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Abstract - In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on 

large-scale image search.Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it 

benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance.The 

correlation between two signals (cross correlation) is a standard approach to feature detection as well as a component of more 

sophisticated techniques. Unfortunately the normalized form of correlation (correlation coefficient) preferred in template matching 

does not have a correspondingly simple and efficient frequency domain expression. For this reason normalized cross-correlation has 

been computed in the spatial domain.Due to the computational cost of spatial domain convolution, several inexact but fast spatial 

domain matching methods have also been developed. For obtaining normalized cross correlation from transform domain convolution 

the Fast Normalized Cross Correlation Algorithm is introduced. This new algorithm provides an order of magnitude speedup over 

spatial domain computation of normalized cross correlation. 
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INTRODUCTION  

In recent years, content-based image search has attracted more and more attentions in the  multimedia and the computer 

vision community [1]–[19]. Many approaches are based on the Bag-of-Visual-Words (BoVW) model [8] and adopt the invariant local 

features for image representation. In the BoVW model, an image is represented by a visual word vector. The visual words are usually 

generated by clustering the extracted local features. Some widely used unsupervised clustering algorithms are standard k-means, 

hierarchical k-means (HKM) [7]  

  The correlation between two signals (cross correlation) is a standard approach to feature detection [6,7] as well as a 

component of more sophisticated techniques (e.g. [3]). Textbook presentations of correlation describe the convolution theorem and the 

attendant possibility of efficiently computing correlation in the frequency domain using the fast Fourier transform. Unfortunately the 

normalized form of correlation (correlation coefficient) preferred in template matching does not have a correspondingly simple and 

efficient frequency domain expression. For this reason normalized cross-correlation has been computed in the spatial domain (e.g., [7], 

p. 585). Due to the computational cost of spatial domain convolution, several inexact but fast spatial domain matching methods have 

also been developed [2]. This paper describes a recently introduced algorithm [10] for obtaining normalized cross correlation from 

transform domain convolution. The new algorithm in some cases provides an order of magnitude speedup over spatial domain 

computation of normalized cross correlation.  

Since we are presenting a version of a familiar and widely used algorithm no attempt will be made to survey the literature on 

selection of features, whitening, fast convolution techniques, extensions, alternate techniques, or applications. The literature on these 

topics can be approached through introductory texts and handbooks [16,7,13] and recent papers such as [1,19]. Nevertheless, due to 

the variety of feature tracking schemes that have been advocated it may be necessary to establish that normalized cross-correlation 

remains a viable choice for some if not all applications.  

The rest of the paper is organized as follows. Section II reviews the pipeline of content-based large-scale image search 

system with local features. Section III discusses the proposed Fast Normalized Cross Correlation Algorithm. Our transforming domain 
computation is introduced in Section IV Phase correlation and normalization are given in Section V and Section VI. Finally, the 

conclusion is made in Section VII. 
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RELATED WORKS 
 

In content-based large-scale image retrieval with local features, the Bag-of-Visual-Words (BoVW) model has been widely 

adopted. Generally, most approaches follow a pipeline which consists of several key steps, including feature representation, feature 

quantization, image indexing, image scoring and post-processing. In this section, we make a review of the pipeline and discuss related 
works in each step. Invariant local features have been popularly adopted for image representation owing to its invariance to various 

transformations and robustness to occlusions and background changes. The extraction of local features usually involves two steps, 

namely interest point detection and feature description. The interest point detection identifies some key points that have high 

repeatability over various changes. The commonly used interest point detectors include Difference of Gaussian (DOG) [5], Hessian 

affine [25], and MSER [26]. Then, a descriptor is constructed to capture the visual appearance of the local region corresponding to a 

interest point. The descriptor is usually designed to be invariant to rotation and scale changes and robust to affine distortion and the 

addition of noise, etc. Some commonly used descriptors include FNCC, SURF [5], [27] and some recently developed descriptors [28]–

[30]. To obtain a compact representation of an image for scalable indexing and retrieval, after extracting the local features, a visual 

vocabulary is usually built and the local features are quantized to visual words. The visual vocabulary is generated by unsupervised 

clustering algorithms, such as hierarchical k-means (HKM) [7], approximate k-means (AKM) [20]. With the visual vocabulary 

defined, each local feature is quantized to a visual word in the visual vocabulary. Usually, to speed up quantization process, 

approximate nearest neighbor (ANN) approaches are adopted, such as k-d tree [31], vocabulary tree [7]. In [24], a scalar quantization 
approach is proposed to suppress the quantization error. After the features are quantized to visual words, an image can be represented 

