

Ideal and Distributive Lattice

Seema Bagora*, C.L. Parihar** and Madhu Tiwari***

*Department of Mathematics, Prestige Institute of Technology, Indore, (MP), India **Indian Academy of Mathematics 15, Kaushaliyapuri, Chitawad Road, Indore, (MP), India

***Department of Mathematics G.D.C. College, Ujjain, (MP) India

separation of mathematics C.D.C. Conege, Offant, (htt / h

(Recieved 3 April, 2012 Accepted 25 April 2012)

ABSTRACT : In this paper we are giving some important results on Ideal of a Lattice.

Keywords: Distributive Lattice, Modular Lattice, Ideal, MSC2010: O6DXX, 06C05, 06B10

I. INTRODUCTION:

The purpose of this paper is to prove some significant results on Ideal. In section 1 we consider Lattice and Ideal. And in section 2, we think about Distributive and modular Lattice.

Theorem: The ideal kernel of a homomorphism is an ideal of Lattice L.

 $f: L \to L'$ **Proof:** kerf = {x : f(x) = 0'} f(0) = 0'as Therefore. Kerf is nonempty set. i.e. $0 \in \text{Kerf now},$ first we prove ker $f \subseteq L$. $0 \in \ker f \ 0 \in L \Rightarrow 0 \land 0 \in \ker f$ If $a, b \in \ker f$ then f(a) = 0' and f(b) = 0'as *f* is homomorphism therefore $\Rightarrow f(a \land b) = f(a) \land f(b)$ $0' \wedge 0'$ \Rightarrow 0' \Rightarrow \Rightarrow $a \wedge b \in \ker f$ \Rightarrow Therefore kerf is sub lattice of L. let $a \in L$, $i \in l$ as $i \in I$ therefore f(i) = 0' $f(a \land i) = f(a) \land f(i)$ $f(a) \wedge 0'$ \Rightarrow \Rightarrow 0' $a \wedge i \hat{I} \ker f$ \Rightarrow \Rightarrow Therefore it is clear that kerf is an ideal of lattice L.

Theorem: Every congruence relation of $L \times K$ is of this form in lattice but not true in Abelian group.

Proof: First part is proved in [gratzer]. Now let ψ be a congruence relation on $L \times K$. For $a, b \in L$ define $a \equiv b(\phi)i$ *ff* $(a, c) \equiv (b, c)$ (ϕ) for some $c \in K$. Let d_k .

Joining both sides with $(a \land b, d)$ and then meeting with $(avb \ d,)$, we get $(a, d) \ (b, d) \ (\psi)$; thus $(a, c) \equiv (b, c)$ for some $c \equiv K$ is equivalent to $(a, c) \equiv (b, c)$ for all $c \in K$.

Similarly,

define for $a, b \in K$, $a \equiv b$ (Θ) if $f(c, a) \equiv (c, b)$ (ψ) for all $c \in L$. It is easily seen that ϕ and Θ are congruences. Let $(a, b) \equiv (c, d)$ ($\phi \times x$); then $(a, x) \equiv (c, X)$ (ψ), $(y, b) \equiv (y, d)$ (ψ), for all $x \in K$ and $y \in L$. Joining the two with $y = a \wedge c$ and $x = b \wedge d$ we get (a, b) (c, d) (ψ). Finally, let (a, b) (c, a) (ψ). Meeting with $(a \vee C, b \wedge d)$, we get $(a, b \wedge d)$ $(c, b \wedge d)$ (ψ); therefore, $a \equiv c$ (ϕ). Similarly, $b \equiv d$ (Θ),

and so $(a, b) \equiv (c, d) (\phi \times \Theta)$

proving that $y \equiv \phi \times \Theta$.

In above we defined $a \le b$, which implies $a \land b = a$ and $a \lor b = b$ But if we consider abelian group then it is not possible.

Theorem: I(L) is complemented lattice iff L has zero.

Proof: Let I(L) is complemented lattice. If $a \in I(L)$ then there exist a' such that $a \wedge a' = 0$ and $a \vee a' = 1$ *i.e.* I(L) has a zero. And as $I(L) \subseteq L$. Therefore L has a zero.

Suppose that L has a zero. *i.e.* $0 \in L$. I(L) is a ideal of L.

 $0 \in L$ and $a \in I(L)$ then $0 \land a \in I(L)$

$$\Rightarrow \qquad 0 \in I(L)$$

As I(L) is a sub lattice of L. Therefore there exist a and b such that $a \land b$, -0. By duality there exists $1 \in I(L)$. As 0 and $1 \in I(L)$. Therefore there exist $a \lor b$.

Because o' = 1 and 1' = 0. and as $a \wedge b = 0$ and $a \vee b$. therefore I(L) is complemented lattice.

Cor. If I(L) is complimented then it is complete lattice.

Theorem: If *L* be a relatively complemented lattice, *I*, $J \in I(L)$, and $I \subseteq J$., if *I* is an intersection of prime ideals, then so is *J*.

Proof: As J is superset then by the definition I and J are ideals.

 $I \subseteq J$.

It is given that I is an intersection of prime ideals

i.e.
$$\land (P_1 \cap P_2) = I \subseteq J$$

 $\Rightarrow P_1 \cap P_2 = J$

Section 2

Theorem: If L is a distributive lattice then so is I(L).

Proof: It is given that L is distributive lattice. We have to prove I(L) is also distributive lattice.

As
$$I(L)$$
 is ideal. Therefore $a \wedge i_1 \in I(L)$, $a \in L$, $i_1 \in I$

 $a \wedge i_2 \in I(l), a \in l, i_2 \in l$

As I(L) is a sublattice of L.

Therefore $(a \land i_1) \lor a \land i_2 \in I(L)$

 $\Rightarrow a \land (i_1 \lor i_2) \in I(L)$

 \Rightarrow *I*(*L*) is a distributive lattice.

Theorem : If L is modular iff I(L) is modular

Proof: If *L* is modular, then every sub lattice of *L* is also modular; and as I(L) is a sublattice therefore it is modular. Conversely, let *L* be non modular,

let $a, b, c \in L$, $a \leq b$, and let $(u \land c)vb + a \land (cvb)$. The free lattice generated by *a*, *b*, and *c* with $a \ge b$. Therefore, the sublattice of *L* i.e. I(L) generated by *a*, *b*, and *c* must be a homomorphic image of pentagon. If any two of the five elements $a \land c$, $(a \land c)$, $a \land (bvc)$, bvc, *c* are identified under a homomorphism, then so are $(a \land c)vb$ and $a \land (bvc)$. Consequently, these five elements are distinct in *L*, and they form a pentagon.

REFERENCES

- [1] G. Birkhoff,. Lattice theory, 2nd ed., newyork (1948).
- [2] R. Freese, G. Gratzer, and E.T. Schmidt, On complete congruence lattices of complete modular lattices, *International J. of Algebra and Computation* 1, pp. 147-160(1991).
- [3] G. Gratzer, Lattice theory. First concepts and distributive lattices. (W.H. Freeman and Company San Francisco, 1971).
- [4] G Gratzer and E.T. Schmidt, Algebraic lattices as congruence lattices: The m-complete case, The Birkhoff meeting (1991, Darmstadt).