duško Jojić

Abstract

We describe a family of posets with positive flag h-vectors that do not admit an R-labeling. This family contains the example of R. Ehrenborg and M. Readdy presented in [4]. Furthermore, for a poset that has an R labeling, we consider the complex of all rising chains. We show that the f-vector and homotopy type of this complex do not depend of a concrete labeling.

1. Introduction

We shortly review some concepts about partially ordered sets (posets). We refer the reader to Chapter 3 of $[\mathbf{7}]$ for a detailed overview of poset terminology.

A poset P is graded if it has a minimal element $\hat{0}$, maximal element $\hat{1}$ and a rank function ρ such that $\rho(\hat{0})=0$ and $\rho(y)=\rho(x)+1$ whenever y covers x. The rank of the poset P is defined to be $\rho(P)=\rho(\hat{1})$. For a graded poset P of rank $n+1$ and $S \subseteq[n]=\{1,2, \ldots, n\}$ let f_{S} denote the number of chains $x_{1}<x_{2}<\ldots<x_{k}$ in P such that $S=\left\{\rho\left(x_{1}\right), \rho\left(x_{2}\right), \ldots, \rho\left(x_{k}\right)\right\}$. The sequence $\left(f_{S(P)}\right)_{S \subseteq[n]}$ is called the flag f-vector of P. The flag h-vector of P is the sequence $\left(h_{S(P)}\right)_{S \subseteq[n]}$ defined by

$$
h_{S}=\sum_{T \subseteq S}(-1)^{|S \backslash T|} f_{T} .
$$

Let $E(P)$ denote the set of all covering relations in P :

$$
E(P)=\{(x, y) \in P \times P: x \prec y\} .
$$

In other words, $E(P)$ is the set of edges in the Hasse diagram of P.
Definition 1.1. A map $\lambda: E(P) \rightarrow \mathbb{Z}$ is called an R-labeling if for every interval $[x, y]$ of P there is a unique rising chain $x=x_{0} \prec x_{1} \prec x_{2} \prec \cdots \prec x_{k}=y$ such that $\lambda\left(x_{0}, x_{1}\right)<\lambda\left(x_{1}, x_{2}\right)<\cdots<\lambda\left(x_{k-1}, k\right)$. This unique chain is called rising.

[^0]R. Stanley introduced the concept of labelings of posets in [5] and [6]. The term " R-labeling" appeared in [2]. Some more rigorous types of labeling of a poset ($E L$-labeling and $C L$-labeling, see $[\mathbf{3}]$) enable us to compute homology of a poset. An R-labeling of a graded poset P can be used for obtaining some important enumerative characteristics of P, such as Möbius function, Euler characteristic, flag h-vector,....

For example, if a graded poset has an R-labeling, every entry of its flag h-vector is non-negative, see Theorem 3.14 .2 in $[\mathbf{7}]$. Therefore, a poset P with a negative entry in its flag h-vector does not have an R-labeling.

In [4], R. Ehrenborg and M. Readdy construct a family of posets where each member has a positive flag h-vector but has no R-labeling.

Let T_{n} denote the butterfly poset, a unique graded poset of rank n such that there are two elements of rank i for $1 \leqslant i \leqslant n-1$ and every element different from $\hat{0}$ covers all elements of one rank below. It is easy to check that the flag f - and h-vectors of T_{n} are given by

$$
f_{S}\left(T_{n}\right)=2^{|S|} \text { and } h_{S}\left(T_{n}\right)=1 \text { for } S \subseteq[n-1]
$$

Let P_{n} consist of two copies of the T_{n} where we have identified the minimal elements and the maximal elements. Note that $h_{S}\left(P_{n}\right)=2-(-1)^{|S|}>0$.

Theorem 1.1 (Ehrenborg-Readdy, [4]). The poset P_{n} for $n>3$ does not have an R-labeling.

2. Posets without R-labeling

Definition 2.1. Let P be a graded poset with an R-labeling. For every $x \in P$ we can associate the rising tree T_{x}. Vertices of T_{x} are the elements of $[x, \hat{1}]$. A pair $u v$ such that $x \leqslant u \prec v$ is an edge of T_{x} if and only if the unique rising chain from x to v contains u.

