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AN UPPER BOUND TO THE SECOND HANKEL
DETERMINANT FOR A SUBCLASS OF ANALYTIC

FUNCTIONS

Vamshee Krishna Deekonda and RamReddy Thoutreddy

Abstract. The objective of this paper is to introduce certain subclass of an-
alytic functions and obtain an upper bound to the second Hankel determinant
|a2a4 − a23| for the function f , belonging to this class, using Toeplitz determi-
nants.

1. Introduction

Let A denote the class of functions f of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions.

The Hankel determinant of f for q > 1 and n > 1 was defined by Pommerenke
[27, 28] as

(1.2) Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

.

This determinant has been considered by many authors in the literature [23]. For
example, Noor [24] determined the rate of growth of Hq(n) as n → ∞ for the
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18 DEEKONDA AND THOUTREDDY

functions in S with a bounded boundary. Ehrenborg [6] studied the Hankel deter-
minant of exponential polynomials. The Hankel transform of an integer sequence
and some of its properties were discussed by Layman in [14]. One can easily observe
that the Fekete-Szegö functional is H2(1). Fekete-Szegö then further generalized
the estimate |a3 − µa22| with µ real and f ∈ S. Ali [2] found sharp bounds on the
first four coefficients and sharp estimate for the Fekete-Szegö functional |γ3 − tγ2

2 |,
where t is real, for the inverse function of f defined as f−1(w) = w +

∑∞
n=2 γnw

n

to the class of strongly starlike functions of order α (0 < α 6 1) denoted by S̃T (α).
In this paper, we consider the Hankel determinant in the case of q = 2 and n = 2,
known as the second Hankel determinant, given by

(1.3)
a2 a3
a3 a4

= a2a4 − a23.

Janteng, Halim and Darus [13] have considered the functional|a2a4−a23| and found a
sharp bound for the function f in the subclass RT of S, consisting of functions whose
derivative has a positive real part studied by Mac Gregor [17]. In their work, they
have shown that if f ∈ RT then |a2a4−a23| 6 4

9 . The same authors [12] also obtained
the second Hankel determinant and sharp bounds for the familiar subclasses namely,
starlike and convex functions denoted by ST and CV of S and have shown that
|a2a4 − a23| 6 1 and |a2a4 − a23| 6 1

8 respectively. Mishra and Gochhayat [20]

have obtained sharp bound to the non- linear functional |a2a4 − a23| for the class
of analytic functions denoted by Rλ(α, ρ)(0 6 ρ 6 1, 0 6 λ < 1, |α| < π

2 ), defined

as Re
{
eiα

Ωλ
z f(z)
z

}
> ρ cosα, using the fractional differential operator denoted by

Ωλ
z , defined by Owa and Srivastava [24]. These authors have shown that, if f ∈

Rλ(α, ρ) then

|a2a4 − a23| 6
{
(1− ρ)2(2− λ)2(3− λ)2cos2α

9

}
.

Similarly, the same coefficient inequality was calculated for certain subclasses of an-
alytic functions by many authors ([1], [3, 4], [9− 11], [18, 19], [21, 22], [29], [31− 39]).

Motivated by the above mentioned results obtained by different authors in this
direction, in this paper, we introduce certain subclass of analytic functions and
obtain an upper bound to the functional |a2a4 − a23| for the function f belonging
to this class , defined as follows.

Definition 1.1. A function f(z) ∈ A is said to be in the class RST(β)(β > 0)
in E, if it satisfies the condition

(1.4) Re

{
(1− β)

zf ′(z)

f(z)
+ βf ′(z)

}
> 0, ∀z ∈ E.

It is observed that for β = 0 and β = 1 in (1.4), we respectively get RST (0) =
ST and RST (1) = RT .
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2. Preliminary Results

Let P denote the class of functions p analytic with Re{p(z)} > 0,∀z ∈ E. Some
preliminary Lemmas required for proving our result are as follows:

(2.1) Where p(z) = (1 + c1z + c2z
2 + c3z

3 + ...) =

[
1 +

∞∑
n=1

cnz
n

]
, ∀z ∈ E.

Here p(z) is called as Carathéodory function [5].

Lemma 2.1 ([26], [30]). If p ∈ P, then |ck| 6 2, for each k > 1 and the
inequality is sharp.