by a visual word vector [8]. The similarity between two images can be measured by the L1 or L2 normal distance between their visual 

word vectors. And inspired by the success of text search engines, the inverted file structure has been successfully used for large-scale 

image search [8],[10], [20], [32]. In the inverted file structure, each visual word is followed by a list of entries. Each entry records the 

image ID and some other clues to verify the feature matching, such as geometric clues in [20] and [32], binary signatures in [33]. As 

the BoVW model ignores the spatial context information between local features, some researchers propose to conduct geometric 

verification to the ranked candidates list returned by the BoVW model [20], [32], [34], [35]. In [20], a transformation model between 

the query image and the candidate image is estimated and those matches that do not fit the model well are filtered out. In [32], a 

verification map is built to filter out the false matches.  

 

 
                        Figure c 

 
                         Figure d 

 

      Fig. 1. Two example of matches obtained with 64-bit binary FNCC code generated by the proposed algorithm. The matched 

features are connected by the solid red line. (a) One example of the PDup dataset [32]. (b) One example of the UKBench dataset [7]. 
 

Unlike the above geometric verification approaches, the bag-of-spatialfeatures [10] explicitly embeds the spatial context into 

the representation based on visual words. Some works explore the semantic information of images [36], [37]. In [36], a sparse graph-

based semi-supervised learning approach is used to inferring images’ semantic concepts from community-contributed images and their 

associated tags. In [37], the semantic gap measure is introduced into the active learning process to handle the user interaction. 
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FAST NORMALIZED CROSS CORRELATION ALGORITHM 

Template Matching by Cross-Correlation:The use of cross-correlation for template matching is motivated by the distance measure  

(squared Euclidean distance) d 2 
f, t

 (u,v)= ∑ [f (x,y)-t(x-u,y-v)]2                              

(where f is the image and the sum is over x,y under the window containing the feature t is positioned at u,v). In the expansion of d2    

d 2 
f, t

 (u,v) = ∑  [f 2(x,y)-2  f (x-y) t (x-u,y-v) + t2(x-u,y-v)]..........(1) 

the term ∑ t2(x-u,y-v) is constant. If the term ∑ f 2(x,y) is approximately constant then  the remaining cross-correlation term  c(u,v)= ∑ 

f(x,y)t(x-u,y-v) is a measure of the similarity  between the image and the feature.  

There are several disadvantages to using (1) for template matching:  

If the image energy ∑ f 2  (x, y) varies with position, matching using (1) can fail. For  example, the correlation between the feature and 

an exactly matching region in the image may be less than the correlation between the feature and a bright spot.  

The range of c(u,v) is dependent on the size of the feature.  

Eq. (1) is not invariant to changes in image amplitude such as those caused by changing lighting conditions across the image 

sequence.  

The correlation coefficient overcomes these difficulties by normalizing the image and feature vectors to unit length, yielding a cosine-

like correlation coefficient  

∑ x , y [f(x,y)-f u,v][t(x-u,y-v)-t] 

γ (u,v) = { ∑ x, y[f(x,y)-f u,v]
2  ∑ x, y[t(x-u,y-v)-t]2}0.5         ............. (2) 

where t is the mean of the feature and  f u,v is the mean of f (x,y) in the region under the feature.We refer to (2) as normalized cross-

correlation.  

Feature Tracking Approaches and Issues :- 

It is clear that normalized cross-correlation (NCC) is not the ideal approach to feature tracking since it is not invariant with 

respect to imaging scale, rotation, and perspective distortions. These limitations have been addressed in various schemes including 

some that incorporate NCC as a component. This paper does not advocate the choice of NCC over alternate approaches. Rather, the 

following discussion will point out some of the issues involved in various approaches to feature tracking, and will conclude that NCC 

is a reasonable choice for some applications.  

SSDA. The basis of the sequential similarity detection algorithm (SSDA) [2] is the observation that full precision is only needed 

near the maximum of the cross-correlation function, while reduced precision can be used elsewhere. The authors of [2] describe 

several ways of implementing `reduced precision'. An SSDA implementation of cross-correlation proceeds by computing the 

summation in (1) in random order and uses the partial computation as a Monte Carlo estimate of whether the particular match location 

will be near a maximum of the correlation surface. The computation at a particular location is terminated before completing the sum if 

the estimate suggests that the location corresponds to a poor match.  

