

International Journal of Theoretical & Applied Sciences, 4(2): 189-194 (2012)

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

A Multi Objective Model for Managing Faculty Resources for Course Affiliation Problems

Rajesh Shrivastava* and Alpana Verma* and Manoj Sharma**

Department of Mathematics, *Govt.Science and Commerce College, Benazir, Bhopal, (MP), India. **SIRT, Bhopal, (MP), India,

(Received 05 November, 2012, Accepted 02 December, 2012)

ABSTRACT: It is becoming painfully clear that state institutions imparting elementary and high school education are facing tremendous challenges in acquiring funds and get affiliation from the state boards and central boards too. Lee and Clayton (1972) cited several [2], among the following, reasons for this situation including the overall poor health of the economy, change in the federal government role regarding education, an increase in the rate of higher education expenditures, and a switch in national priorities to more critical social issues that mandate the immediate attention of the government.

Key Words: Goal programming,

I. INTRODUCTION

According to data made available by government authorities in our country, school education in India is facing real problems. These problems, however, stem more from changes than failure. The data accumulators argued that the agenda for school education for the remainder of this century consists of three main issues: costs, quality of teaching, and making school education more inclusive. With the largest portion of school education costs in faculty and staff compensation and in light of these financial pressures, the efficient utilization of the resources in school and inter colleges becomes extremely critical. Schools must explore more effective methods of doing more with less.

In this paper we will introduce an analytical technique that could be used for resource allocation in School and other institutions imparting elementary school level education. The technique, known as goal programming, will be applied to a case study to show the potential application to institutions of school education which will help them to get govt affiliation to enrich educational resources which leads to betterment of Society and eradication of illiteracy from the country.

II. GOAL PROGRAMMING

Goal programming is a decision-making tool that is capable of handling problem situations that involve multiple and often conflicting goals with varying degrees of importance. In order for goal programming to be used, the decision maker must be able to rank these goals in terms of their importance to the organization. Unlike linear programming which focuses on obtaining the optimal solution for one objective, goal programming identifies the point that best satisfies the stated goals. Goal programming attempts to minimize the deviations from these goals with consideration given to the hierarchy of the stated goals.

One of the advantages of goal programming is that it allows the decision maker to incorporate environmental, organizational, and managerial considerations in the model through the process of ranking or prioritizing the goals as given by Lee and Shim (1990) [3]. However, some may argue that this allows for subjectivity to enter the analysis, and may see subjectivity as a hindrance in that results are less than "scientific". Other difficulties are described by Turban and Meredith (1994) [6]. These difficulties are common to all multiple criteria decision making techniques. They include the inability to express certain goals in quantitative terms, obtaining an explicit statement of the goals of the organization, and the decision maker may change the relative importance assigned to certain goals as time passes.

Goal programming has been widely used in various business and non-business areas. Despite the increasingly growing applications of goal programming in general, its use in higher education, however, has been limited as given by McPherson, *et.al*, (1984) [4] and Zemsky *et al*, (1989) [7]. In addition to the study by Lee and Clayton (1972) [2], there has been only two other studies by Schroeder (1974) [5] and Diminnie and Kwak (1986) [1]. The application goal programming in the area of faculty resource allocations is almost non-existent.

III. AN APPLICATION

The model presented in this paper is an application of goal programming to the allocation of faculty resources at the Govt. Multipurpose Girls High Secondary School Bhopal. From its beginning in 1965, the School authorities has followed an orderly plan of development. One of the primary goals in this plan is strengthening faculty resources. Strengthening and allocating faculty resources often results in conflicting goals. The managing authorities of the school tried to start new courses and this purpose they would like to hire the best, most qualified faculty members in order to satisfy the goal of providing quality education to its students. But the School must also operate within the realm of its financial constraints and satisfy the goal of minimizing costs. These goals are basically at the opposite ends of the spectrum of options, but both must be considered in the allocation of faculty resources. Goal programming can be applied to this situation to obtain a solution that results in minimum deviations from the stated goals of the institution.

The model can be designed to analyze a particular unit of the School ; for example, the entire academic affairs area, a particular school within the school, or a particular department within a school as school is multipurpose school having more than one field of knowledge .The narrower the scope of the analysis, the more fine tuned the results become. Particularly in the area of faculty resource allocation, it is better to analyze each department within a school individually so items that are indicative of the department can be addressed and do not run the risk of being absorbed into the larger picture.

In addition, the model must have a defined time period. This time period, referred to as the planning horizon, can vary. As with the choice of the institutional unit to analyze, the planning horizon should also be limited. Of course the model can be extended for a longer planning horizon or for larger institutional units by introducing the appropriate variables and parameters.

