Changing pattern of plant height in rice cultivars with increased fertilizer

A. L. RANAWAKE

Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Sri Lanka

Rece5ived:15-10-2014; Revised:05-01-2015; Accepted:10-01-2015

ABSTRACT

One hundred rice cultivars with plant height range from 70 cm -150 cm was used to study the changing pattern of plant height with fertilizer application. A field experiment was carried out during 2011-2012 Maha season and 2012 Yala season at Faculty of Agriculture, University of Ruhuna, Sri Lanka. Germinated seeds were planted in rows with 15 cm X 20 cm spacing. Four plots were arranged and plots were separated from bunds to prevent mixing of fertilizer. Four fertilizer levels were provided to separated plots as no fertilizer, half of the recommended dose (x $\frac{1}{2}$ RD), recommended dose (RD: Urea 50 kg ha⁻¹, TSP 62.5 kg ha⁻¹, MOP 50 kg ha⁻¹) and doubled the recommended dose (x 2 RD). Experiment was conducted with four replications according to the randomized complete block design and each replicate consisted of three lines. Twenty plants were included in to each line. Data were collected on plant height (cm) at maturity stage. Rice cultivars were grouped according to plant height at no fertilizer level: 70-79 cm, 80-89 cm, 90-99 cm, 100- 119 cm —139-149 cm, >150 cm etc. Changing pattern of plant height in different plant-height groups at different fertilizer levels was plotted. It was found that at shorter plant height groups (70-119 cm), plants increased the height with increased fertilizer while in 120-129 cm plant-height group, changing pattern of plant height was nearly in normal distribution. However the changing pattern of plant height in all the other plant height groups (> 130 cm) was sigmoid. It can be concluded that the elongation pattern of leaves or culms of rice plants with increased fertilizer level.

Keywords: Plant height, MOP, TSP, Urea

Some morphological traits associated with new plant architecture of rice have been found to have close relationship with yielding ability of rice variety (Yang et al., 2007; Yang and Hwa, 2008). Plant height is a major contributor to the yield (Yadav et al., 2011) but greater plant height susceptible to lodging reduces yield, quality of production, and mechanical harvesting efficiency (Weber and Fehr, 1966). It was estimated that lodging caused a loss of 26 kg ha^{-1} in rice production in southern India (Duwayri et al., 2000). Roberts et al. (2013) have reported that the semi-dwarf cultivars produce higher yields than that of in tall cultivars. However the yield potential of rice cultivars is controlled by both genetic factors and environmental factors (Selvaraj et al., 2011). Plant height revealed significant positive correlations with yield (Ruben and Katuli, 1989; Kumar, 1992) but Hairmansis et al. (2010) noted that plant height had negative effect on grain yield. According to Khan et al. (2009) plant height had the highest direct effect on number of grains per panicle. Fertilizer increased most of the agro-morphological characteristics in rice. Fertilizer consumption depends on rice variety; soil condition and farmer practices (Hach and Nam, 2006). Efficiency of fertilizer on various rice cultivars have been studied previously and the results revealed that there is a potential to increase grain yield by application of fertilizer (Awan et al., 2011; Saleem et al., 2011; Bhuyan et al., 2012). Saito et al., (2005) used three

traditional and three improved cultivars to understand the effect of four fertilizer treatments: no added fertilizer, Nitrogen only (N; 90 kg N ha⁻¹), phosphate only (P; 50 kg P ha⁻¹), and N and P (NP) at three locations. The two improved cultivars, reported higher total dry matter and harvest index, lower plant height and more panicles than traditional cultivars. The present study was carried out to understand the effect of different levels of fertilizer on plant height in rice.

MATERIALS AND METHODS

One hundred rice cultivars including ninety four traditional and six improved rice accessions given in table 1, were collected from Plant Genetic Resources Center (PGRC, 1999). Seeds of these cultivars were geminated and planted in nursery beds. Ten days old seedlings were transplanted in the experimental field at the Faculty of Agriculture, Mapalana, Kamburupitiya, Sri Lanka.