The SSDA algorithm is simple and provides a significant speedup over spatial domain cross-correlation. It has the disadvantage 

that it does not guarantee finding the maximum of the correlation surface. SSDA performs well when the correlation surface has 

shallow slopes and broad maxima. While this condition is probably satisfied in many applications, it is evident that images containing 

arrays of objects (pebbles, bricks, other textures) can generate multiple narrow extrema in the correlation surface and thus mislead an 

http://scribblethink.org/Work/nvisionInterface/nip.html#eql:purecc
http://scribblethink.org/Work/nvisionInterface/nip.html#eql:purecc
http://scribblethink.org/Work/nvisionInterface/nip.html#eql:purecc
http://scribblethink.org/Work/nvisionInterface/nip.html#eq1:normcc
http://scribblethink.org/Work/nvisionInterface/nip.html#SSDA
http://scribblethink.org/Work/nvisionInterface/nip.html#SSDA
http://scribblethink.org/Work/nvisionInterface/nip.html#eql:purecc


International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014                                                                                   
ISSN 2091-2730 

 

631                                                                                                   www.ijergs.org  
 

SSDA approach. A secondary disadvantage of SSDA is that it has parameters that need to determined (the number of terms used to 

form an estimate of the correlation coefficient, and the early termination threshold on this estimate).  

Gradient Descent Search : If it is assumed that feature translation between adjacent frames is small then the translation (and 

parameters of an affine warp in [19]) can be obtained by gradient descent [12]. Successful gradient descent search requires that the 

interframe translation be less than the radius of the basin surrounding the minimum of the matching error surface. This condition may 

be satisfied in many applications. Images sequences from hand-held cameras can violate this requirement, however: small rotations of 

the camera can cause large object translations. Small or (as with SSDA) textured templates result in matching error surfaces with 

narrow extrema and thus constrain the range of interframe translation that can be successfully tracked. Another drawback of gradient 

descent techniques is that the search is inherently serial, whereas NCC permits parallel implementation.  

Snakes: Snakes (active contour models) have the disadvantage that they cannot track objects that do not have a definable contour. 

Some ``objects'' do not have a clearly defined boundary (whether due to intrinsic fuzzyness or due to lighting conditions), but 

nevertheless have a characteristic distribution of color that may be trackable via cross-correlation. Active contour models address a 

more general problem than that of simple template matching in that they provide a representation of the deformed contour over time. 

Cross-correlation can track objects that deform over time, but with obvious and significant qualifications that will not be discussed 

here. Cross-correlation can also easily track a feature that moves by a significant fraction of its own size across frames, whereas this 

amount of translation could put a snake outside of its basin of convergence.  

Wavelets and other multi-resolution schemes : Although the existence of a useful convolution theorem for wavelets is still a 

matter of discussion (e.g., [11]; in some schemes wavelet convolution is in fact implemented using the Fourier convolution theorem), 

efficient feature tracking can be implemented with wavelets and other multi-resolution representations using a coarse-to-fine multi-

resolution search. Multi-resolution techniques require, however, that the images contain sufficient low frequency information to guide 

the initial stages of the search. As discussed in section 6, ideal features are sometimes unavailable and one must resort to poorly 

defined ``features'' that may have little low-frequency information, such as a configuration of small spots on an otherwise uniform 

surface.  

Each of the approaches discussed above has been advocated by various authors, but there are fewer comparisons between 

approaches. Reference [19] derives an optimal feature tracking scheme within the gradient search framework, but the limitations of 

this framework are not addressed. An empirical study of five template matching algorithms in the presence of various image 

distortions [4] found that NCC provides the best performance in all image categories, although one of the cheaper algorithms performs 

nearly as well for some types of distortion. A general hierarchical framework for motion tracking is discussed in [1]. A correlation 

based matching approach is selected though gradient approaches are also considered.  

Despite the age of the NCC algorithm and the existence of more recent techniques that address its various shortcomings, it is 

probably fair to say that a suitable replacement has not been universally recognized. NCC makes few requirements on the image 

sequence and has no parameters to be searched by the user. NCC can be used `as is' to provide simple feature tracking, or it can be 

used as a component of a more sophisticated (possibly multi-resolution) matching scheme that may address scale and rotation 

invariance, feature updating, and other issues. The choice of the correlation coefficient over alternative matching criteria such as the 

sum of absolute differences has also been justified as maximum-likelihood estimation [18]. We acknowledge NCC as a default choice 

in many applications where feature tracking is not in itself a subject of study, as well as an occasional building block in vision and 

pattern recognition research (e.g. [3]). A fast algorithm is therefore of interest.  

TRANSFORM DOMAIN COMPUTATION 

Consider the numerator in (2) and assume that we have images f(x,y)=f(x,y)-f u,v   and t(x,y)=t(x,y)-t in which the mean  value 

has already been removed:                                                                

γ (u,v)= ∑ f(x,y)t(x-u,y-v)  ..... (3) 
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For a search window of size M2 and a feature of size N2 (3) requires approximately     N2 ( M - N + 1)2 additions and        N2 ( M - N + 

1)2 multiplications.  