The existence and uniqueness of a rising chain in every interval $[x, y]$ guaranties that T_{x} is an acyclic connected graph. For $x<v \leqslant \hat{1}$ let $T_{x \mid v}$ denote the subtree of T_{x} spanned by $[v, \hat{1}]$.

Remark 2.1. Let P be a graded poset with an R-labeling. Assume that the edge $u v$ of the Hasse diagram is a common edge of T_{x} and T_{y}. If $p q$ is an edge in $T_{x \mid v}$, then we have a rising chain $x \prec x_{1} \prec \cdots \prec u \prec v \prec z_{1} \prec \cdots \prec p \prec q$. We know that there exists a rising chain $y \prec y_{1} \prec \cdots \prec u \prec v$ from y to v. Therefore

$$
y \prec y_{1} \prec \cdots \prec u \prec v \prec z_{1} \prec \cdots \prec p \prec q
$$

is a rising chain from y to q. So, we can conclude that $T_{x \mid v}=T_{y \mid v}$.
Theorem 2.1. Let P_{1} and P_{2} be two posets of rank $n>3$ with just two elements of rank i_{j} in P_{j} for some $1<i_{1}, i_{2}<n-1$. Let Q be a poset obtained by identification of the maximal elements and the minimal elements of P_{1} and P_{2}. The poset Q does not admit an R-labeling.

Proof. Suppose that Q has an R-labeling λ. In that case, there exists the unique rising chain from $\hat{0}_{Q}$ to $\hat{1}_{Q}$. Without lose of generality we may assume that this chain is contained in P_{1}. Let x and y denote the only two elements of P_{2} of rank i_{2}. Note that any $z \in P_{2}, \rho(z)>i_{2}, z \neq \hat{1}_{Q}$ is contained in $T_{\hat{o}_{Q} \mid x}$ or $T_{\hat{o}_{Q} \mid y}$. Now, we consider two possible cases.
1° There exists $u \in P_{2}, \rho(u)=i_{2}-1$ such that $u x$ and $u y$ are both the edges of $T_{\hat{0}_{Q}}$. As we suppose that λ is an R-labeling there exists a unique rising chain $u=x_{0} \prec x_{1} \prec x_{2} \prec \cdots \prec x_{n-i_{2}-1}=\hat{1}_{Q}$ from u to $\hat{1}_{Q}$. Without loss of generality we assume that $x_{1}=x$. From Remark 2.1 we conclude that $T_{\hat{0}_{Q} \mid x}=T_{u \mid x}$, and therefore the vertex $\hat{1}_{Q}$ is contained in $T_{\hat{0}_{Q} \mid x}$. So, we obtain that $\hat{0}_{Q} \prec \cdots \prec u \prec x \prec \cdots \prec \hat{1}_{Q}$ is another rising chain from $\hat{0}_{Q}$ to $\hat{1}_{Q}$, which is a contradiction.
2° There exist vertices u and v in $P_{2}, \rho(u)=\rho(v)=i_{2}-1$ such that $u x$ and $v y$ are edges of $T_{\hat{0}_{Q}}$. Now, we consider the unique rising chain $u=x_{0} \prec x_{1} \prec x_{2} \prec$ $\cdots \prec x_{n-i_{2}-1}=\hat{1}_{Q}$. If $x_{1}=x$ from Remark 2.1 we have that $T_{\hat{0}_{Q} \mid x}=T_{u \mid x}$. As before, we obtain another rising chain form $\hat{0}_{Q}$ to $\hat{1}_{Q}$ in P_{2}, a contradiction.

If $x_{1}=y$ and edge $y x_{2}$ is contained in $T_{\hat{0}_{Q}}$, we obtain that $T_{\hat{0}_{Q} \mid x_{2}}=T_{y \mid x_{2}}$. Again, we know that $\hat{1}_{Q} \in T_{y \mid x_{2}}$, and we can find another rising chain from $\hat{0}_{Q}$ to $\hat{1}_{Q}$, a contradiction.

If $x_{1}=y$ and edge $y x_{2}$ is not contained in $T_{\hat{0}_{Q}}$, we have that $x x_{2}$ is an edge in $T_{\hat{0}_{Q}}$. Then, $u \prec x \prec x_{2}$ and $u \prec y \prec x_{2}$ are two different rising chains in [u, x_{2}], yielding a contradiction.

