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Four orthogonal polynomials connected to a two parameter
function of Mittag-Leffler type

R. Rangarajan and Shashikala P.

Abstract. In the present paper, first we describe the orthogonality relations
between denominator polynomials of [n−1/n] Pade approximants and related
power series expansion of two parameter function of Mittag-Leffler type; next

we compute four orthogonal polynomials which are extracted from numerator
as well as denominator polynomials of both even and odd order convergents of
the regular C-fraction connected to Pade approximants. The two orthogonal

polynomials extracted from denominators are shown to be classical orthogonal
polynomials and two orthogonal polynomials extracted from numerator are
shown to be non-classical orthogonal polynomials.

1. Introduction

The theory of orthogonal polynomials [5, 9] has one of its origins in Pade
approximants given by certain types of continued fractions. Hence the orthogonal
polynomials have a close link with the theory of Pade approximation. The Pade
approximation to a function, f represented by a power series

f(x) =
∞∑
i=0

cix
i

is a type of rational fraction approximation [1, 2, 3] in the form Pm(x)/Qn(x)
satisfying

Qn(x)f(x)− Pm(x) = O(xm+n+1)

and it is called the (m,n)− order Pade approximant to f(x), denoted by [m/n]f (x).
They can be arranged in a two dimensional array called Pade table. If m = n, the
Pade approximants occupy the main diagonal of the table. The denominator as
well as numerator polynomials of Pade approximation are orthogonal with respect
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to their linear moment functional L : P −→ R from the space of all polynomials
over R into R which has nth moment same as the coefficient of xn in a known power
series called moment generating function.

According to Favard’s theorem [6, 8, 10] the necessary and sufficient condition
for orthogonality of Pn(x) is to satisfy the following three term recurrence relation:

P−1(x) := 0, P0(x) := 1,

Pn(x) := (x− cn)Pn−1(x)− λnPn−2(x), n = 1, 2, 3, 4, . . . ,(1.1)

where cn
′s are real and λn

′s are non zero numbers. The orthogonality relation
[6, 8, 10] is given by

L{Pm(x)Pn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n.

(1.2)

In addition, if both Pn(x) and
P ′
n+1(x)

n+ 1
are orthogonal polynomials with respect to

their linear moment functionals, then the pair

{
Pn(x),

P ′
n+1(x)

n+ 1

}
is called classical

orthogonal polynomials [4, 6].
Motivated strongly by the above works, in the present paper, four orthogonal

polynomials are extracted from numerator as well as denominator polynomials of
both even and odd order convergents of a regular C-fraction connected to Pade
approximants for power series expansion of two parameter function of Mittag-
Leffler type. In Section two, we compute four sequences of orthogonal polynomials.
In the last Section, the two orthogonal polynomials extracted from denominators
are shown to be classical orthogonal polynomials and two orthogonal polynomials
extracted from numerators are shown to be non-classical orthogonal polynomials.

2. Computation of four orthogonal polynomials

Two parameter function of Mittag-Leffler type [7, 11] which is very useful
for solving fractional differential equation is given by

Eα,β(x) =

∞∑
n=0

xn

Γ(αn+ β)
.

For α = β = 1,

E1,1(x) =
∞∑

n=0

xn

Γ(n+ 1)
=

∞∑
n=0

xn

n!
= ex.

Consider,

1− x

1
+

x2

1 · 3 − x3

1 · 3 · 5 + · · · = Γ

(
1

2

) ∞∑
n=0

(−x
2

)n(
1
2
+ (n− 1)

)
· · ·
(
1
2
+ 1
)

1
2
Γ
(
1
2

)
=

√
π

∞∑
n=0

(−x
2

)n
Γ
(
n+ 1

2

)
=

√
π E1, 1

2

(−x

2

)
.
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Confluent hypergeometric representation [2, 9]:

1− x

1
+

x2

1 · 3 − x3

1 · 3 · 5 + · · · =

∞∑
n=0

1(1 + 1) · · · (1 + (n− 1))
1
2

(
1
2
+ 1
)
· · ·
(
1
2
+ (n− 1)

) (−x
2

)n
n!

= 1F1

(
1,

1

2
;
−x

2

)
.