Eq. (3) is a convolution of the image with the reversed feature t'(-x,-y) and can be computed by  

                    F-1{F(f)F*(t)} …… (4) 

 where F is the Fourier transform. The complex conjugate accomplishes reversal of the feature via  the Fourier transform property  F f 

* (-x) = F *(w).  

Implementations of the FFT algorithm generally require that f' and t' be extended with zeros to a common power of two. The 

complexity of the transform computation (3) is then 12 M2 log2 M real multiplications and 18 M2 log2 M real additions/subtractions. 

When M is much larger than N the complexity of the direct `spatial' computation (3) is approximately N2M2 multiplications/additions, 

and the direct method is faster than the transform method. The transform method becomes relatively more efficient as N approaches M 

and with larger M, N.  

Fast Convolution 

There are several well known fast convolution algorithms that do not use transform domain computation [13]. These approaches 

fall into two categories: algorithms that trade multiplications for additional additions, and approaches that find a lower point on the 

O(N2) characteristic of (one-dimensional) convolution by embedding sections of a one-dimensional convolution into separate 

dimensions of a smaller multidimensional convolution. While faster than direct convolution these algorithms are nevertheless slower 

than transform domain convolution at moderate sizes [13] and in any case they do not address computation of the denominator of (2).  

PHASE CORRELATION 

Because (4) can be efficiently computed in the transform domain, several transform domain methods of approximating the image 

energy normalization in (2) have been developed. Variation in the image energy under the template can be reduced by high-pass 

filtering the image before cross-correlation. This filtering can be conveniently added to the frequency domain processing, but selection 

of the cutoff frequency is problematic--a low cutoff may leave significant image energy variations, whereas a high cutoff may remove 

information useful to the match.  

A more robust approach is phase correlation [9]. In this approach the transform coefficients are normalized to unit magnitude 

prior to computing correlation in the frequency domain. Thus, the correlation is based only on phase information and is insensitive to 

changes in image intensity. Although experience has shown this approach to be successful, it has the drawback that all transform 

components are weighted equally, whereas one might expect that insignificant components should be given less weight. In principle 

one should select the spectral pre-filtering so as to maximize the expected correlation signal-to-noise ratio given the expected second 

order moments of the signal and signal noise. This approach is discussed in [16] and is similar to the classical matched filtering 

random signal processing technique. With typical image correlation the best pre-filtering is approximately Laplacian rather than a pure 

whitening.  

NORMALIZING 

Examining again the numerator of (2), we note that the mean of the feature can be precomputed, leaving  

γ (u,v) = ∑ f(x,y)t(x-u,y-v)- f u,v ∑ t(x-u,y-v) 

 Since t' has zero mean and thus zero sum the term f u,v ∑t (x-u,y-v) is also zero, so the numerator of the normalized cross- correlation 

can be computed using (4).  
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Examining the denominator of (2), the length of the feature vector can be precomputed in approximately 3N2 operations  (small 

compared to the cost of the cross-correlation), and in fact the feature can be pre-normalized to length one.  

The problematic quantities are those in the expression ∑x,y [f (x,y)-f u,v]
2. The image mean and local (RMS) energy must be 

computed at each u,v, i.e. at (M-N+1)
2
 locations, resulting in almost 3N

2
(M-N+1)

2
 operations (counting add, subtract, multiply as one 

operation each). This computation is more than is required for the direct computation of (3) and it may considerably outweight the 

computation indicated by (4) when the transform method is applicable. A more efficient means of computing the image mean and 

energy under the feature is desired.  

These quantities can be efficiently computed from tables containing the integral (running sum) of the image and image square 

over the search area, i.e.,  

s(u,v) = f(u,v) + s(u-1,v) + s(u,v-1) - s(u-1,v-1)  & s2 
 (u,v) = f2 (u,v) + s2 (u-1,v) + s2 (u,v-1)-s2(u-1,v-1) 

 

with s(u,v) = s2(u,v) = 0 when either u,v < 0. The energy of the image under the feature positioned at u,v is then             e f (u,v) = s
2 

(u+N-1,v +N-1) 

- s2 (u-1,v+N-1) 

- s2 (u+N-1,v-1) 

+    s2 (u-1,v-1) 

and similarly for the image sum under the feature.  

