
 

 

International Journal of Research in Science & Technology 
Volume 2 | Issue 4 | April 2015 | ISSN: 2349-0845 

Performance Evaluation of Computationally Efficient Energy Detection Based Spectrum Sensing for 

Cognitive Radio Networks 
 

Page 13 

 

 

 

Performance Evaluation of Computationally Efficient 

Energy Detection Based Spectrum Sensing for 

Cognitive Radio Networks 
 

G. Navya
1 
, Y. Mounika

2
,
 
M. Sirisha

3
, V. Mounika

4
 and K.Murali

5  

 
1, 2, 3, 4 B.Tech Students, Department of ECE, Vijaya Institute of Technology for Women, Vijayawada, India. 

gottumukkalanavya@gmail.com, mounika.yara47@gmail.com, sirisha.mudunuri248@gmail.com, vukyam.mounika@gmail.com  
 

5 Assistant Professor, Department of ECE, Vijaya Institute of Technology for Women, Vijayawada, India. 
kalipindimurali@gmail.com  

 

 

Article Info  ABSTRACT 

Article history: 

Received on 1
st
 April2015 

Accepted on 5
th
 April 2015. 

Published on 9
th
 April 2015 

 

 
 

The rapid growth of bandwidth demanding wireless technologies has led 

to the problem of spectrum scarcity. However, studies show that licensed 

spectrum is underutilized. Cognitive radio technology promises a solution to 

the problem by allowing unlicensed users, access to the licensed bands 

opportunistically. A prime component of the cognitive radio technology is 

spectrum sensing. Many spectrum sensing techniques have been developed 

to sense the presence or not of a licensed user.  

This paper evaluates the performance of the energy detection based 

spectrum sensing technique in noisy, fading, jamming, interference 

environments. Both single user detection and cooperative detection 

situations were investigated. Closed form solutions for the probabilities of 

detection and false alarm were derived. The analytical results were varied by 

numerical computations using Monte Carlo method with MATLAB. The 

performance of the computationally efficient energy detection (CE-ED) 

techniques were evaluated by use of Receiver Operating Characteristics 

(ROC) curves over additive white Gaussian noise (AWGN) and fading 

(Rayleigh & Nakagami-m) channels. Results show that for single user 

detection, the energy detection technique performs better in AWGN channel 

than in the fading channel models. The performance of cooperative detection 

is better than single user detection in fading environments. 
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I. INTRODUCTION 

What has motivated cognitive radio technology, an 

emerging novel concept in wireless access, is spectral 

usage experiments done by FCC. These experiments show 

that at any given time and location, much of the licensed 

(pre-allocated) spectrum(between 80% and 90%) is idle 

because licensed users (termed primary users) rarely utilize 

all the assigned frequency bands at all time. Such 

unutilized bands are called spectrum holes, resulting in 

spectral inefficiency. These experiments suggest that the 

spectrum scarcity is caused by poor spectrum management 

rather than a true scarcity of usable frequency[1]. The key 

features of a cognitive radio transceiver are radio 

environment awareness and spectrum intelligence. 

Intelligence can be achieved through learning the spectrum 

environment and adapting transmission parameters [2,3]. 

The dynamic spectrum access (DSA) allows the 

operating spectrum of a radio network to be selected 

dynamically from the available spectrum. DSA is applied 

in cognitive radio networks, which has a hierarchical 

access structure with primary and secondary users as 

shown in Fig. 1 The basic idea of DSA is to open licensed 

spectrum to secondary users (which are unlicensed users) 

while limiting the interference received by primary users 

(which are licensed users)[2,3,4]. This allows secondary 

users to operate in the best available channel 

opportunistically. Therefore, DSA requires opportunistic 

spectrum sharing, which is implemented via two strategies 

 

 
                            

Figure 1: A basic cognitive radio network architecture. 

 

A. Spectrum Sensing 

The purpose of spectrum sensing is to identify the 

spectrum holes for opportunistic spectrum access [4, 5]. 