IV. THE MODEL

The basic data used in this model was obtained from the Govt. Multipurpose Girls High Secondary School Bhopal. The model's scope is limited to one year to enhance understanding and provide a clearer presentation of the methodology involved. The Department has five goals. The first goal will be assigned the first priority (P), the second goal will be given the second priority (P), etc... In this model the goals are ranked as follows: (1) To assure coverage of the required course hours, (2) To maintain a faculty split of 80 percent full-time and 20 percent part-time,(3) To maintain a 65 percent terminal degree coverage rate of fulltime faculty, (4) To attain a desired distribution of faculty with respect to rank, and (5) To minimize cost. The first and foremost goal is to provide coverage of the required number of course hours The required course hours are each year. calculated by multiplying the number of sections offered each year by three, the average number of credit hours per course. The department must have the faculty required to teach the courses offered. During the academic year used in this model, it is projected that a total of 456 course hours will be generated. A full time teaching load for full-time faculty is twenty-four course hours per year and twelve course hours or less per year for part-time faculty. Because of other duties such as administrative, student advising, counseling, etc., full-time faculty loads sometimes exceed and sometimes do not reach the full-time load level. The teaching load of each faculty member is determined by (1) the number of different preparations per week, (2) the number of students for which he or she is responsible, (3) the nonteaching responsibilities which he or she has, (4) the amount of personal attention each assignment requires, and (5) the experience of the faculty member. The total professional education load should be so distributed as to allow for reasonable specialization in the assignment of each faculty member. As population is increasing day . need of a good school has grown significantly in the past years. Overall, the School's enrollment has grown by 95 percent in this period. In order to maintain accessibility and accommodate the enrollment increase, the school has had to significantly increase the reliance upon part-time faculty. The school has had to hire additional part-time instructors each biennium since 2000.

This reliance on part-time faculty, who do not engage in advising, adds to the burden of full-time faculty and has diminished services to students. During the past ten years, the overall percentage of instruction delivered by full-time faculty members as part of their regular teaching assignment decreased from 74 percent to 58 percent. Currently in the school, the percentage of instruction delivered by full-time faculty members is 57 percent. Thus the second goal of the school is to reduce reliance on part-time faculty to a stable level of 20 percent. It is important to establish a guideline regarding the percentage of faculty members required to possess terminal degrees. Of course each department would like for all faculty members to possess terminal degrees, but usually this is not feasible. Not only can costs be prohibitive, but also it is not always necessary for all faculty members to possess terminal degrees. Certain courses do not require faculty with terminal degrees to teach them. Currently in the

School, ten of eleven full-time faculty possess terminal degrees. This is due in large part to turnover at the lower faculty ranks and very limited turnover in the upper faculty ranks. Distribution of faculty with respect to rank is also an important goal. It is necessary to impose some constraints on the distribution, otherwise the model would call for the most productive type of faculty in terms of teaching load, salary, etc. regardless of the actual distribution needs. In the Physical Education department, no instructors are currently on staff. This is due in part to the experience requirements of the School. Faculty are required to have a minimum of three years experience teaching in an elementary or secondary school and have completed their graduate studies. When these faculty are hired, they generally are hired as Lecturer. The rank of instructor is assigned to a person who has not completed a terminal degree.

Table 1	۱.
---------	----

Faculty Rank	Teaching load	Desired Proportion	Average salary paid pm
With Terminal Degree		_	
Lecturer	28	30%	Rs.10,000/-
Upper Division Teacher	34	24%	Rs.8,000/-
Lower Division Teacher	34	17%	Rs.6,000/-
Without Terminal			
Degree			
Lecturer	28	0%	Rs.10,000/-
Upper Division Teacher	34	02%	Rs.8,000/-
Lower Division Teacher	34	07%	Rs.6,000/-
Instructor	12	10%	Rs.4,000/-
Supporting Staff	28	20%	Rs.3,500/-

Table 1 lists the various faculty ranks, teaching loads, desired proportion of faculty distribution by rank, and average salaries for each faculty rank. The final goal in this model is to minimize cost. Cost minimization is always a consideration, but in this particular scenario we want to know how much it will cost to satisfy the stated goals and whether or not the cost of making any changes will be prohibitive. In formulating the goal programming model, the decision variables and deviational variables must be defined.