To understand the effect of fertilizer on plant height, four different fertilizer levels were applied in to the field which was separated by bunds. Fertilizer levels were: no fertilizer, half of the recommended dose (x $\frac{1}{2}$ RD), recommended dose (RD) and twice the recommended dose (x 2RD). The recommended fertilizer dose was basal dressing (Urea 50 kg ha⁻¹, TSP 62.5 kg ha⁻¹, MOP 50 kg ha⁻¹) before planting and top dressings (Urea 37.5 Kg ha⁻¹) two times at 2 weeks after planting and at 8 weeks after planting.

Email: lankaranawake@hotmail.com

J. Crop and Weed, 11(Special Issue)

Ranawake

Sl. no	Accession no	Name	Sl. no	Accession no	Name
1	3673	Kaluhandiran	51	3645	Muthumanikam
2	3674	Kirikara	52	3646	Induru Karayal
3	3675	Kotathavalu I	53	3647	Kalu gires
4	3676	Dena wee	54	3650	Madabaru
5	3677	Herath Banda	55	3651	Balakara
6	3678	Hondarawala	56	3652	Buruma Thavalu
7	3679	Kottakaram	57	3517	Seeraga Samba Batticaloa
8	3681	Dandumara	58	3518	H 10(Improved)
9	3686	Karayal I	59	3519	Manchel Perunel
10	3687	Dewaredderi	60	3562	Thunmar Hamara
11	3469	Sudu wee	61	3567	Dingiri Menika
12	3477	Sudu Goda wee	62	3570	Madael
13	3479	Kiri Naran	63	3571	Miti Riyan
14	3480	Karayal II	64	3572	Suduru Samba II
15	3482	Akuramboda	65	3589	Gangala
16	3486	Puwakmalata Samba	66	3588	Heenpodi wee
17	3487	Palasithari 601	67	3497	Sinnanayan 398
18	3489	Murungakayan 3	68	3498	Geeraga Samba
19	3490	Murungakayan 101	69	3504	Dik wee 328
20	3496	Bala Ma wee I	70	3506	MI 329(Improved)
21	3654	Pokuru Samba	71	3507	Suwanda Samba
22	3655	Rata wee	72	3508	Madael Galle
23	3660	Suduru	73	3510	Sudu wee Ratnapura
24	3658	Ingrisi wee	74	3511	Maha Murunga Badulla
25	3659	Kotathavalu II	75	3514	Madael Kalutara
26	3653	Kalu Karayal	76	3516	Seevalee Ratnapura
27	3668	Ranruwan	77	3383	EAT Samba
28	3669	Rajes	78	3389	Sirappu Paleusithri
29	3670	Madoluwa	79	3394	Muthu Samba
30	3671	Suduru Samba I	80	3395	Podi sudu wee
31	3688	Handiran	81	3401	Wanni Heenati
32	3691	Gunaratna	82	3409	BG 35-2(Improved)
33	3661	Polayal I	83	3410	BG 35-7(Improved)
34	3664	Tissa wee	84	3415	BG 34-8(Improved)
35	3665	Sudu Karayal	85	3416	A 6-10-37(Improved)
36	3666	Podisayam	86	3417	Periamorungan
37	3423	Giress	87	3591	Mudukiriel
38	3427	Naudu wee	88	3594	Suduru Samba III
39	3434	Kokuvellai	89	3595	Kaharamana II
40	3463	Karayal III	90	3598	Bala Ma wee II
41	3438	Murunga wee	91	3606	Chinnapodiyan
42	3435	Matara wee	92	3607	Kiri Murunga wee
43	3440	Kaharamana I	93	3610	Heendikki
44	3447	Karabewa	94	3612	Jamis wee I
45	3451	Halabewa	95	3613	Lumbini II
46	3445	Yakada wee I	96	3614	Sinnanayam
47	3638	Lumbini I	97	3615	Yakada wee II
48	3639	Polayal II	98	3616	Jamis wee II
49	3641	Heendik wee	99	3550	Bathkiri el
50	3642	Kahata Samba	100	3713	Kalukanda

Table 1: Rice accessions used for the experiment (PGRC,1999)

