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ABSTRACT: In this paper, we have studied the analytical solution of one dimensional Dirichlet-Helmholtz
boundary value problem. We found the numerical solution of one dimensional Dirichlet-Helmholtz boundary
value problem by Finite Element Method (FEM). And then we compare the solutions.
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I. INTRODUCTION

The Helmholtz equation, named for Hermann von Helmholtz, is a partial differential equation ( fuu =+∆−  ,

where  is arbitrary non zero constant and it is called Helmholtz parameter), which often arises in the study of
physical problems involving partial differential equations (PDEs) in both space and time.  The Helmholtz equation is
a time-independent form of the original equation.
The FEM is a novel numerical method used to solve ordinary and partial differential equations. The method is based
on the integration of the terms in the equation to be solved, in lieu of point discretization schemes like the finite
difference method. The FEM utilizes the method of weighted residuals and integration by parts (Green-Gauss
Theorem) to reduce second order derivatives to first order terms. The solution domain is discretized into individual
elements, these elements are operated upon individually and then solved globally using matrix solution techniques.

In this work, we present the analytical solution of one dimensional Dirichlet-Helmholtz boundary value
problem. We describe the finite element method. And then we find the numerical solution of one dimensional
Dirichlet-Helmholtz boundary value problem by finite element method. Also we next show that the numerical
solution by finite element method converges with the analytical solution when we take a large number of grid points.

II. DIRICHLET-HELMHOLTZ BVP AND ITS ANALYTICAL SOLUTION

A. Dirichlet-Helmholtz BVP

For RuRx n →Ω⊆Ω∈ :, with )(2 Ω∈ Cu ,

the Dirichlet-Helmholtz BVP  reads as
fuu =+∆−  in Ω , )(Ω∈ Cf (Helmholtz equation)

gu = on ,Ω∂ )( Ω∂∈ Cg (Dirichlet boundary condition)

Here f is the force function and is any arbitrary non zero constant. The constant  determines the role of
convection term in the Helmholtz equation.

The one dimensional form of Dirichlet-Helmholtz BVP is
),()()('' xfxuxu =+−  )1,0(∈x (1)

0)1()0( == uu
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Here the domain )1,0(≡Ω . For simplicity, we will find the analytical solution of Dirichlet-Helmholtz BVP for

xxf sin)( = .

B. Analytical solution of Dirichlet-Helmholtz BVP when )sin()( xxf =
If xxf sin)( = , then equation (1) reduces as,

,sin)()('' xxuxu =+− 
0)1()0( == uu

⇒


x
xuxu

sin
)(

1
)('' −=−

0)1()0( == uu (2)

The above equation is a linear differential equation of second order.
The Auxiliary Equation of (2) is,
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Hence, the Complete Solution is,
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Now, applying 0)0( =u in (3), we have,

021 =+ cc

21 cc −= (4)

Again applying 0)1( =u in (3), we have,
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Putting the value of 1c in (4) we have ,
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Hence the required analytical solution of (2.2) is:
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here f(x) = sin(x), ∀ x∈ Ω ≡ (0,1)

C. Complexity of Analytical Solution
It is not easy to obtain the analytical solution of equation (5) for every value of f(x). The biggest disadvantage of the

analytical method is that formulations can become very complicated. The more complicated a system is more
difficult it will be to analytically formulate an expression for the system's reliability. The disadvantage of the
analytical solution lies in the oversimplifications needed in the derivations. When f(x) is a complicated function of x,
we need more difficult calculations to obtain analytical solution of the one dimensional Dirichlet-Helmholt BVP.

For example: It is very difficult to obtain the analytical solution of equation (1) when xexxf x sin)( 3= .

Moreover, we need different calculations to obtain analytical solution of Dirichlet-Helmholt BVP for different
values of f(x).

Way out: To avoid the above complexities of obtaining the Analytical solution of Dirichlet-Helmholtz BVP, we
need to find the Numerical solution of (1).

III. NUMERICAL SOLUTION OF DIRICHLET-HELMHOLTZ BVP

The weak form is often an integral form and requires a weaker continuity on the field variables. Due to the weaker
requirement on the field variables, and the integral operation, a formulation based on a weak form usually produces
a set of system equations that give much more accurate result.
So to find the numerical solution of one dimensional Dirichlet-Helmholtz BVP, we first find the weak formulation
of equation (2.1).