Regular C-fraction representation for 1F1(1, β; z) [2, 9]:

1F1(1, β; z) =
1

1 −

1
β
z

1 +

1
β (β+1)

z

1 −

β
(β+1) (β+2)

z

1 + ··· +

n
(β+2n−2) (β+2n−1)

z

1 −

β+(n−1)
(β+2n−2) (β+2n−1)

z

1 + ···

For β =
1

2
, and z =

−x

2
, we obtain

(2.1) F (x) =1 F1

(
1,

1

2
;
−x

2

)
=

1

1+

x

1+

−2
3
x

1 +

1
15
x

1 +···+

−2n
(4n−3)(4n−1)

x

1 +

(2n−1)
(4n−1)(4n+1)

x

1 +···

In the context of Pade table [2, 3], the continued fraction provides a staircase sequence
of Pade approximants
[0/0]f (x), [0/1]f (x), [1/1]f (x), [1/2]f (x), [2/2]f (x) . . . [n− 1/n]f (x), [n/n]f (x), . . .
which are given by

A1

B1
=

1

1
=

P
(0,0)
0

Q
(0,0)
0

,
A3

B3
=

1− 2
3
x

1 + 1
3
x

=
P

(1,1)
1

Q
(1,1)
1

, . . . ,
A2n+1

B2n+1
=

P
(n,n)
n

Q
(n,n)
n

and

A2

B2
=

1

1 + x
=

P
(0,1)
0

Q
(0,1)
0

,
A4

B4
=

1− 3
5
x

1 + 2
5
x+ 1

15
x2

=
P

(1,2)
1

Q
(1,2)
1

, . . . ,
A2n+2

B2n+2
=

P
(n−1,n)
n

Q
(n−1,n)
n

.

The even order convergents:
Let us make use of definitions of even parts of continued fraction as given in [12].

[n−1/n]f (x) Pade approximants can be computed using the even part of continued fraction
(2.1):

1

1 + x +

2
3
x2

1− 3
5
x

+ ··· +

(2n−3)2n

(4n−5)(4n−3)2(4n−1)
x2

1− 3
(4n−3)(4n+1)

x
+ ···

.

The nth convergent is given by

A2n+2(x)

B2n+2(x)
=

(
1− 3

(4n−3)(4n+1)
x
)
A2n(x) +

(2n−3)2n

(4n−5)(4n−3)2(4n−1)
x2A2n−2(x)(

1− 3
(4n−3)(4n+1)

x
)
B2n(x) +

(2n−3)2n

(4n−5)(4n−3)2(4n−1)
x2B2n−2(x)

with
A2

B2
=

1

1 + x
,

A4

B4
=

1− 3
5
x

1 + 2
5
x+ 1

15
x2

, n = 2, 3, . . . .
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The odd order convergents:
Let us make use of definitions of odd parts of continued fraction as given in [12].

[n/n]f (x) Pade approximants can be computed using the odd part of continued fraction
(2.1):

1− x

1 + 1
3
x

+ ··· +

2n(2n−1)

(4n−3)(4n−1)2(4n+1)
x2

1− 1
(4n−1)(4n+3)

x
− ···

.

The nth convergent is given by

A2n+1(x)

B2n+1(x)
=

(
1− 1

(4n−1)(4n+3)
x
)
A2n−1(x) +

2n(2n−1)

(4n−3)(4n−1)2(4n+1)
x2A2n−3(x)(

1− 1
(4n−1)(4n+3)

x
)
B2n−1(x) +

2n(2n−1)

(4n−3)(4n−1)2(4n+1)
x2B2n−3(x)

with
A1

B1
=

1

1
,

A3

B3
=

1− 2
3
x

1 + 1
3
x
, n = 2, 3, . . . .

The desired orthogonal polynomials:

pn(x) = xnA2n+2

(
1

x

)
, qn(x) = xnB2n

(
1

x

)
,

rn(x) = xnA2n+1

(
1

x

)
, sn(x) = xnB2n+1

(
1

x

)
,

n = 0, 1, 2, . . . , where B0

(
1

x

)
:= 1.