The decision variables for the model are defined as follows:

 $X_1 =$ Lecturers with terminal degrees $X_2 =$

Upper Division faculty with terminal

degrees X₃ = Primary Division faculty with terminal degrees

 $X_4 \hspace{0.1in}=\hspace{0.1in}$ Lecturers without terminal degrees

 $X_{5} =$ Upper division faculty without terminal degrees

- X_6 = Primary Division faculty without terminal degrees
- X_7 = Instructors without terminal degrees

 $X_8 =$ Supporting staff without terminal degrees

The deviational variables are defined as follows:

 $dv_1 =$ The underachievement of coverage of required course hours

 dv_1^+ = The overachievement of coverage of required course hours

 dv_2^{-} = The underachievement of maintaining a faculty split of 80 percent full-time and 20 percent part time dv_2^{+} = The overachievement of maintaining a faculty split of 80 percent full-time and 20 percent part time dv_3^{-} = The underachievement of maintaining a 65 percent terminal degree coverage rate for full-time faculty dv_3^{+} = The overachievement of maintaining a 65 percent terminal degree coverage rate for full time faculty dv_4^{-} = The underachievement of attaining a 29 percent distribution in the lecturer with terminal degree rank dv_4^{+} = The overachievement of attaining a 29 percent distribution in the lecturers with terminal degree rank

 dv_{5} = The underachievement of attaining a 23 percent distribution in the associate Upper Division teachers with terminal degree rank

 dv_{5+} = The overachievement of attaining a 23 percent distribution in the Upper Division faculty with terminal degree rank

 dv_{6-} = The underachievement of attaining a 17 percent distribution in the Primary Division faculty with terminal degree rank

 dv_{6+} = The overachievement of attaining a 17 percent distribution in the Primary Division faculty with terminal degree rank

dv₇- = The underachievement of attaining a 0 percent distribution in the lecturer without terminal degree rank

 dv_7 = The overachievement of attaining a 0 percent distribution in the lecturer without terminal degree rank

 dv_{8} = The underachievement of attaining a 0 percent distribution in the Upper division faculty without terminal degree rank

 dv_{8+} = The overachievement of attaining a 0 percent distribution in the Upper division faculty without terminal degree rank

 dv_{9} = The underachievement of attaining an 11 per-cent distribution in the Primary division faculty without terminal degree rank

 $dv_9+ =$ The overachievement of attaining an 11 percent distribution in the Primary division faculty without terminal degree rank

 dv_{10} = The underachievement of attaining a 0 percent distribution in the instructor without terminal degree rank

 dv_{10} = The overachievement of attaining a 0 percent distribution in the instructor without terminal degree rank

 dv_{11} = The underachievement of attaining a 20 percent

distribution in the part-time faculty rank

 dv_{11} = The overachievement of attaining a 20 percent distribution in the part-time faculty rank

 dv_{12} = The underachievement of minimizing cost

 dv_{12} + = The overachievement of minimizing cost

Once the decision and deviational variables are defined, the constraints and the objective function may be formulated. When formulating the constraints and the objective function, deviational variables must be added to reflect the amount by which a goal is under-achieved (dv-) or overachieved (dv+). Each goal must be analyzed to determine if deviation is acceptable. If over achievement of the goal is acceptable, then only dv1- appears in the objective function. If under

achievement is acceptable, only dv_{1+} appears. It is impossible to have both overachievement and underachievement of a goal. If the goal is to be achieved exactly, both deviational variables will equal zero and both dl- and dv_{1+} will appear in the objective function. Both deviational variables are included in the goal constraints since it is possible that the ultimate solution may result in either overachievement or underachievement of a particular goal. The first goal of the model is to assure coverage of 456 course hours. A full-time load for full-time faculty is twenty-four course hours per year and twelve course hours or less per year for part-time faculty. In the objective function, this goal is to be achieved exactly. We need enough faculty to cover the course hours, but do not want idle faculty. Therefore, the deviational variables for priority one (P1) are dv1 and dv₁+.

The next goal is to maintain a faculty split of 80 percent full-time and 20 percent part-time. This constraint is formulated as follows: the sum of all full-time variables equals to 80 percent of the summation of all variables. In the objective function, the under-achievement is to be minimized. We do not want to underachieve the 80 percent full-time level. The deviational variable for priority two (P2) is dv_2 -.

The third goal is to maintain a 65 percent terminal degree coverage rate of full-time faculty. The constraint is formulated as follows: the sum of all variables with terminal degrees equals to .65 of the summation of all variables. As in priority two, the underachievement is to be minimized and the deviational variable for priority three (P3) is dv₃-.

The fourth goal is to attain the desired distribution of faculty by rank. The desired proportions are assigned to each variable and are entered in the constraints. The constraints are formulated as follows: variable xi equals to the desired percentage times the summation

Decision variables

of all variables. The constraints for this goal are listed as equations (4) through 11. In priority four(P4), the deviational variables vary. For variables representing faculty with terminal degrees, the underachievement should be minimized and for variables representing faculty without terminal degrees, the overachievement should be minimized to help insure that the desired positions of faculty with terminal degrees are maximized.