The problematic quantity ∑x,y [f(x,y)-f u,v]
2 can now be computed with very few operations since it expands into an expression 

involving only the image sum and sum squared under the feature. The construction of the tables requires approximately 3M2 

operations, which is less than the cost of computing the numerator by (4) and considerably less than the 3N2(M-N+1)2 required to 

compute  ∑x,y [f(x,y)-f u,v]
2 at each u,v.  

This technique of computing a definite sum from a precomputed running sum has been independently used in a number of fields; 

a computer graphics application is developed in [5]. If the search for the maximum of the correlation surface is done in a systematic 

row-scan order it is possible to combine the table construction and reference through state variables and so avoid explicitly storing the 

table. When implemented on a general purpose computer the size of the table is not a major consideration, however, and flexibility in 

searching the correlation surface can be advantageous. Note that the s(u,v) and s2(u,v) expressions are marginally stable, meaning that 

their z-transform H(z) = 1/(1 - z-1) (one dimensional version here) has a pole at z=1, whereas stability requires poles to be strictly 

inside the unit circle [14]. The computation should thus use large integer rather than floating point arithmetic.  

Figure 1: Measured relative performance of transform domain versus spatial domain normalized cross-correlation as a function of 

the search window size (depth axis) and the ratio of the feature size to search window size. 
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Table: Two tracking sequences from Forest Gump were re-timed using both direct and fast NCC algorithms using identical features 

and search windows on a 100 Mhz R4000 processor. These times include a 162 sub-pixel search [17] at the location of the best whole-

pixel match. The sub-pixel search was computed using Eq. (2) (direct convolution) in all cases. 

Search   

Window(s) 

Lengt

h 

Direct          

NCC 

Fast 

NCC 

168 X 86 
896 

frames 
15 hours 

1.7 

hours 

115 X 

200,150 

X150 

490 

frames 
14.3 hours 

57 

minutes 

The performance of this algorithm will be discussed in the context of special effects image processing. The integration of 

synthetic and processed images into special effects sequences often requires accurate tracking of sequence movement and features. 

The use of automated feature tracking in special effects was pioneered in movies such as Cliffhanger, Forest Gump, and Speed. 

Recently cross-correlation based feature trackers have been introduced in commercial image compositing systems such as Flame/Flint 

[20], Matador, Advance [21], and After Effects [22].  

The algorithm described in this paper was developed for the movie Forest Gump (1994), and has been used in a number of 

subsequent projects. Special effects sequences in that movie included the replacement of various moving elements and the addition of 

Feature 

Size 

Search 

Window(s) 
Flint Fast NCC 

402 1102 
1 min. 40 

seconds 

16 seconds 

(subpixel=1) 

402 1102 n/a 
21 seconds 

(subpixel=8) 
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a contemporary actor into historical film and video sequences. Manually picked features from one frame of a sequence were 

automatically tracked over the remaining frames; this information was used as the basis for further processing.  

The relative performance of our algorithm is a function of both the search window size and the ratio of the feature size to search 

window size. Relative performance increases along the window size axis (Fig. 1); a higher resolution plot would show an additional 

ripple reflecting the relation between the search window size and the bounding power of two. The property that the relative 

performance is greater on larger problems is desirable. Table 1 illustrates the performance obtained in a special effects feature tracking 

application. Table 2 compares the performance of our algorithm with that of a high-end commercial image compositing package.  

Note that while a small (e.g. 102) feature size would suffice in an ideal digital image, in practice much larger feature sizes and 

search windows are sometimes required or preferred:  

The image sequences used in film and video are sometimes obtained from moving cameras and may have considerable translation 

between frames due to camera shake. Due to the high resolution required to represent digital film, even a small movement across 

frames may correspond to a distance of many pixels.  

The selected features are of course constrained to the available features in the image; distinct ``features'' are not always available at 

preferred scales and locations.  

Many potential features in a typical digitized image are either out of focus or blurred due to motion of the camera or object (Fig. 2). 

Feature match is also hindered by imaging noise such as film grain. Large features are more accurate in the presence of blur and noise.  

 

As a result of these considerations feature sizes of 202 and larger and search windows of 502 and larger are often employed.  

The fast algorithm in some cases reduces high-resolution feature tracking from an overnight to an over-lunch procedure. With 

lower proxy resolution and faster machines, semi-automated feature tracking is tolerable in an interactive system. Certain applications 

in other fields may also benefit from the algorithm described here.  

CONCLUSION 

For example, image stabilization is a common feature in recent consumer video cameras. Although most such systems are stabilized 

by inertial means, one manufacturer implemented digital stabilization and thus presumably used some form of image tracking. The 

algorithm used leaves room for improvement however: it has been criticized as being slow and unpredictable and a product review 

recommended leaving it disabled [15].  
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