Lemma 2.2 ([8]). The power series for p given in (2.1) converges in the unit
disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. These are strictly positive except for p(z) =∑m
k=1 ρkp0(exp(itk)z), ρk > 0, tk real and tk ̸= tj, for k ̸= j; in this case Dn > 0

for n < (m− 1) and Dn
.
= 0 for n > m.

This necessary and sufficient condition found in [8] is due to Carathéodory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2.2,
for n = 2 and n = 3 respectively, we get

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2 | c2 |2 − 4c21] > 0,

which is equivalent to

(2.2) 2c2 = {c21 + x(4− c21)}, for some x, with|x| 6 1.

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 > 0 is equivalent to

(2.3) |(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)
2| 6 2(4− c21)

2 − 2|(2c2 − c21)|2.

From the relations (2.2) and (2.3), after simplifying, we get

(2.4) 4c3 = {c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z}

for some real value of z, with |z| 6 1.

To obtain our result, we referred to the method by Libera and Zlotkiewicz [15, 16].
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3. Main Result

Theorem 3.1. If f(z) = z +
∑∞

n=2 anz
n ∈ RST (β) (0 6 β 6 1) then

|a2a4 − a23| 6
[

2

(2 + β)

]2
and the result is sharp.

Proof. Since f(z) = z+
∑∞

n=2 anz
n ∈ RST (β), from the Definition 1.1, there

exists an analytic function p ∈ P in the unit disc E with p(0) = 1 and Re{p(z)} > 0
such that

(3.1)

{
(1− β)

zf ′(z)

f(z)
+ βf ′(z)

}
= p(z)

⇔ [{(1− β)z + βf(z)} × f ′(z)] = [f(z)× p(z)].

Replacing f(z), f ′(z) and p(z) with their equivalent series expressions in the relation
(3.1), we have

(3.2)

[
(1− β)z

{
1 +

∞∑
n=2

nanz
n−1

}
+ β

{
z +

∞∑
n=2

anz
n

}
×{

1 +

∞∑
n=2

nanz
n−1

}]
=

[{
z +

∞∑
n=2

anz
n

}
×

{
1 +

∞∑
n=1

cnz
n

}]
.

Upon simplification, we obtain

(3.3)
[
1 + (1 + β)a2z +

{
(2 + β)a3 + 2βa22

}
z2 + {(3 + β)a4 + 5βa2a3} z3 + ...

]
=

[
1 + c1z + (c2 + c1a2)z

2 + (c3 + c2a2 + c1a3)z
3 + ...

]
.

Equating the coefficients of like powers of z, z2 and z3 respectively on both sides
of (3.3), after simplifying, we get

(3.4) [a2 =
c1

(1 + β)
; a3 =

1

(1 + β)2(2 + β)

{
(1 + β)2c2 + (1− β)c21

}
;

a4 =
1

(1 + β)3(2 + β)(3 + β)
×{

(1− β)(1− 4β)c31 + 3(1− β)(1 + β)2c1c2 + (1 + β)3(2 + β)c3
}
].

Substituting the values of a2, a3 and a4 from the relation (3.4) in the second Hankel
functional |a2a4 − a23| for the function f ∈ RST (β), we have

|a2a4 − a23| =
∣∣∣∣ c1
(1 + β)

× 1

(1 + β)3(2 + β)(3 + β)
×{

(1− β)(1− 4β)c31 + 3(1− β)(1 + β)2c1c2 + (1 + β)3(2 + β)c3
}

− 1

(1 + β)4(2 + β)2
{
(1 + β)2c2 + (1− β)c21

}2
∣∣∣∣ .
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Upon simplification, we obtain

(3.5) |a2a4 − a23| =
1

(1 + β)4(2 + β)2(3 + β)
× |(1 + β)3(2 + β)2c1c3+

β(1− β)(1 + β)2c21c2 − (1 + β)4(3 + β)c22 − (1− β)(3β2 + 5β + 1)c41|.

The expression (3.5) is equivalent to

(3.6) |a2a4 − a23| =
1

(1 + β)4(2 + β)2(3 + β)
×

∣∣d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1

∣∣ .
(3.7) Where {d1 = (1 + β)3(2 + β)2; d2 = β(1− β)(1 + β)2;

d3 = −(1 + β)4(3 + β); d4 = −(1− β)(3β2 + 5β + 1)}.

Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from Lemma
2.2 in the right hand side of (3.6), we have

|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| = |d1c1 ×

1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x

2

+2(4−c21)(1−|x|2)z}+d2c
2
1×

1

2
{c21+x(4−c21)}+d3×

1

4
{c21+x(4−c21)}2+d4c

4
1|.

Using the facts |pa+ qb| 6 |p||a|+ |q||b|, where p, q, a and b are real numbers and
|z| < 1 in the right side the above expression, after simplifying, we get

(3.8) 4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| 6 |(d1 + 2d2 + d3 + 4d4)c

4
1 + 2d1c1(4− c21)

+
{
2(d1 + d2 + d3)c

2
1|x| −

{
(d1 + d3)c

2
1 + 2d1c1 − 4d3

}
|x|2

}
× (4− c21)|.

Using the values of d1, d2, d3 and d4 from (3.7), upon simplification, we obtain

(3.9) {(d1 + 2d2 + d3 + 4d4) = (−2β4 + 11β3 + 13β2 − 11β − 3);

d1 = (1 + β)3(2 + β)2; (d1 + d2 + d3) = (1 + β)2(−β2 + 2β + 1)}.

(3.10)
{
(d1 + d3)c

2
1 + 2d1c1 − 4d3

}
= (1 + β)3

{
c21 + 2(2 + β)2c1 + 4(1 + β)(3 + β)

}
.

Consider

(3.11)
{
c21 + 2(2 + β)2c1 + 4(1 + β)(3 + β)

}
=

[{
c1 + (2 + β)2

}2 − (2 + β)4 + 4(1 + β)(3 + β)
]
.

=

[{
c1 + (2 + β)2

}2 −
{√

β4 + 8β3 + 20β2 + 16β + 4
}2

]
=

[
c1 +

{
(2 + β)2 +

√
β4 + 8β3 + 20β2 + 16β + 4

}]
×[

c1 +
{
(2 + β)2 −

√
β4 + 8β3 + 20β2 + 16β + 4

}]
.
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Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) > (c1 − a)(c1 − b), where a, b > 0
in the right hand side of (3.11), after simplifying, we get

(3.12)
{
c21 + 2(2 + β)2c1 + 4(1 + β)(3 + β)

}
>

{
c21 − 2(2 + β)2c1 + 4(1 + β)(3 + β)

}
From the relations (3.10) and (3.12), we obtain

(3.13) −
{
(d1 + d3)c

2
1 + 2d1c1 − 4d3

}
6 −(1 + β)3

{
c21 − 2(2 + β)2c1 + 4(1 + β)(3 + β)

}
.

Substituting the calculated values from (3.9) and (3.13) in the right hand side of
(3.8), we have

4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| 6 |(−2β4 + 11β3 + 13β2 − 11β − 3)c41+

2(1 + β)3(2 + β)2c1(4− c21) + 2(1 + β)2(−β2 + 2β + 1)c21(4− c21)|x|
− (1 + β)3

{
c21 − 2(2 + β)2c1 + 4(1 + β)(3 + β)

}
(4− c21)|x|2|.

Choosing c1 = c ∈ [0, 2], applying Triangle inequality and replacing | x | by µ in
the right hand side of the above inequality, we have

(3.14) 4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| 6 [(2β4 + 11β3 + 13β2 + 11β + 3)c4+

2(1 + β)3(2 + β)2c(4− c2) + 2(1 + β)2(−β2 + 2β + 1)c2(4− c2)µ

+ (1 + β)3
{
c2 − 2(2 + β)2c+ 4(1 + β)(3 + β)

}
(4− c2)µ2].

= F (c, µ), for 0 6 µ = |x| 6 1.

(3.15) Where F (c, µ) = [(2β4 + 11β3 + 13β2 + 11β + 3)c4+

2(1 + β)3(2 + β)2c(4− c2) + 2(1 + β)2(−β2 + 2β + 1)c2(4− c2)µ

+ (1 + β)3
{
c2 − 2(2 + β)2c+ 4(1 + β)(3 + β)

}
(4− c2)µ2].