Note that the result of Theorem 1.1 directly follows from the previous theorem.
Remark 2.2. Let $P_{n}^{k, i}$ denote the unique graded poset of rank n such that there are two elements of rank i and k elements of rank $0<j<n$ for $j \neq i$. Every element of $P_{n}^{k, i}$ different from $\hat{0}$ covers all of the elements of one rank below. It is not complicated to check that $P_{n}^{k, i}$ has an R-labeling. Let Q consist of $P_{n}^{k, p}$ and $P_{n}^{k, q}, p \neq q$ where we identified the maximal elements and the minimal elements. For $1<p, q<n$ we know that Q does not admit an R-labeling. Note that for $S \subseteq[n-1], S \neq \emptyset$ the entry $h_{S}(Q)$ can be arbitrary large.

3. Complexes of rising chains

The order-complex $\Delta(P)$ of a graded poset P is the simplicial complex on vertex set P whose faces are the chains in P. This object is a passage between combinatorics and topology. The study of algebraic and topological properties of these complexes is a standard technique in enumerative combinatorics, see chapter 3 in [7].

Definition 3.1. For a graded poset P and an R-labeling $\lambda: E(P) \rightarrow \mathbb{Z}$ of P let $\Delta_{\lambda}(P)$ denote a subcomplex of $\Delta(P)$ spanned by all rising chains in P. We say that $\Delta_{\lambda}(P)$ is a complex of rising chains.

Figure 1. Different R-labelings of the same poset
In other words, a chain $C: x=x_{1}<x_{2}<\cdots<x_{k}=y$ is a face of $\Delta_{\lambda}(P)$ if and only if C is contained in the unique rising chain from x to y.

Example 3.1. There is an example (see Figure 1) where different R-labelings of the same poset produce different complexes of rising chains.

However, by an easy examination we obtain that:
(1) These complexes of rising chains have the same f-vector.
(2) Both of these complexes are homotopy equivalent to a wedge of circles.
(3) These two complexes have the same homotopy type.

Proposition 3.1. For any two R-labeling λ and λ^{\prime} complexes $\Delta_{\lambda}(P)$ and $\Delta_{\lambda^{\prime}}(P)$ have the same f-vector.

Proof. Assume that $x=x_{0}<x_{i_{1}}<x_{i_{2}}<\cdots<x_{i_{k}}=y$ is a k-face of $\Delta_{\lambda}(P)$. Let $C^{\prime}: x=y_{0} \prec y_{1} \prec \cdots \prec y_{t}=y$ denote the unique rising chain in $[x, y]$ under labeling of P with λ^{\prime}. Now, let y_{j} denote the element of C^{\prime} such that $\rho\left(y_{j}\right)=\rho\left(x_{i_{j}}\right)$. Obviously, $x=y_{0}<y_{1}<\cdots<y_{k}=y$ is a k-face of $\Delta_{\lambda^{\prime}}(P)$. It is an easy check that the above correspondence is a bijection between k-faces of $\Delta_{\lambda}(P)$ and $\Delta_{\lambda^{\prime}}(P)$.

Theorem 3.1. For any graded poset P and its R-labeling $\lambda: E(P) \rightarrow \mathbb{Z}$ the complex $\Delta_{\lambda}(P)$ is homotopy equivalent to a wedge of $|E(P)|-|P|+1$ circles.

Proof. For $x \in P$ let S_{x} denote the subcomplex of $\Delta_{\lambda}(P)$ spanned by all faces in which x is the minimal element. Note that S_{x} is contractible. Assume that $\hat{0}, x_{1}, \ldots, x_{m}, \hat{1}$ is a linear extension of P. We built up the complex $\Delta_{\lambda}(P)$ by adding subcomplexes $S_{\hat{0}}, S_{x_{1}} \ldots$ one by one. Let Δ_{i} denote $S_{\hat{0}} \cup S_{x_{1}} \cup \cdots S_{x_{i}}$. We will use the induction to show that Δ_{i} is contractible or a wedge of circles. The complex Δ_{0} is contractible and we have that $\Delta_{i+1}=\Delta_{i} \cup S_{x_{i+1}}$. From Lemma 10.4 in [1] we obtain that

$$
\Delta_{i+1} \simeq \Delta_{i} \cup \operatorname{cone}\left(\Delta_{i} \cap S_{x_{i+1}}\right)
$$