After available channels (spectrum holes) are detected 

successfully, they may be used for communications by a 

secondary transmitter and a secondary receiver. Spectrum 

sensing is performed based on the received signal from the 

primary users. Primary users have two states, idle or 

active. With the presence of the noise, primary signal 

detection at a secondary user can be viewed as a binary 

hypothesis testing problem in which Hypothesis 0 (H0) and 

Hypothesis 1 (H1)are the primary signal absence and the 

primary signal presence, respectively .Based on the 

hypothesis testing model, several spectrum sensing 

techniques have been developed[6].  

B. Over View of the Paper: 

In section 2 we discuss the previous work methods and 

drawbacks, in section 3 we discuss proposed work, in that 

basic system model and computationally efficient energy 

detection (CE-ED) techniques were evaluated by use of 

Receiver Operating Characteristics (ROC) curves over 

additive white Gaussian noise (AWGN) and fading 

(Rayleigh & Nakagami-m) channels. Results show that for 

single user detection, the energy detection technique 

performs better in AWGN channel than in the fading 

channel models. The performance of cooperative detection 

is better than single user detection in fading environments. 

In section we discuss the results and Conclusions and 

along with Future work.  

II. PROPOSED SPECTRUM SENSING DETECTION 

TECHNIQUE 

A. System Model of Spectrum Sensing 

Primary users are in either idle state or active state. 

With the presence of the noise, the signal detection at the 

receiver can be viewed as a binary hypothesis testing 

problem[8] in which Hypothesis 0 (H0) and Hypothesis 1 

(H1) are the primary signal absence and the primary signal 

presence, respectively. The nth, n = 1, 2……….., sample 

of the received signal, y(n), can be given under the binary 

hypothesis as : 
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where x = hs. 

The complex signal, s has real component sr and imaginary 

component si, i.e., s = sr+jsi.  

The AWGN samples are assumed to be circularly 

symmetric complex Gaussian (CSCG) random variables 

with mean zero (E{w(n)} = 0) and variance 

   2 22 Var 2w ww n   where E{·} and Var{·} stand 

for mean and variance, respectively, 

i.e.,    2~ 0,2 ww n CN . A noise sample is denoted as 

w(n) =wr(n)+jwi(n)  where  wr(n) and wi(n) are real-valued 

Gaussian random variables with mean zero and variance  

2

w , i.e., wr(n) , wi(n)~  20, wN . The channel gain is 

denoted as  h = hr+ jhi. The channel gain can be assumed 

as a constant within each spectrum sensing period  and   

can be writtenas    

                                                       

   y(n) = θx(n) + w(n)                        (2) 

 where θ = 0 for 0H  and θ = 1 for 1H . 



 

 

International Journal of Research in Science & Technology 
Volume 2 | Issue 4 | April 2015 | ISSN: 2349-0845 

Performance Evaluation of Computationally Efficient Energy Detection Based Spectrum Sensing for 

Cognitive Radio Networks 
 

Page 15 

i. Improved energy detection under low SNR 

model: 

          Three signal models, S1, S2 and S3 which are given 

and can be considered in the energy detection. For S1 and 

S2 signal models, the distribution of Λ is modeled exactly 

Under H0, the false-alarm probability is with the upper 

incomplete Gamma function. Under H1, the detection 

probabilities are with the Marcum-Q function and with the 

upper incomplete Gamma function for S1 and S2, 

respectively. However, none of these functions have 

closed-form inverse functions, and thus there is no closed-

form expression for the detection threshold λ when a false-

alarm or detection probability is given even with AWGN 

channel[9,11]. This problem becomes more complicated 

when the fading effect is considered. Although there are 

rigorous expressions for the average detection performance 

over some particular fading channels in the literature, such 

expressions may not help for the parameter optimization 

(e.g., optimizing detection threshold). Since S1 and S2 

signal models have different set of expressions, results of 

one model cannot be derived from those of the other 

model. Moreover, the distribution of Λ cannot be modeled 

exactly for S3[11,12]. 

To solve all these problems, the CLT approach can be 

used as a unified approach of accurately approximating the 

distribution of Λ in the three signal models.The 

distribution of Λ can be approximated as a normal 

distribution for sufficiently large N as 
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(3)     

Under the low-SNR assumption  . .; 1i e   ,the 

signal has little impact onthe variance of the test statistic 

under 1H , as used in the Edell model, Berkeley model and 

Torrieri model which are well-known Gaussian 

approximations for the test statistic under 1H [12, 13]. 

