Quadruple Coincidence Point Results in Partially Ordered Metric Spaces

Vishal Gupta and Raman Deep

Abstract

In this paper, we prove quadruple coincidence point theorems for mixed g-monotone mappings satisfying the compatibility property in partially ordered metric space.

1. Introduction

The fixed point theorems in metric spaces are playing a major role to construct methods in mathematics and to solve problems in applied mathematics and sciences. The existence of a fixed point in partially ordered metric and G-metric spaces has been considered in ([1]-[4]) and ([5]-[10]). The notion of coupled fixed points have been introduced by Guo and Laksmikantham [3] in connection with monotone operators, which is further generalized by Choudhury [1], Bessem Samet [2] and many more. Berinde and Borcut [7] introduced the concept of triple fixed point and proved some related theorems. The concept of quadruple fixed point is considered by Erdal Karapinar [4], Mustafa [10]. Here, our aim is to prove a unique quadruple coincidence point theorem for g-monotone mappings satisfying the compatibility property in partially ordered metric space.

2. Preliminaries

Definition 2.1. [10] Let (X, \leqslant) be partially ordered set and $F: X^{4} \rightarrow X$. We say that F has the mixed g -monotone property, if for any $x, y, z, w \in X$,
$x_{1}, x_{2} \in X, g x_{1} \leqslant g x_{2} \Rightarrow F\left(x_{1}, y, z, w\right) \leqslant F\left(x_{2}, y, z, w\right)$,
$y_{1}, y_{2} \in X, g y_{1} \leqslant g y_{2} \Rightarrow F\left(x, y_{2}, z, w\right) \leqslant F\left(x, y_{1}, z, w\right)$,
$z_{1}, z_{2} \in X, g z_{1} \leqslant g z_{2} \Rightarrow F\left(x, y, z_{1}, w\right) \leqslant F\left(x, y, z_{2}, w\right)$,

[^0]$$
w_{1}, w_{2} \in X, g w_{1} \leqslant g w_{2} \Rightarrow F\left(x, y, z, w_{2}\right) \leqslant F\left(x, y, z, w_{1}\right)
$$

Definition 2.2. [10] An element $(x, y, z, w) \in X^{4}$ is called a quadruple coincidence point of $F: X^{4} \rightarrow X$ and $g: X \rightarrow X$, if the following conditions are satisfied, $F(x, y, z, w)=g(x), \quad F(y, z, w, x)=g(y), F(z, w, x, y)=g(z)$, $F(w, x, y, z)=g(w)$.

Definition 2.3. [5] Let (X, d) be a metric space and $\left\{x_{n}\right\} \subseteq X$. The mappings $f, g: X \rightarrow X$ are said to be compatible if,

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that for some $x \in X$, such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=x
$$

Now, we define a mapping $\bar{d}: X^{4} \times X^{4} \rightarrow X$ on (X, d) by:

$$
\bar{d}((x, y, z, w),(u, v, h, l))=d(x, u)+d(y, v)+d(z, h)+d(w, l)
$$

which will be denoted for convenience by d. Also, let ψ denotes all functions $\phi:[0, \infty) \rightarrow[0, \infty)$, which satisfy:
(1) ϕ is non-decreasing,
(2) $\phi(t)<t$ for all $t>0$,
(3) $\lim _{r \rightarrow t^{+}} \phi(r)<t$ for all $t>0$.

3. Main Result

Theorem 3.1. Let (X, \leqslant) be a partially ordered set and (X, d) be a complete metric space. Let $F: X^{4} \rightarrow X$ be a mapping having the mixed g-monotone property on X, such that there exist four elements $x_{0}, y_{0}, z_{0}, w_{0} \in X$, with

$$
\begin{array}{r}
g x_{0} \leqslant F\left(x_{0}, y_{0}, z_{0}, w_{0}\right), g y_{0} \geqslant F\left(y_{0}, z_{0}, w_{0}, x_{0}\right), \\
g z_{0} \leqslant F\left(z_{0}, w_{0}, x_{0}, y_{0}\right) \text { and } g w_{0} \geqslant F\left(w_{0}, x_{0}, y_{0}, z_{0}\right) . \tag{3.1}
\end{array}
$$