Since goal constraints seven, eight, and ten have a desired distribution values equal to zero, we want to achieve them exactly. Therefore, the deviational variables for these constraints are dv7+, dv7-, dv8-, dv8+, dv10- , and dv10+. The deviational variables for the remaining constraints in priority four are dv4-, dv5-, dv6- , dv9+, and dv11+ The final goal is to minimize cost. If all the previous goals are satisfied, how much will it cost? The salary level for each rank, ci, is multiplied by the value of the corresponding variable, xi, to determine the total cost. The right-hand side of the constraint is set to equal zero since that would force a solution with minimum cost. In priority five (P5), the overachievement must be minimized. We do not want to exceed the minimum cost. The deviational variable is dv12+.

V. MODEL SOLUTION

The model was solved using QSB.The solution reveals the following values for the decision variables Variable

Value

x_1 = Lecturers with terminal degree	5.278
$x_2 = $ Upper division faculty with terminal degree	4.856
x_3 = Primary division faculty with terminal degree	3.589
x_4 = lecturers without terminal degree	0.000
x ₅ =Upper Division faculty without terminal degree	0.000
x_6 = Primary division faculty without terminal degree	3.167
x_7 = instructors without terminal degree	0.000
$x_8 =$ Supporting staff	4.222

Technically, the solution values should be integers. This can be achieved through an integer goal programming model. For the scope of this study, however, rounding will be applied to determine the number of each faculty rank that satisfies an integer solution. Even though rounding may result in an infeasible solution or may not lead to the optimal solution, in this model we are seeking a solution that best satisfies our goals rather than one that is optimal. The non integer solution values are the starting point for further computational analysis. The solution values, rounded to the nearest integer, are:

	Variable	Value
x ₁	# of professors with terminal degree	5
x ₂	# of associate professors with terminal degree	5
X3	# of assistant professors with terminal degree	4
X4	# of professors without terminal degree	0
X _s	# of associate professors without terminal degree	0
x ₆	# of assistant professors without terminal degree	3
X ₇	# of instructors without terminal degree	0
x ₈	Supporting staff	4

Substituting these values in the model constraints yields the following:

The amount of credit hours covered equals 456. The	x3 = .19,
full-time faculty ratio is 81 percent. The terminal	x4 = .00,
degree coverage is 67 percent. The distribution of	x5 = .00,
faculty rank is as follows:	x6 = .14
x1 = .24,	x7 = .00,
x2 = .24,	x8 = .19

The total cost for this solution is Rs. 7,03,600. All goals are satisfied with the exception of some of the desired distributions for goal four. However, this solution provides a distribution that is very close to the stated distribution. The desired distribution for variable x_1 is slightly underachieved while that of variable x_6 is slightly overachieved. The current distribution of faculty in the Department includes four lecturers, two Upper Division faculty, and Primary Division faculty.

In addition, there is one Primary division faculty without a terminal degree and 18 part-time instructors. The basic framework provided by this model can be enhanced through sensitivity analysis. Different priority structures can be assigned to the goals and the change in the values of the decision variables can be examined. This allows for analysis of various scenarios involving the prioritization of the goals. One of the greatest benefits of this approach is that it is flexible and can be customized to the user's requirements.

VI. CONCLUSION

The model developed in this research paper is intended to demonstrate the potential application of goal programming to the allocation of faculty resources. The constraints and objective function used in this model can be expanded to address a broader university unit base or a longer planning horizon. The model can also be used to measure the success of obtaining established goals. Bench mark data can be generated using the model. Actual performance can then be measured against the bench marks to monitor the progress of goal achievement. This can be especially useful as a department, school, etc. strives to build up its faculty resources to the desired level which is expected by affiliating bodies.

REFERENCES

[1]. Diminnie, C. and N.K. Kwak, "A Hierarchical Goal Programming Approach to Reverse Resource Allocation in Institutions of Higher Learning," *Journal of the Operational Research Society*, Vol. **37**, pp. 59-66, 1986.

[2]. Lee, S. and E. Clayton, (1972). "A Goal Programming Model for Academic Resource Allocation," *Management Science*, Vol. **18**, pp. 395-408,

[3]. Lee, S. and J. Shim, Micro Manager Allyn and Bacon, Needham Heights, MA, 1990.

[4]. McPherson, Michael S.; M. Schapiro; and G. Winston, "Recent Trends in U.S. Higher Education Costs and Prices: The Role of Government Funding," *American Economic Review*, Vol. **79**, pp. 253-257, 1984

[5]. Schroeder, R. "Resource Management by Goal Programming," *Operations Research*, Vol. **22**, pp. 700-710, 1974.

[6]. Turban, E. and J. Meredith, Fundamentals of Management Science, Richard D. Irwin, Inc., 1994.

[7]. Zemsky, Robert & Susan Stine, "On Starting a National Colloquy; Appraising Higher Education's Agenda for the '90s," Change, Vol.**21**, pp.7-9, 1989.