Thus, (3) can be accurately approximated for any of the 

three signal models as 
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where 2 w  . The false alarm probability 

fP and the missed-detection probability  mdP  can be 

evaluated as 

                                              2
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respectively, where where 
 

1

2 2

z
Q z Erfc

 
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 

and 

Erfc(·) is the complementaryerror function defined as 

 
22 t

z
Erfc z e dt




 

[4]. Since the detection 

probability,    1d mdP P   , relates to the 

cumulative distribution function (CDF)of the test statistic.  

                      The ROC curve, AUC, and the total error 

rate are used as the performance measures. The ROC curve 

is a measurement for the sensitivity of a detector used in a 

binary classifier system [12]. In signal-detection theory, 

the ROC (or the complementary ROC) curve is a graphical 

plot of     d mdP or P  versus fP as the 

discrimination threshold λ varies. The ROC curves of 

spectrum-sensing detectors have highly non-linear 

behavior, and they are, in general, convex[9,10,11]. In 

wireless communications,  dP  depends on the 

received instantaneous SNR, which is a function of the 

mobile radio channel gain. Therefore, the average 

detection probability (or average missed-detection 

probability) over fading channels is important for plotting 

the ROC curve. 

 

ii. Logical Selective method based on Fusion 

center 

Performance of an energy detector used for 

cooperative spectrum sensing is investigated. Single 

cooperative node, multiple cooperative nodes and multi-

hop cooperative Sensing networks are considered. Two 

fusion strategies, data fusion and decision fusion, are 

analyzed. For data fusion, upper bounds for average 

detection probabilities are derived. For decision fusion, the 

detection and false alarm probabilities are derived under 

the out-of generalized “k- -n” fusion rule at the fusion 

center by considering errors in the reporting 

channel[10,11] 
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      In decision fusion, each cooperative node makes one-

bit hard decision on the primary user activity: „0‟ and „1‟ 

mean the absence and presence of primary activities, 

respectively. Then, each reporting channel is with a narrow 

bandwidth. Capability of complex signal processing is 

needed at each cooperative node. The fusion rule at the 

fusion center can be OR, AND, or Majority rule, which 

can be generalized as the “k-out-of-n” rule. The decision 

device of the fusion center with n cooperative nodes can be 

implemented with the k-out-of-n rule in which the fusion 

center decides the presence of primary activity if there are 

k or more cooperative nodes that individually decide on the 

presence of primary activity[8,9]. When k = 1, k = n and, 

/ 2k n  where .   is the ceiling function, the k-out-of-

n rule represents OR rule, AND rule and Majority rule, 

respectively. 

                           It is assumed that the decision device of 

the fusion center is implemented with the k out- of-n rule 

(i.e., the fusion center decides the presence of primary 

activity if there are k or more cooperative nodes that 

individually decide the presence of primary activity). 

When k = 1, k = n and  / 2k n     , the k-out-of-n rule 

represents OR rule, AND rule and Majority rule, 

respectively. In the following, for simplicity of 

presentation, fp and dp are used to represent false alarm 

and detection probabilities, respectively, for a cooperative 

node, and use fp and dp to represent false alarm and 

detection probabilities, respectively, in the fusion center. 

 

iii. Improved sub nyquist sampling method for 

spectrum sensing 

The received signal x(t) is assumed to be an analog 

wideband sparse spectrum signal, band limited to [0,Bmax]. 

Denote the Fourier transform of x(t) by X(f). Depending 

on the application, the entire frequency band is segmented 

into L narrowband channels, each of them with bandwidth 

B, such that Bmax = L × B. It is assumed that the signal 

bands are uncorrelated with each other. The channels are 

indexed from 0 to L − 1. Those spectral bands which 

contain part of the signal spectrum are termed active 

channels, and the remaining bands are called vacant 

channels[11,12]. Denote the number of such active 

channels by N. The indices of the N active channels are 

collected into a vector 

    b=[b1, b2,.. . , bN]                                   (7) 

which is referred to as the active channel set. 

In the considered system, N and b are unknown. However, 

we know the maximum channel occupancy which is 

defined as 

                                                               max
max

N

L
                                               

(8) 

where Nmax ≥ N is the maximum possible number of 

occupied channels. Figure 1 depicts the spectrum of a 

multiband signal at the sensing radio, which contains L = 

32 channels, each with a bandwidth of B = 10 MHz. The 

signal is present in N = 6 channels, and the active channel 

set is b  [8]. 