Orthogonality of qn(x) :
Consider the series

F (x) = 1− x+
1

1 · 3x
2 − 1

1 · 3 · 5x
3 + · · ·+ (−1)n

1

1 · 3 · 5 · · · (2n− 1)
xn + · · · .

The linear moment generating function with respect to F (x) denoted by LF has nth

moment,

LF {xn} =
(−1)n

1 · 3 · 5 · · · (2n− 1)
.

The three term recurrence relation of qn(x) is

(2.2)

qn+1(x) =

(
x− 3

(4n− 3)(4n+ 1)

)
qn(x) +

2n(2n− 3)

(4n− 5)(4n− 3)2(4n− 1)
qn−1(x),

q0(x) = 1, q1(x) = x+ 1, n = 1, 2, 3, . . . .

As a result of applying (1.1) and (1.2), we obtain the orthogonality of qn(x) is

LF {qm(x)qn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n.

where λ1 = 1 and λk =
−(2k − 2)(2k − 5)

(4k − 9)(4k − 7)2(4k − 5)
, k = 2, 3, . . . , n+ 1.

Orthogonality of sn(x) :
Following the literature [2, 3], we obtain the series

F1(x) =
1− F (x)

x
= 1− 1

1 · 3x+ · · ·+ (−1)n
1

1 · 3 · 5 · · · (2n+ 1)
xn + · · · .
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The linear moment generating function with respect to F1(x) denoted by LF1 has nth

moment

LF1{x
n} = (−1)n

1

1 · 3 · 5 · · · (2n+ 1)
.

The three term recurrence relation of sn(x) is

(2.3)

sn+1(x) =

(
x− 1

(4n− 1)(4n+ 3)

)
sn(x) +

2n(2n− 1)

(4n− 3)(4n− 1)2(4n+ 1)
sn−1(x),

s0(x) = 1, s1(x) = x+
1

3
, n = 1, 2, 3, . . . .

As a result of applying (1.1) and (1.2), we obtain the orthogonality of sn(x) is

LF1{sm(x)sn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk =
−(2k − 2)(2k − 3)

(4k − 7)(4k − 5)2(4k − 3)
, k = 2, 3, . . . , n+ 1.

Orthogonality of rn(x) :
Following the literature [2, 3], we obtain the series

1

F (x)
= 1 + x+ d2x

2 + d3x
3 + d4x

4 + · · ·+ dnx
n + · · · .

and

F2(x) =

1
F (x)

− 1

x
= 1 + d2x+ d3x

2 + d4x
3 + · · ·+ dn+1x

n + · · · .

The linear moment generating function with respect to F2(x) denoted by LF2 has nth

moment

LF2{x
n} = dn+1.

The three term recurrence relation of rn(x) is

rn+1(x) =

(
x− 1

(4n− 1)(4n+ 3)

)
rn(x) +

2n(2n− 1)

(4n− 3)(4n− 1)2(4n+ 1)
rn−1(x),

r0(x) = 1, r1(x) = x− 2

3
, n = 1, 2, 3, . . .

As a result of applying (1.1) and (1.2), we obtain the orthogonality of rn(x) is

LF2{rm(x)rn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk =
−(2k − 2)(2k − 3)

(4k − 7)(4k − 5)2(4k − 3)
, k = 2, 3, . . . , n+ 1.

Suppose rn(x) = xn + rn−1x
n−1 + · · · + r1x + r0. Since LF2{r0(x)rn(x)} = 0, we can

compute dn using

dn = −[rn−1dn−1 + · · ·+ r1d1 + r0], d0 = 1, n = 1, 2, . . . .

Orthogonality of pn(x) :
Following the literature [2, 3], we obtain the series

F3(x) =
3

2

(
1

F (x)
− 1− x

x2

)
= 1 +

3

5
x+ e2x

2 + e3x
3 + · · ·+ enx

n + · · · .
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The linear moment generating function with respect to F3(x) denoted by LF3 has nth

moment
LF3{x

n} = en.

The three term recurrence relation of pn(x) is

pn+1(x) =

(
x− 3

(4n+ 1)(4n+ 5)

)
pn(x) +

(2n− 1)(2n+ 2)

(4n− 1)(4n+ 1)2(4n+ 3)
pn−1(x),

p0(x) = 1, p1(x) = x− 3

5
, n = 1, 2, 3, . . . .