Suppose there exist $\phi \in \psi, M \geqslant 0$ such that

$$
\begin{align*}
& d(F(x, y, z, w), F(u, v, h, l)) \tag{3.2}\\
& \leqslant \phi\left(\frac{d(g x, g u)+d(g y, g v)+d(g z, g h)+d(g w, g l)}{4}\right)
\end{align*}
$$

$\forall x, y, z, u, v, h, l \in X$ with $g x \geqslant g u, g y \leqslant g v, g z \geqslant g h$ and $g w \leqslant g l$. Also, let $F\left(X^{4}\right) \subseteq g(X)$ and F, g being continuous, monotone increasing and compatible mappings. Then F and g have quadruple coincidence point in X.

Proof. Suppose $x_{0}, y_{0}, z_{0}, w_{0} \in X$ be given by (3.1) As $F\left(X^{4}\right) \subseteq g(X)$, therefore we can choose $x_{1}, y_{1}, z_{1}, w_{1} \in X$ such that $g x_{1}=F\left(x_{0}, y_{0}, z_{0}, w_{0}\right), \quad g y_{1}=$ $F\left(y_{0}, z_{0}, w_{0}, x_{0}\right)$, $g z_{1}=F\left(z_{0}, w_{0}, x_{0}, y_{0}\right), \quad g w_{1}=F\left(w_{0}, x_{0}, y_{0}, z_{0}\right)$. Then we have, $g x_{0} \leqslant g x_{1}, g y_{0} \geqslant g y_{1}, g z_{0} \leqslant g z_{1}$ and $g w_{0} \geqslant g w_{1}$. In the same way, we have $g x_{2}=F\left(x_{1}, y_{1}, z_{1}, w_{1}\right), \quad g y_{2}=F\left(y_{1}, z_{1}, w_{1}, x_{1}\right)$, $g z_{2}=F\left(z_{1}, w_{1}, x_{1}, y_{1}\right), \quad g w_{2}=F\left(w_{1}, x_{1}, y_{1}, z_{1}\right)$.

Since F has mixed g-monotone property, therefore we have
$g x_{0} \leqslant g x_{1} \leqslant g x_{2}, g y_{2} \leqslant g y_{1} \leqslant g y_{0}, g z_{0} \leqslant g z_{1} \leqslant g z_{2}$ and $g w_{2} \leqslant g w_{1} \leqslant g w_{0}$. Continuing this process, we can construct four sequences $\left\{g x_{n}\right\},\left\{g y_{n}\right\},\left\{g z_{n}\right\}$ and $\left\{g w_{n}\right\}$ such that
$g x_{n}=F\left(x_{n-1}, y_{n-1}, z_{n-1}, w_{n-1}\right) \leqslant g x_{n+1}=F\left(x_{n}, y_{n}, z_{n}, w_{n}\right)$, $g y_{n+1}=F\left(y_{n}, z_{n}, w_{n}, x_{n}\right) \leqslant g y_{n}=F\left(y_{n-1}, z_{n-1}, w_{n-1}, x_{n-1}\right)$,
$g z_{n}=F\left(z_{n-1}, w_{n-1}, x_{n-1}, y_{n-1}\right) \leqslant g z_{n+1}=F\left(z_{n}, w_{n}, x_{n}, y_{n}\right)$, $g w_{n+1}=F\left(w_{n}, x_{n}, y_{n}, z_{n}\right) \leqslant g w_{n}=F\left(w_{n-1}, x_{n-1}, y_{n-1}, z_{n-1}\right)$.
Now, for any $n \in N$, we have