A. Weak Formulation of Dirichlet-Helmholtz BVP

Multiplying equation (2.1) with the test function ( )Ω∈ ∞
0Cv and then integrating by parts in Ω we obtain

dxxvxfdxxvxudxxvxu )()()()()()(
1

0

1

0

1

0
∫∫∫ =+′′− 
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[ ] dxxvxfdxxvxudxxvxuvu )()()()()()(
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0 ∫∫∫ =+′′+′− 
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0
∫∫∫ =+′′

Therefore the weak formulation of simplified Dirichlet-Helmholt BVP is

Find ( )Ω∈ 1
0Hu so that

dxxvxfdxxvxudxxvxu )()()()()()(
1
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0
∫∫∫ =+′′ ; ( )Ω∈∀ 1

0Hu (5)

Here ( )Ω1
0H is the Hilbert space.

B. Numerical Solution by Finite Element Method
The discrete abstract formulation of equation (4.1) is:

Find NN Vu ∈ so that ( ) ( )NNN vlvua =, ; NN Vv ∈∀

Where, ( ) dxxvxudxxvxuvua NN )()()()(
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NV is a finite dimensional subspace of V so that )(xbu iiN ∑=  ;

)(xbi denote the basis function of the finite dimensional space.
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Fig. 3.1: Discretization of basis function.
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From equation (8) we have
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Putting the values of 3I and 4I in (9), we have,
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Since ija is symmetric
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Similarly, we have fhI
2

1
6 =

65 IIl j +=∴ fhfhfh =+=
2

1

2

1

i.e,

1−





















=

N
fh

fh

fh

fh

l


From equation (4.2) we have, lL =

lL 1−=⇒ 



















































































++−

+−++−

+−+

++−

+−++−

+−+

=⇒

−

fh

fh

fh

fh

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h
















1

3

22

6
0

63

22

6

0
63

22

000

000

000

000

000

000

3

22

6
0

63

22

6

0
63

22















which is our required numerical solution of one dimensional Dirchlet-Helmholtz boundary value problem by finite
element method.

C. Error Estimation of the Numerical solution

We compute the Relative error in 1L norm defined by
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for all time, where eu is the exact solution and nu is the numerical solution computed by the finite element

method.
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If xxf sin)( = , then the relative errors of the numerical solution with respect to analytical solution of (1) for

different values of and for different number of grid point are given below:

Table 1: Relative errors in 1L norm of Numerical solution with respect to Analytical solution (N is the number

of grid points).

N=25 N=50 N=100 N=200 N=400 N=800 N=1600 N=3200

λ=1 .0685 .0351 .0177 .0089 .0043 .0021 .0010 .0006
λ=.1 .0386 .0197 .0098 .0048 .0023 .0011 .0005 .0003
λ=.01 .0109 .0047 .0023 .0010 .0005 .0003 . 0002 . 0001

Fig. 1: Relative error decreases as the number of grid points increases.

Table.1 and the figure.1 shows the relative error of numerical solution of Dirichlet-Helmholtz BVP. Figure 1
presents that the error is decreasing with respect to increasing of number of grid points. This shows the convergence
of the numerical solution. As number of grid point increases our calculation steps are also increasing. Therefore we
have to calculate every small part of our domain. So as we increase the number of grid points the error will be
decreased proportionally.
Also we see from Table 3.1 and the figure 1 that, the relative error decreases as we decrease ë. When we decrease ë
the role of second order derivative in convection term “ )('' xu− ’’ of Helmholtz equation is also decreases. And
for this reason the relative error is also decreases.

D. Comparison of Numerical Solution with Analytical Solution

We will see in the following figures that as the number of grid point increases the numerical solution converge to
analytical solution.
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Fig. 2: Comparison of Numerical solution with Analytical solution.[ f(x) = sin(x), N=25 and λ=1].

Fig. 3: Comparison of Numerical solution with Analytical solution.

[ f(x)=sin(x), N=100 and λ=1].

Fig. 4: Comparison of Numerical solution with Analytical solution.
[ f(x) = sin(x), N=1600 and λ=1].
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In figure 4 the number of grid points is 1600. We see that the both solution are coincide each other. This shows
numerical solution converges with the analytical solution when we use large number of grid points.

IV. CONCLUSION

In this paper, we have presented analytical solution of one dimensional Dirichlet-Helmholtz boundary value problem
and we find numerical solution of this simplified boundary value problem by finite element method. On
implementing the numerical solution in MATLAB we have found the relative errors, which show a good rate of
convergence of the solutions.
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