We next maximize the function F (c, µ) on the closed square [0, 1] × [0, 2]. Differ-
entiating F (c, µ) in (3.15) partially with respect to µ, we get

(3.16)
∂F

∂µ
= [2(1 + β)2(−β2 + 2β + 1)c2(4− c2)c2

+ 2(1 + β)3
{
c2 − 2(2 + β)2c+ 4(1 + β)(3 + β)

}
(4− c2)µ].

For 0 < µ < 1 , for fixed c with 0 < c < 2 and o 6 β 6 1, from (3.16), we observe
that ∂F

∂µ > 0. Therefore, F (c, µ) is an increasing function of µ and hence it cannot

have maximum value at any point in the interior of the closed square [0, 1]× [0, 2].
Moreover, for fixed c ∈ [0, 2], we have

(3.17) max
06µ61

F (c, µ) = F (c, 1) = G(c).
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From the relations (3.15) and (3.17), upon simplification, we obtain

(3.18) G(c) = F (c, 1) =
{
2β2(2β2 + 5β + 1)c4 − 4β(1 + β)2(β2 + 7β + 2)c2

+16(1 + β)4(3 + β)
}
.

(3.19) G′(c) =
{
8β2(2β2 + 5β + 1)c3− 8β(1 + β)2(β2 + 7β + 2)c

}
.

(3.20) G′′(c) =
{
24β2(2β2 + 5β + 1)c2− 8β(1 + β)2(β2 + 7β + 2)

}
.

For Optimum value of G(c), consider G′(c) = 0. From (3.19), we get

(3.21) 8βc
{
β(2β2 + 5β + 1)c2 − (1 + β)2(β2 + 7β + 2)

}
= 0.

We now discuss the following Cases.

Case 1) If c ̸= 0 and β = 0, then, we have G′(c) = 0 and G′′(c) = 0.
Therefore, G(c) is constant and the constant value is 48. i.e., G(c) = 48.

Case 2) If c = 0 and β = 0, then, we have G′(c) = 0 and G′′(c) = 0.
In this Case also, we get G(c) = 48, which is a constant.
From Cases 1 and 2, we conclude that G(c) = 48, a constant, for every c ∈ [0, 2],
provided β = 0.

Case 3) If c = 0 and β ̸= 0 , then, we have G′(c) = 0 and
G′′(c) = −8β(1 + β)2(β2 + 7β + 2) < 0, for 0 < β 6 1.

By the second derivative test, G(c) has maximum value at c = 0.

Case 4) If c ̸= 0 and β ̸= 0 , from (3.21), on using the Division algorithm for
polynomials, we obtain

(3.22) c2 =

[
1

4

{
(2β + 13) +

(β2 + 31β + 8)

(2β3 + 5β2 + β)

}]
> 0, for 0 < β 6 1.

Substituting the value of c2 from (3.22) in (3.20), after simplifying, we get

G′′(c) = (16β5 + 144β4 + 272β3 + 172β2 + 32β) > 0, for 0 < β 6 1.

Therefore, by the second derivative test G(c) has minimum value at c, where c2 is
given by (3.22). From the expression (3.18), the maximum value of G(c) at c = 0
is given by

(3.23) Gmax = G(0) = 16(1 + β)4(3 + β).

Considering maximum value of G(c) at c = 0 only, from the relations (3.14) and
(3.23), after simplifying, we get

(3.24) |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| 6 4(1 + β)4(3 + β).
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From the expressions (3.6) and (3.24), upon simplification, we obtain

(3.25) |a2a4 − a23| 6
[

2

(2 + β)

]2
.

Choosing c1 = c = 0 and selecting x = −1 in (2.2) and (2.4), we find that c2 = −2
and c3 = 0. Substituting these values in (3.24), we see that equality is attained
which shows that our result is sharp. This completes the proof of our Theorem. �

Remark 3.1. Choosing β = 0, we have RST (0) = ST , from (3.25), we obtain
|a2a4 − a23| 6 1 and this inequality is sharp.

Remark 3.2. For the choice of β = 1, we have RST (1) = RT , for which, from
(3.25), we get |a2a4 − a23| 6 4

9 and is sharp.

Both the results coincide with those of Jateng, Halim and Darus ([12],[13]).

Acknowledgement: The authors would like to thank the esteemed Referee(s)
for their careful readings, valuable suggestions and comments, which helped to
improve the presentation of the paper.
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