$$
\begin{aligned}
d\left(g x_{n+1}, g x_{n}\right) & =d\left(F\left(x_{n}, y_{n}, z_{n}, w_{n}\right), F\left(x_{n-1}, y_{n-1}, z_{n-1}, w_{n-1}\right)\right) \\
(3.3) & \leqslant \phi\left[\frac{d\left(g x_{n}, g x_{n-1}\right)+d\left(g y_{n}, g y_{n-1}\right)+d\left(g z_{n}, g z_{n-1}\right)+d\left(g w_{n}, g w_{n-1}\right)}{4}\right] \\
d\left(g y_{n}, g y_{n+1}\right) & =d\left(F\left(y_{n-1}, z_{n-1}, w_{n-1}, x_{n-1}\right), F\left(y_{n}, z_{n}, w_{n}, x_{n}\right)\right) \\
(3.4) & \leqslant \phi\left[\frac{d\left(g y_{n-1}, g y_{n}\right)+d\left(g z_{n-1}, g z_{n}\right)+d\left(g w_{n-1}, g w_{n}\right)+d\left(g x_{n-1}, g x_{n}\right)}{4}\right] \\
d\left(g z_{n+1}, g z_{n}\right) & =d\left(F\left(z_{n}, w_{n}, x_{n}, y_{n}\right), F\left(z_{n-1}, w_{n-1}, x_{n-1}, y_{n-1}\right)\right) \\
(3.5) & \leqslant \phi\left[\frac{d\left(g z_{n}, g z_{n-1}\right)+d\left(g w_{n}, g w_{n-1}\right)+d\left(g x_{n}, g x_{n-1}\right)+d\left(g y_{n}, g y_{n-1}\right)}{4}\right] \\
d\left(g w_{n}, g w_{n+1}\right) & =d\left(F\left(w_{n-1}, x_{n-1}, y_{n-1}, z_{n-1}\right), F\left(w_{n}, x_{n}, y_{n}, z_{n}\right)\right) \\
(3.6) & \leqslant \phi\left[\frac{d\left(g w_{n-1}, g w_{n}\right)+d\left(g x_{n-1}, g x_{n}\right)+d\left(g y_{n-1}, g y_{n}\right)+d\left(g z_{n-1}, g z_{n}\right)}{4}\right] .
\end{aligned}
$$

Due to equations (3.3)-(3.6), we obtain

$$
\begin{aligned}
& d\left(g x_{n+1}, g x_{n}\right)+d\left(g y_{n}, g y_{n+1}\right)+d\left(g z_{n+1}, g z_{n}\right)+d\left(g w_{n}, g w_{n+1}\right) \\
& \leqslant 4 \phi\left[\frac{d\left(g x_{n}, g x_{n+1}\right)+d\left(g y_{n}, g y_{n-1}\right)+d\left(g z_{n}, g z_{n-1}\right)+d\left(g w_{n}, g w_{n-1}\right)}{4}\right] .
\end{aligned}
$$

Let $d_{n}=d\left(g x_{n}, g x_{n+1}\right)+d\left(g y_{n}, g y_{n+1}\right)+d\left(g z_{n}, g z_{n+1}\right)+d\left(g w_{n}, g w_{n+1}\right)$
Then equation (3.7) implies $d_{n} \leqslant 4 \phi\left(\frac{d_{n-1}}{4}\right) \Rightarrow d_{n}<d_{n-1}$.
Thus $\left(d_{n}\right)$ is decreasing sequence. Therefore there is some $d>0$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n}=d \tag{3.8}
\end{equation*}
$$

Now, we claim that $d=0$. If not, then taking $n \rightarrow \infty$ of both sides of equation (3.6), we get
$d \leqslant \lim _{n \rightarrow \infty} 4 \phi\left(\frac{d_{n}}{4}\right)<d$,
which is a contradiction. Hence $d=0$, that is, (3.9)

$$
\lim _{n \rightarrow \infty}\left[d\left(g x_{n}, g x_{n+1}\right)+d\left(g y_{n}, g y_{n+1}\right)+d\left(g z_{n}, g z_{n+1}\right)+d\left(g w_{n}, g w_{n+1}\right)\right]=0 .
$$

Now, we will prove that $\left\{g x_{n}\right\},\left\{g y_{n}\right\},\left\{g z_{n}\right\}$ and $\left\{g w_{n}\right\}$ are Cauchy sequences. Suppose to contrary that at least one of these sequences is not a Cauchy sequence.