Accession no	Name	No fert.	x1/2 RD	RD	x2 RD
3673	Kaluhandiran	151.93 ^b	124.08°	124.63°	166.98°
3674	Kirikara	101.63 •	121.88	115.75°	139.45°
3675	Kotathavalu I	131.00 ^d	140.10 ^b	135.70°	145.70ª
3676	Dena wee	116.45 ^ª	138.43 °	131.88	125.65°
3677	Herath Banda	119.35 ^ª	170.43 °	131.83 ^b	123.58°
3678	Hondarawala	154.38 ^b	104.80°	154.18 ^b	178.18°
3679	Kottakaram	100.90 ^d	147.30°	155.33 ^b	163.95°
3681	Dandumara	151.65 ^b	144.58°	160.88°	161.58°
3686	Karayal I	144.58 ^b	150.50°	143.50 ^b	150.43ª
3687	Dewaredderi	128.10 ^d	136.58°	144.05 ^b	150.50°
3469	Sudu wee	110.85°	139.20 ^b	144.05°	138.83 ^b
3477	Sudu Goda wee	119.13°	151.50°	147.73 ^b	151.50°
3479	Kiri Naran	126.33 ^b	158.00ª	126.08	125.90 ^b
3480	Karayal II	114.35°	121.90 ^b	135.33ª	137.63ª
3482	Akuramboda	114.90°	133.85°	126.38 ^b	90.93 ^d
3486	Puwakmalata Samba	119.00°	131.83	141.73°	97.45 ^d
3487	Palasithari 601	126.55 ^b	131.58°	128.45	79.40°
3489	Murungakayan 3	120.63°	101.05ª	105.03°	111.03
3490	Murungakayan 101	88.40 ^d	127.88ª	107.23°	116.63 ^b
3496	Bala Ma wee I	120.60°	119.20°	125.00 ^b	129.00ª
3654	Pokuru Samba	128.58 ^b	118.63°	133.55ª	136.08*
3655	Rata wee	142.43°	137.80°	123.93ª	112.88°
3660	Suduru	118.75°	141.13°	101.18 ^d	125.03
3658	Ingrisi wee	111.90°	109.78°	127.05 ^b	133.18ª
3659	Kotathavalu II	110.20 ^ª	128.03ª	115.38°	123.38
3653	Kalu Karayal	106.23 ^ª	115.80°	147.15°	141.20
3668	Ranruwan	102.48 ^ª	114.40°	131.63ª	123.83 ^b
3669	Rajes	97.33°	129.33 ^b	134.63ª	135.88ª
3670	Madoluwa	99.43 ^b	90.91°	113.55ª	113.00ª
3671	Suduru Samba I	101.60°	88.44°	96.43 ^b	105.03ª
3688	Handiran	134.98	142.88°	103.68 ^ª	113.50°
3691	Gunaratna	133.28 ^b	86.63 ^ª	108.55°	138.43°
3661	Polayal I	130.10 ^b	161.60°	105.55°	86.45 ^d
3664	Tissa wee	130.65°	133.40 ^b	138.55°	136.88ª
3665	Sudu Karayal	117.75°	135.45°	121.05 ^{be}	123.15 ^b
3666	Podisayam	110.40 ^b	81.18 ^d	116.85ª	101.88°
3423	Giress	113.88°	122.95 ^b	125.23ªb	127.33ª
3427	Naudu wee	120.53°	131.73 [*]	126.33 ^b	117.20 ^d
3434	Kokuvellai	125.93 ^ª	128.03°	144.25ª	135.78
3463	Karayal III	124.90°	109.60 ^b	128.23ª	125.13ª
3438	Murunga wee	111.85	94.33 ^ª	114.95°	104.56°
3435	Matara wee	120.43 ^b	112.00°	150.88ª	106.10 ^ª
3440	Kaharamana I	123.15 ^b	130.55°	117.40°	116.13°
3447	Karabewa	108.60°	80.68	146.78 ^b	162.73ª
3451	Halabewa	99.58°	131.08ª	132.63ª	123.13 ^b
3445	Yakada wee I	109.83ª	82.33 ^d	114.05ª	107.95°
3638	Lumbini I	73.90 ^ª	92.58°	121.43ª	114.75 ^b
3639	Polayal II	79.40°	79.25°	111.03ª	92.10 ^b
3641	Heendik wee	73.18°	65.80 ^ª	122.98 ^b	134.78°
3642	Kahata Samba	125.48 ^b	105.68	115.90°	137.83ª