     The problem is, given Bmax, B and Ω max, to find the 

presence or absence of the signal in each spectral band or 

equivalently find the active channel set, b, at a sub-Nyquist 

sample rate. 

 
Figure 3. Proposed wideband spectrum sensing model. 

 

 The proposed model for wideband spectrum sensing 

is illustrated in Figure 3. The analog received signal at the 

sensing cognitive radio is sampled by the multicoset 

sampler at a sample rate lower than the Nyquist rate. The 

sampling reduction ratio is affected by the channel 

occupancy and multicoset sampling parameters. The 

outputs of the multicoset sampler are partially shifted 

using a multirate system, which contains the interpolation, 

delaying and down sampling stages. Next, the sample 

correlation matrix is computed from the finite number of 

obtained data. Finally, the correlation matrix is 

investigated to discover the position of the active channels 

by subspace methods [9, 10, 12].  

 

III. RESULTS AND CONCLUSION 

A. Improved CE-ED METHOD 

 
Fig 4:Probability of false Vs Probability of Detection 

    

As the probabilty of false alarm increases the probability 

of detection also increases  
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Fig 5:Probability of false Vs Probability of Miss detection 

 

   As the probability of false alarm increases the probability 

of miss detection decreases 
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          Fig 6:Probability of Detection Vs SNR 

 

 As probability of detection increases SNR also increases  

B. Logical Selective Method: 

 
Fig 7:  Spectrum sensing with AND rule 

 

The PM (increased detection performance) rapidly 

improves with increasing average SNR. 

 

Improved sequential Forward search Method: 
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Fig 8: Performance of wideband spectrum sensing under sub 

nyquist  sampling method 

 

Several significant values correspond to active 

channels are appeared where their locations specify the 

estimated active channel set. The other channels are 

interpreted as the vacant channels and can be used by the 

cognitive system to transmit.The results show that even in 

low SNR with taking enough number of samples a perfect 

detection is possible. 

In the standardization process of vehicular networks, 

channel models are required to evaluate and select the 

proposed physical layer modulation and coding schemes. 

Analytical and simulation results are provided to support 

the theoretical formulations and derivations. The presented 

results show that spectrum sensing and access in vehicular 

communication can be improved by modeling the wireless 

environment precisely. IN a cognitive radio network 

(CRN), in-band spectrum sensing is essential for the 

protection of legacy spectrum users, with which the 

presence of primary users (PUs) can be detected promptly, 

allowing secondary users (SUs) to vacate the channels 

immediately. For in-band sensing, it is important to meet 

the detectability requirements, such as the maximum 

allowed latency of detection (e.g., 2 seconds in IEEE 
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802.22) and the probability of misdetection and false-

alarm. From the presented result it is clear that a channel 

model composed of mixed distributions is useful for 

designing vehicular wireless.                             We studied 

the performance of cooperative spectrum sensing and 

signal detection base on hard decision combining 

technique in data fusion centre compared with non-

cooperative one. 

In cooperative technique, OR and AND rules are 

employed and evaluate the system performance by using 

probability of detection (Pd) and SNR as metric. The OR 

rule decides H1 when at least one CR user forward bit-1 

while the AND rule decides H1 when all CR users forward 

their bit-1 to data fusion centre. The numerical results 

show that cooperative technique has better performance 

compared with non cooperative one and employing OR 

rule can improve probability of detection than AND rule 

and non cooperative signal detection at different SNR 

values. Cooperative technique is more effective when 

received SNR in cognitive radio users is low due to fading 

and shadowing. Noncooperative technique achieves the 

same detection probability value (optimal value) as 

cooperative technique when received SNR is greater than 

10 dB,  Furthermore, a minimum of 15 collaborated users 

relatively in cognitive radio system can achieve optimal 

value of detection probability. However, it depends on the 

threshold value used in signal detection. 

IV. FUTURE WORK 

In future, we would like to explore other types of feature 

detection and evaluate their performance comparatively 

with energy detection. In-band sensing of wireless micro-

phones should be another subject of our future work. 
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