Then there exist an $\epsilon>0$ for which we can find subsequences of integers (m_{k}) and $\left(n_{k}\right)$, with $n(k)>m(k)>k$ such that

$$
\begin{array}{r}
{\left[d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right)+\right.} \\
\left.d\left(g z_{n(k)}, g z_{m(k)}\right)+d\left(g w_{n(k)}, g w_{m(k)}\right)\right] \geqslant \epsilon \tag{3.10}
\end{array}
$$

Further corresponding to $m(k)$, we can choose $n(k)$ in such a way, that it is the smallest integer with $n(k)>m(k)$ and satisfying equation (3.10), then

$$
\begin{gather*}
{\left[d\left(g x_{n(k)-1}, g x_{m(k)}\right)+d\left(g y_{n(k)-1}, g y_{m(k)}\right)+\right.} \tag{3.11}\\
\left.d\left(g z_{n(k)-1}, g z_{m(k)}\right)+d\left(g w_{n(k)-1}, g w_{m(k)}\right)\right]<\epsilon .
\end{gather*}
$$

From equation (3.10), (3.11) and applying triangle inequality, we have

$$
\begin{aligned}
\epsilon \leqslant r_{k} & =d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right)+d\left(g z_{n(k)}, g z_{m(k)}\right) \\
& +d\left(g w_{n(k)}, g w_{m(k)}\right) \\
& \leqslant d\left(g x_{n(k)}, g x_{n(k)-1}\right)+d\left(g y_{n(k)}, g y_{n(k)-1}\right) \\
& +d\left(g z_{n(k)}, g z_{n(k)-1}\right)+d\left(g w_{n(k)}, g w_{n(k)-1}\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ in above inequality with keeping in mind equation (3.8), we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} r_{k}=\epsilon \tag{3.12}
\end{equation*}
$$

Again employing triangle inequality, we obtain

$$
\begin{align*}
(3.13) r_{k} & =d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right)+d\left(g z_{n(k)}, g z_{m(k)}\right) \\
& +d\left(g w_{n(k)}, g w_{m(k)}\right) \\
(3.14) & \leqslant d_{n(k)}+d_{m(k)}+d\left(g x_{n(k)+1}, g x_{m(k)+1}\right)+d\left(g y_{n(k)+1}, g y_{m(k)+1}\right) \tag{3.14}\\
& +d\left(g z_{n(k)+1}, g z_{m(k)+1}\right)+d\left(g w_{n(k)+1}, g w_{m(k)+1}\right) .
\end{align*}
$$

As $n(k)>m(k)$, we have
$g x_{n(k)} \geqslant g x_{m(k)}, g y_{n(k)} \leqslant g y_{m(k)}, g z_{n(k)} \geqslant g z_{m(k)}$ and $g w_{n(k)} \leqslant g w_{m(k)}$.
Using equation (3.2), we obtain

$$
\begin{equation*}
d\left(g x_{n(k)+1}, g x_{m(k)+1}\right) \leqslant \phi\left(\frac{r_{k}}{4}\right) . \tag{3.15}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& d\left(g y_{m(k)+1}, g y_{n(k)+1}\right)=\phi\left(\frac{r_{k}}{4}\right) \tag{3.16}\\
& d\left(g z_{n(k)+1}, g z_{m(k)+1}\right)=\phi\left(\frac{r_{k}}{4}\right) \tag{3.17}\\
& d\left(g w_{m(k)+1}, g w_{n(k)+1}\right)=\phi\left(\frac{r_{k}}{4}\right) \tag{3.18}
\end{align*}
$$

Due to equation (3.14)-(3.17) and keeping in view the property of function ϕ, we get

$$
\begin{gather*}
d\left(g x_{n(k)+1}, g x_{m(k)+1}\right)+d\left(g y_{m(k)+1}, g y_{n(k)+1}\right)+ \\
d\left(g z_{n(k)+1}, g z_{m(k)+1}\right)+d\left(g w_{m(k)+1}, g w_{n(k)+1}\right)<r_{k} . \tag{3.19}
\end{gather*}
$$

Hence, from equation (3.14) and (3.18), we get $r_{k}<d_{n(k)}+d_{m(k)}+r_{k}$.
Taking $k \rightarrow \infty$ and using equation (3.9), we conclude $r_{k}<r_{k}$. It is a contradiction.