 Table 2: Effect of fertilizer on plant height (cm) of evaluated traditional rice cultivars

Ranawake

Accession no	Name	No fert.	x1/2 RD	RD	x2 RD
3645	Muthumanikam	106.13°	138.60 ^b	143.78°	147.83°
3646	Induru Karayal	151.45 [*]	115.13ª	141.78	139.15°
3647	Kalu gires	119.15°	130.58	135.95*	135.70°
3650	Madabaru	98.20ª	145.40ª	135.40 ^b	102.33°
3651	Balakara	97.15°	98.50°	152.60°	141.28
3652	Buruma Thavalu	89.48 ^ª	155.85°	134.93°	146.50 ^b
3517	Seeraga Samba Batticaloa	96.33 ^ª	141.53 ^b	150.10°	120.28°
3518	H 10	98.50ª	126.18°	135.95°	141.83
3519	Manchel Perunel	113.48 ^ª	143.25°	166.88°	173.75 ^b
3562	Thunmar Hamara	122.15°	121.63°	136.35 ^b	150.83ª
3567	Dingiri Menika	120.98°	133.28 ^b	152.38°	133.73 ^b
3570	Madael	119.83°	101.60 ^ª	134.43 ^b	142.78°
3571	Miti Riyan	112.50°	106.18 ^ª	136.10 ^ª	127.70 ^b
3572	Suduru Samba II	119.30°	110.38 ^d	140.70°	133.68
3589	Gangala	112.25°	109.35°	119.00 ^b	136.05°
3588	Heenpodi wee	108.45 ^ª	116.18°	124.85	129.95ª
3497	Sinnanayan 398	92.15°	155.50 ^b	91.35°	163.15°
3498	Geeraga Samba	108.48 ^ª	123.63°	132.80 ^b	137.83°
3504	Dik wee 328	128.15 ^{bc}	124.43°	134.95°	130.60
3506	MI 329	103.38	93.15°	107.70°	104.58
3507	Suwanda Samba	107.68°	130.35°	129.48°	124.68
3508	Madael Galle	113.45°	102.00 ^d	129.23 ^b	137.28°
3510	Sudu wee Ratnapura	116.53°	118.00°	130.15°	125.15 ^b
3511	Maha Murunga Badulla	111.73°	105.63ª	123.68 ^b	147.90°
3514	Madael Kalutara	118.90 ^b	111.53°	124.40°	126.70°
3516	Seevalee Ratnapura	119.45°	119.95°	133.08ª	124.18
3383	EAT Samba	118.88ª	139.70 ^b	131.00°	148.20°
3389	Sirappu Paleusithri	116.03°	113.23°	142.90°	136.85 ^b
3394	Muthu Samba	106.93 ^d	134.63°	143.48*	137.53 ^b
3395	Podi sudu wee	109.28°	109.20°	147.03°	142.43 ^b
3401	Wanni Heenati	99.98°	145.80°	106.43 ^b	145.85°
3409	BG 35-2	98.38 ^b	100.93 ^b	105.88ª	107.48°
3410	BG 35-7	98.63 [⊾]	88.95°	105.78°	100.10 ^b
3415	BG 34-8	96.00ªb	86.68°	95.00 ^b	97.78°
3416	A 6-10-37	99.08 ⁵	91.33°	142.83°	99.50 ^b
3417	Periamorungan	111.28°	101.98 ^ª	120.23 ^b	138.95°
3591	Mudukiriel	120.85 ^b	120.68 ^b	130.98°	131.78°
3594	Suduru Samba III	91.10 ^ª	97.25°	131.48°	107.58
3595	Kaharamana II	97.95⁴	112.15	103.95°	125.63°
3598	Bala Ma wee II	88.70°	87.80°	110.73	128.60ª
3606	Chinnapodiyan	89.65°	80.35 ^ª	130.73°	98.23 ^b
3607	Kiri Murunga wee	117.40	137.65	132.65°	141.68°
3610	Heendikki	86.33°	125.55 ^b	131.05°	130.35°
3612	Jamis wee I	118.05°	141.40°	122.43	102.53 ^d
3613	Lumbini II	108.65°	143.88ª	136.35	136.13
3614	Sinnanayam	87.93ª	101.58°	150.93 ^b	155.65ª
3615	Yakada wee II	128.70 ^d	142.60°	150.78ª	146.05
3616	Jamis wee II	133.80 ^b	143.88ª	132.28	145.93ª
3550	Bathkiri el	129.33 ^ª	166.40°	155.30°	162.25 ^b
3713	Kalukanda	122.78 ^d	170.15°	137.13°	165.60 ^b