As a result of applying (1) and (2), we obtain the orthogonality of pn(x) is

LF3{pm(x)pn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk =
−2k(2k − 3)

(4k − 5)(4k − 3)2(4k − 1)
, k = 2, 3, . . . , n+ 1.

Suppose pn(x) = xn + pn−1x
n−1 + · · · + p1x + p0. Since LF3{p0(x)pn(x)} = 0, we can

compute en using

en = −[pn−1en−1 + · · ·+ p1e1 + p0], e0 = 1, n = 1, 2, . . . .

3. Classical orthogonal polynomials

The following theorem [4], gives necessary and sufficient conditions for classical or-
thogonality of polynomials:

Theorem 3.1.

{
Pn(x),

d

dx

(
Pn+1(x)

n+ 1

)}
is a pair of classical orthogonal polynomials

if and only if

A. Pn(x) form orthogonal polynomials with respect to L.

B. Pn(x) =
d

dx

(
Pn+1(x)

n+ 1

)
− αn

d

dx

(
Pn(x)

n

)
− αn−1

d

dx

(
Pn−1(x)

n− 1

)
, where

αn and αn−1 are non-zero numbers.

Theorem 3.2. The coefficients of qn(x) and sn(x) can be explicitly computed and
hence

qn(x) = xn +

n∑
r=1

(
n
r

)
(4n− 3)(4n− 5) · · · (4n− 2r − 1)

xn−r, n = 0, 1, 2, . . .

and sn(x) = xn +
n∑

r=1

(
n
r

)
(4n− 1)(4n− 3) · · · (4n− 2r + 1)

xn−r, n = 0, 1, 2, . . . .

Proof. We obtain the result by using the recurrence relation of qn(x) and sn(x) given
by (2.2) and (2.3) respectively and the principle of mathematical induction on n. �

Theorem 3.3. qn(x) is a classical orthogonal polynomial because

A1. qn(x) is orthogonal polynomial with respect to LF .

B1. qn(x) =
d

dx

(
qn+1(x)

n+ 1

)
+

4n

(4n+ 1)(4n− 3)

d

dx

(
qn(x)

n

)

+
4n(n− 1)

(4n− 1)(4n− 3)2(4n− 5)

d

dx

(
qn−1(x)

n− 1

)
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and sn(x) is a classical orthogonal polynomial because

A2. sn(x) is orthogonal polynomial with respect to LF1 .

B2. sn(x) =
d

dx

(
sn+1(x)

n+ 1

)
+

4n

(4n− 1)(4n+ 3)

d

dx

(
sn(x)

n

)

+
4n(n− 1)

(4n+ 1)(4n− 1)2(4n− 3)

d

dx

(
sn−1(x)

n− 1

)
.

Proof. The result follows from Theorem 3.1 and Theorem 3.2. �

In Section two, we have already shown that rn(x) and pn(x) are orthogonal poly-
nomials with respect to LF2 and LF3 respectively. Hence they satisfy the condition A of
Theorem 3.1. But they do not satisfy the condition B of Theorem 3.1.

For example:

r4(x) =
d

dx

(
r5(x)

5

)
− 41

15 · 19
d

dx

(
r4(x)

4

)
− 2809

4 · 5 · 13 · 15 · 17
d

dx

(
r3(x)

3

)
− 22051

2 · 11 · 13 · 152 · 17
d

dx

(
r2(x)

2

)
− 1814713

4 · 5 · 11 · 13 · 15 · 19 · 21
d

dx

(
r1(x)

1

)
.

p4(x) =
d

dx

(
p5(x)

5

)
− 16

7 · 21
d

dx

(
p4(x)

4

)
− 7198

5 · 7 · 17 · 19 · 21
d

dx

(
p3(x)

3

)
− 734456

52 · 13 · 17 · 19 · 212
d

dx

(
p2(x)

2

)
− 2183848

52 · 11 · 132 · 17 · 21
d

dx

(
p1(x)

1

)
.

Hence rn(x) and pn(x) are nonclassical orthogonal polynomials.
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