Thus $\left\{g x_{n}\right\},\left\{g y_{n}\right\},\left\{g z_{n}\right\}$ and $\left\{g w_{n}\right\}$ are Cauchy sequences in X and since X is a complete metric space, therefore there exist $x, y, z, w \in X$ such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}, z_{n}, w_{n}\right)=\lim _{n \rightarrow \infty} g x_{n}=x \tag{3.20}\\
& \lim _{n \rightarrow \infty} F\left(y_{n}, z_{n}, w_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} g y_{n}=y \tag{3.21}\\
& \lim _{n \rightarrow \infty} F\left(z_{n}, w_{n}, x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} g z_{n}=z \tag{3.22}\\
& \lim _{n \rightarrow \infty} F\left(w_{n}, x_{n}, y_{n}, z_{n}\right)=\lim _{n \rightarrow \infty} g w_{n}=w \tag{3.23}
\end{align*}
$$

Now, as F and g are compatible mappings, we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} d\left(g\left(F\left(x_{n}, y_{n}, z_{n}, w_{n}\right)\right), F\left(g x_{n}, g y_{n}, g z_{n}, g w_{n}\right)\right)=0, \tag{3.24}\\
& \lim _{n \rightarrow \infty} d\left(g\left(F\left(y_{n}, z_{n}, w_{n}, x_{n}\right)\right), F\left(g y_{n}, g z_{n}, g w_{n}, g x_{n}\right)\right)=0, \tag{3.25}\\
& \lim _{n \rightarrow \infty} d\left(g\left(F\left(z_{n}, w_{n}, x_{n}, y_{n}\right)\right), F\left(g z_{n}, g w_{n}, g x_{n}, g y_{n}\right)\right)=0, \tag{3.26}\\
& \lim _{n \rightarrow \infty} d\left(g\left(F\left(w_{n}, x_{n}, y_{n}, z_{n}\right)\right), F\left(g w_{n}, g x_{n}, g y_{n}, g z_{n}\right)\right)=0 . \tag{3.27}
\end{align*}
$$

Since F is continuous for all $n \geqslant 0$, we get

$$
\begin{aligned}
& d\left(g x, F\left(g x_{n}, g y_{n}, g z_{n}, g w_{n}\right)\right) \leqslant \\
& d\left(g x, g\left(F\left(x_{n}, y_{n}, z_{n}, w_{n}\right)\right)\right)+d\left(g\left(F\left(x_{n}, y_{n}, z_{n}, w_{n}\right)\right), F\left(g x_{n}, g y_{n}, g z_{n}, g w_{n}\right)\right) .
\end{aligned}
$$

On applying $n \rightarrow \infty$ and combining equation (3.18) and (3.22), we obtain $F(x, y, z, w)=g x, F(y, z, w, x)=g y, F(z, w, x, y)=g z$ and $F(w, x, y, z)=g w$.

Hence we conclude that F and g have a quadruple coincidence point in X .
ThEOREM 3.2. In addition to the hypothesis of Theorem 3.1, suppose that for every $(x, y, z, w),\left(x_{1}, y_{1}, z_{1}, w_{1}\right)$ in X^{4}, there exists (u, v, h, l) that is comparable to (x, y, z, w) and $\left(x_{1}, y_{1}, z_{1}, w_{1}\right)$, then F and g have a unique quadruple coincidence point.

Proof. From Theorem 3.1, the set of quadruple fixed points of F and g is nonempty. Suppose (x, y, z, w) and $\left(x_{1}, y_{1}, z_{1}, w_{1}\right)$ are quadruple coincidence points of F and g, that is

$$
\begin{array}{r}
g x=F(x, y, z, w), g y=F(y, z, w, x), \\
g z=F(z, w, x, y), g w=F(w, x, y, z) \text { and }
\end{array}
$$

And

$$
\begin{aligned}
& g x_{1}=F\left(x_{1}, y_{1}, z_{1}, w_{1}\right), g y_{1}=F\left(y_{1}, z_{1}, w_{1}, x_{1}\right) \\
& g z_{1}=F\left(z_{1}, w_{1}, x_{1}, y_{1}\right), g w_{1}=F\left(w_{1}, x_{1}, y_{1}, z_{1}\right)
\end{aligned}
$$

We shall show that
$g x=g x_{1}, g y=g y_{1}, g z=g z_{1}$ and $g w=g w_{1}$.
By assumption, there exist $(u, v, h, l) \in X$, that is comparable to (x, y, z, w) and ($x_{1}, y_{1}, z_{1}, w_{1}$).