DMRT groupings are given in roman letters. The same letters in the same row are not significantly differed

NoF: No fertilizer, 1/2RD: Half recommended dose, RD: Recommended dose, X2RD: Doubled recommended dose.

The experiment was carried out according to the randomized complete block design with four replications and 3 raws per plot with 15 cm x 20 cm plant spacing. Each raw contained 20 plants and the middleraw-plants were considered for the data collection. The soil type of the field was low humic glay soil with low base saturation. Weed management and pest management were done to minimize the environmental effect on the final grain yield. Field was properly covered by a birds' nest to minimize the bird attack on the yield. Plant height data were collected on 80 plants in four replications. ANOVA was performed using SAS (2000) to see the significant difference among rice cultivars in fertilizer response on plant height. Rice cultivars were grouped according to plant height at no fertilizer level. Plant height was averaged in all rice cultivars in each plant-height group in four different fertilizer levels. Changing pattern of plant height with fertilizer in each plant-height group was observed.

RESULTS AND DISCUSSION

To understand the prevalence of a significant difference among different fertilizer application in individual rice cultivars in plant height, ANOVA was performed for individual rice cultivars and DMRT groupings were obtained. According to ANOVA, plant height of individual traditional rice cultivar was significantly varied with the fertilizer levels (Table 2).

None of the cultivars remained constant in plant height at the four fertilizer levels. Many rice cultivars increased the plant height with fertilizer (eg: Kottakaram, Dewaredderi). In line with this Raju and Reddy (1993), Thakur (1993), Zaman et al. (1995), Hari et al. (1997) and Behera (1998) also reported the increased plant height with fertilizer. The highest plant height was recorded by the cultivar Hondarawala (178.2 cm) at the x 2 RD while the lowest plant height was recorded by the cultivar Heendik wee (65.8 cm) at x 1/2 RD. Kottakaram, Dewaredderi, Heenpodi wee, Geeraga Samba and Sinnanayam cultivars increased their height linearly with the increased fertilizer applications. Different rice cultivars increased their plant height differently at four fertilizer levels. Considering which cultivars recorded the highest plant height at a specific fertilizer level; cultivar Hondarawala recorded the highest plant height both at no fertilizer (154.4 cm) and at x 2 RD (178.2 cm) while Herath Banda (170.4 cm) and Manchel Perunel (166.9 cm) recorded the highest plant height at x 1/2 RD and at RD respectively. Cultivar Heendik wee recorded the lowest plant height both at no fertilizer (73.2 cm) and at x 1/2 RD (65.8 cm). Sinnanayan 398 (91.4 cm) and Palasithari 601 (79.4 cm) cultivars recorded the lowest plant height at RD and at x2 RD respectively. Many rice cultivars like Akuramboda, Puwakmalata samba recorded the lowest plant height at x2 RD. The same results have been obtained by Gebrekidan and Seyoum (2006). Meanwhile, plant height of cultivar Rata wee remained constant at no fertilizer, x 1/2RD and RD and then rapidly decreased with x2 RD. Cultivar BG 35-2 and Mudukiriel recorded a constant plant height at no fertilizer and x1/2 RD and then plant height increased up to a constant level at RD and x2 RD. It was observed that at shorter plant height groups (70-119 cm), plants increased the height with increased fertilizer while in 120-129 cm plant-height group, plant height was not increased with x 2RD fertilizer level than that of the RD fertilizer level and the distribution of plant height was nearly normal (Fig.1). However, the changing pattern of plant height in all the other plant height groups (> 130 cm) was sigmoid.