Remark 2.1 guaranteed that $\Delta_{i} \cap S_{x_{i+1}}$ is the union of disjoint contractible complexes. There is an obvious bijection between connected contractible component of $\Delta_{i} \cap S_{x_{i+1}}$ that do not contain x and the edges of the rising tree $T_{x_{i+1}}$ that do not appear in some $T_{x_{j}}$ for $j \leqslant i$. If this intersection has β connected components and if we assume that Δ_{i} is homotopy equivalent to a wedge of α circles, then Δ_{i+1} is homotopy equivalent to a wedge of $\alpha+\beta-1$ circles.

Note that there is $|P|-1$ edges of $E(P)$ contained in the rising tree T_{0} and they do not contribute the circles in $\Delta_{\lambda}(P)$. The edge $u v$ that is not contained in $T_{\hat{0}}$ contributes one connected contractible components in $\Delta_{r-1} \cup S_{x_{r}}$ (here x_{r} is the first element in the linear extension of P such that $T_{x_{r}}$ contains $u v$). Therefore, we obtain that $\Delta_{\lambda}(P)$ is homotopy equivalent to a wedge of $|E(P)|-|P|+1$ circles.

Now, we will use the previous theorem to calculate homotopy type of rising complexes of some well-known posets.

Example 3.2. The rising complex of a butterfly poset T_{n} is homotopy equivalent to a wedge of $2 n-3$ circles. For the Boolean algebra B_{n} there exists a natural R-labeling $\lambda: B_{n} \rightarrow[n]$ defined by $\lambda(A \prec B)=B \backslash A$. As we have that $\left|B_{n}\right|=2^{n}$ and $\left|E\left(B_{n}\right)\right|=n 2^{n-1}$, from Theorem 3.1 we obtain that $\Delta_{\lambda}\left(B_{n}\right)$ is a wedge of $(n-2) 2^{n-1}+1$ spheres.

If the posets P and Q have R-labelings, say λ^{\prime} and $\lambda^{\prime \prime}$, it is well known that $P \times Q$ admits an R-labeling λ too. Assume that $\Delta_{\lambda^{\prime}}(P)$ and $\Delta_{\lambda^{\prime \prime}}(Q)$ are homotopy equivalent to a wedge of α and β circles respectively. From the previous theorem we obtain that $\Delta_{\lambda}(P \times Q)$ is homotopy equivalent to a wedge of $|P| \beta+|Q| \alpha+$ $(|P|-1)(|Q|-1)$ circles.

We could apply this on the product of two chains $\mathbf{m}=([m],<)$ and $\mathbf{n}=(n,<)$. The rising complex $\Delta_{\lambda}(\mathbf{m} \times \mathbf{n})$ is homotopy equivalent to a wedge of $(m-1)(n-1)$ circles.

References

[1] A. Björner, Topological methods, in: R. L. Graham, M. Grötschel, and L. Lovász (eds.), Handbook of combinatorics, Elsevier, Amsterdam, 1995, 1819-1872.
[2] A. Björner, Shellable and Cohen-Macaulay partially ordered sets Trans. Am. Math. Soc. 260, 159-183 (1980).
[3] A. Björner and M. L. Wachs, On lexicographically shellable posets Trans. Am. Math. Soc. 277, 323-341 (1983).
[4] R. Ehrenborg and M. Readdy, On the non-existence of an R-labeling, Order 28, No. 3, 437-442 (2011).
[5] R. P. Stanley, Ordered structures and partitions. Mem. Am. Math. Soc. 119, Providence, R.I., 1972.
[6] R. P. Stanley, Finite lattices and Jordan-Hlder sets, Algebra Univers. 4, 361-371 (1974).
[7] R. P. Stanley, Enumerative combinatorics. Vol. 1. 2nd ed., Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 2012.

Department of mathematics, Faculty of Science, University of Banja Luka, 2, Mladen Stojanoviś Street, 78000 Banja Luka, Bosnia and Herzegovina

E-mail address: ducci68@blic.net

[^0]: 2010 Mathematics Subject Classification. 06A07.
 Key words and phrases. R-labeling, flag h-vector, order complex.