Now, we define sequences $\left\{g u_{n}\right\},\left\{g v_{n}\right\},\left\{g h_{n}\right\}$ and $\left\{g l_{n}\right\}$ as follows:
$u_{0}=u, v_{0}=v, h_{0}=h, l_{0}=l, g u_{n+1}=F\left(u_{n}, v_{n}, h_{n}, l_{n}\right), g v_{n+1}=F\left(v_{n}, h_{n}, l_{n}, u_{n}\right)$ $g h_{n+1}=F\left(h_{n}, l_{n}, u_{n}, v_{n}\right)$ and $g l_{n+1}=F\left(l_{n}, u_{n}, v_{n}, h_{n}\right)$ for all $n \in N$.
Since (u, v, h, l) being comparable with (x, y, z, w), we may assume that

$$
(x, y, z, w) \geqslant(u, v, h, l)=\left(u_{0}, v_{0}, h_{0}, l_{0}\right) .
$$

Applying mathematical induction, it is easy to prove that

$$
(x, y, z, w) \geqslant\left(u_{n}, v_{n}, h_{n}, l_{n}\right) \text { for all } n \in N .
$$

Due to equation (3.2), we obtain

$$
\begin{aligned}
(3.28) d\left(g x, g u_{n+1}\right) & =d\left(F(x, y, z, w), F\left(u_{n}, v_{n}, h_{n}, l_{n}\right)\right) \\
& \leqslant \phi\left[\frac{d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)+d\left(g z, g h_{n}\right)+d\left(g w, g l_{n}\right)}{4}\right]
\end{aligned}
$$

Analogously
(3.29) $d\left(g v_{n+1}, g y\right) \leqslant \phi\left[\frac{d\left(g v_{n}, g y\right)+d\left(g h_{n}, g z\right)+d\left(g l_{n}, g w\right)+d\left(g u_{n}, g x\right)}{4}\right]$,

$$
\begin{align*}
& d\left(g z, g h_{n+1}\right) \leqslant \phi\left[\frac{d\left(g z, g h_{n}\right)+d\left(g w, g l_{n}\right)+d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)}{4}\right], \tag{3.30}\\
& d\left(g w, g l_{n+1}\right) \leqslant \phi\left[\frac{d\left(g w, g l_{n}\right)+d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)+d\left(g z, g h_{n}\right)}{4}\right] . \tag{3.31}
\end{align*}
$$

On adding equation (3.27)-(3.30) and using the property of function ϕ, we have

$$
\begin{array}{r}
d\left(g x, g u_{n+1}\right)+d\left(g y, g v_{n+1}\right)+d\left(g z, g h_{n+1}\right)+d\left(g w, g l_{n+1}\right) \\
\leqslant 4 \phi\left[\frac{d\left(g x, g u_{n+1}\right)+d\left(g y, g v_{n+1}\right)+d\left(g z, g h_{n+1}\right)+d\left(g w, g l_{n+1}\right)}{4}\right] \\
\text { or } d\left(g x, g u_{n+1}\right)+d\left(g y, g v_{n+1}\right)+d\left(g z, g h_{n+1}\right)+d\left(g w, g l_{n+1}\right) \\
<d\left(g x, g u_{n+1}\right)+d\left(g y, g v_{n+1}\right)+d\left(g z, g h_{n+1}\right)+d\left(g w, g l_{n+1}\right) \tag{3.33}
\end{array}
$$

Thus, the sequence $\left\{d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)+d\left(g z, g h_{n}\right)+d\left(g w, g l_{n}\right)\right\}$ is decreasing, therefore there exist $\delta \geqslant 0$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)+d\left(g z, g h_{n}\right)+d\left(g w, g l_{n}\right)\right]=\delta \tag{3.34}
\end{equation*}
$$

Suppose that $\delta>0$, taking limit as $n \rightarrow \infty$ in equation (3.30), we have

$$
\begin{equation*}
\delta \leqslant 4\left(\frac{\phi(\delta)}{4}\right) \tag{3.35}
\end{equation*}
$$