It can be concluded that the elongation pattern of leaves or culms of rice plants with increased fertilizer depends on the initial plant height of rice cultivars at no fertilizer level

REFERENCE

- Awan, T.H., Ali, R.I., Manzoor, Z., Ahmad, M. and Akhtar, M. 2011. Effect of different Nitrogen levels and row spacing on the performance of newly evolved medium rice variety, KSK-133. *Anim. & Pl. Sci.* 21: 231-34.
- Bhuiyan, S.I. 1992. Water management in relation to crop production: Case study on rice. *Outlook Agric.*, 21: 293-99.
- Duwayri, M. Tran, D.V. and Nguyen, V.N., 2000. Reflections on yield gaps in rice production: how to narrow the gaps. Binding the Rice Yield Gap in the Asia-Pacific Region. Retrieved from http://www.fao.org/.
- Hach, C.V., and Nam, N.T.H. 2006. Response of some promising high yielding rice varieties to Nitrogen fertilizer. *Omonrice*, 14: 78-91.
- Hairmansis, A., Kustianto, B. and Supartopo, S., 2010. Correlation analysis of agronomic characters and grain yield of rice for tidal swamp areas. *Agric. Sci.* 11:11-15.

Changing pattern of plant height in rice

- Khan, A.S., Imran, M. and Ashfaq, M. (2009) Estimation of genetic variability and correlation for grain yield components in rice (*Oryza sativa* L.). *Agric. Env. Sci.* 6: 585-90.
- Kumar, C.R.A. 1992. Variability and character association studies in upland rice. *Oryza*, **29**: 31-34.
- Roberts, S.R., Hill, J.E., Brandon, D.M., Miller, B.C., Scardaci, S.C., Wick, C.M. and Williams, J.F. 2013. Biological yield and harvest index in rice; Nitrogen response of tall and semi dwarf cultivars. *Prod. Agric.* 6:585-88.
- Ruben, S.O.W. and Katuli, S.D. 1989. Path analysis of yield components and selected agronomic traits of upland rice breeding lines. IRRN, 14: 11-12
- Saito, K., Linquist, B., Atlin, G.N., Phanthaboon, K., Shiraiwa, T. and Horie, T., 2005. Response of traditional and improved upland rice cultivars to N and P fertilizer in northern Laos. *Field Crop Res.* Available online at www.sciencedirect.com.
- Saito, K., Linquist, B., Atlin, G.N., Phanthaboon, K., Shiraiwa, T. and Horie, T., 2006. Response of traditional and improved upland rice cultivars to N and P fertilizer in northern Laos, *Field Crop Res.* 96:216-23
- Saleem, A.K.M., Elkhoby, W.M., Abou-Khalifa, A.B.

and Ceesay, M.2011. Effect of Nitrogen fertilizer and Seedling age on inbred and hybrid rice varieties. *Agric. Env. Sci.* **11**:640-46.

- SAS Institute Inc. 2000. SAS Online Doco, Version 8, Cary, NC: SAS Institute Inc.
- Selvaraj, C.I., Nagarajan, P., Thiyagarajan, K., Bharathi, M. and Rabindran, R. 2011. Genetic parameters of variability, correlation and path-coefficient studies for grain yield and other yield attributes among rice blast disease resistant Genotypes of rice (*Oryza* sativa L.). Biote.10:3322-34.
- Weber, C.R. and Fehr, W.R. 1966. Seed yield losses from lodging and combine harvesting in soybeans. *Agron.* **58**: 287-89.
- Yadav, S.K., Pandey, P., Kumar, B. and Suresh, B.G., 2011. Genetic architecture, inter-relationship and selection criteria for yield improvement in rice. *Biol Sci.* 14:540-45.
- Yang, W., Peng, S., Laza, R.C., Visperas, R.M. and Sese, M.L.D. 2007. Grain yield and yield attributes of new plant type and hybrid rice. *Crop Sci.*, 47:1393-1400.
- Yang, C. and Hwa, C.M. 2008. Genetic modification of plant architecture and variety improvement in rice. *Heredity* 101: 396-404