It is a contradiction. Hence $\delta=0$, that is

$$
\lim _{n \rightarrow \infty}\left[d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)+d\left(g z, g h_{n}\right)+d\left(g w, g l_{n}\right)\right]=0 .
$$

By this we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(g x, g u_{n}\right)=\lim _{n \rightarrow \infty} d\left(g y, g v_{n}\right)=\lim _{n \rightarrow \infty} d\left(g z, g h_{n}\right)=\lim _{n \rightarrow \infty} d\left(g w, g l_{n}\right) \tag{3.36}
\end{equation*}
$$

In the same way, it is easy to show that (3.37)

$$
\lim _{n \rightarrow \infty} d\left(g x_{1}, g u_{n}\right)=\lim _{n \rightarrow \infty} d\left(g y_{1}, g v_{n}\right)=\lim _{n \rightarrow \infty} d\left(g z_{1}, g h_{n}\right)=\lim _{n \rightarrow \infty} d\left(g w_{1}, g l_{n}\right) .
$$

On account of equation (3.35) and (3.36), we have

$$
g x=g x_{1}, g y=g y_{1}, g z=g z_{1} \text { and } g w=g w_{1}
$$

Hence the result.
Example 3.1. Let (R, d) be a complete metric space with the usual metric defined on R.

Consider $g: X \rightarrow X$ and $F: X^{4} \rightarrow X$ be defined as

$$
g(x)=\frac{7}{9} x \text { and } F(x, y, z, w)=\frac{x-y+z-w}{8}
$$

Also suppose $\phi:[0, \infty) \rightarrow[0, \infty)$ be given by $\phi(t)=\frac{6}{7} t$.
Now for all $x, y, z, u, v, h, l \in X$, satisfying $g x \leqslant g u, g v \leqslant g y, g z \leqslant g h$ and $g l \leqslant$ $g w$, the L.H.S of the condition of equation (3.1) is

$$
\begin{aligned}
d(F(x, y, z, w), F(u, v, h, l)) & =d\left(\frac{x-y+z-w}{8}, \frac{u-v+h-l}{8}\right) \\
& =\left|\frac{x-y+z-w}{8}-\frac{u-v+h-l}{8}\right|
\end{aligned}
$$

Now, the R.H.S of equation (3.2) becomes

$$
\phi\left(\frac{d(g x, g u)+d(g y, g v)+d(g z, g h)+d(g w, g l)}{4}\right)=\frac{6}{7} \times \frac{7}{9}\left(\frac{|x-u|+|y-v|+|z-h|+|w-l|}{4}\right)
$$

we find that the hypothesis of equation (3.2) are satisfied.
Also, $(0,0,0,0)$ is the unique quadruple fixed point of F and g.

References

[1] B. S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Analysis: Theory, Methods and Applications 73(8) (2010), 2524-2531.
[2] B. Samet, C. Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 74(12) (2011), 4260-4268.
[3] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Analysis: Theory, Methods and Applications, 11(5) (1987), 623-632.
[4] E. Karapinar, V. Berinde, Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces, Banach J. Math. Anal. 6(1) (2012), 74-89.
[5] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(4) (1986), 771-779.
6] R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87(1) (2008), 1-8.
[7] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 74(15) (2011), 4889-4897.
[8] V. Gupta, R. Deep, Coupled Coincidence Point Result in Partially Ordered G-Metric Space for Compatible Mapping, In: Advancements in the era of Multi - Disciplinary Systems. Elsevier (2013), 110-114.
[9] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 70(12)(2009), 4341-4349.
[10] Z. Mustafa, H. Aydi, E. Karapinar, Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces, Fixed Point Theory and Applications, 2012, 2012:71, (pp.1-19) Doi: 10.1186/1687-1812-2012-71.

Received by editors 16.08.2013; revised version 30.12.2013; available online 10.03.2014.
Department of Mathematics, Maharishi Markandeshwar University Mullana, Ambala, Haryana, India

E-mail address: vishal.gmn@gmail.com
Department of Mathematics, Maharishi Markandeshwar University Mullana, Ambala, Haryana (India)

[^0]: 2010 Mathematics Subject Classification. $54 \mathrm{H} 25,47 \mathrm{H} 10$.
 Key words and phrases. Quadruple coincidence point, partially ordered sets, metric spaces, g-monotone property.

