A Fixed Point Theorem on Three Metric Spaces

Rajesh Shrivastava*, Kiran Rathore*and K. Qureshi**
*Department of Mathematics, Government Science and Commerce College, Benazir, Bhopal, (M.P.)
**Additional Director, Higher Education Department, Govt. of M.P., Bhopal, (M.P.) India

(Recieved 15 March 2012 Accepted 30 April 2012)

Abstract

In this paper we prove fixed point theorem for three metric spaces. A fixed point theorem for set valued mappings on three complete metric spaces is obtained which generalizes a result of [4]. A new related fixed point theorem for three pairs of mappings on three complete metric spaces is obtained.

Keywords : Complete metric space, common fixed point.

I. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a complete metric space and let $B(X)$ be the set of all non-empty subsets of X. The function $\delta(A, B)$ with A and B in $B(X)$ is defined by
$\delta(A, B)=\sup \{d(a, b): a \varepsilon A, b \varepsilon B\}$
If A consists of a single point a, we write $\delta(A, B)=$ $\delta(a, b)$ and if B also consists of a single point b, we write $\delta(A, B)=\delta(a, b)=d(a, b)$. It follows immediately from the definition that

$$
\begin{gathered}
\delta(A, B)=\delta(B, A) \geq 0 \\
\delta(A, B) \leq \delta(A, C)+\delta(C, B)
\end{gathered}
$$

for all A, B, C in $B(X)$.
Related fixed point theorems on three complete metric spaces have been studied by Fisher and Rao [4,6,7] Nung [5], Jain and Rao [1-3]. In this paper, we prove a related fixed point theorem for three mappings. Not of all which are necessary continuous on three metric spaces.

II. MAIN RESULTS

According to Fisher and Rao [4]

2.1. Theorem :

Let $(X, d),(Y, \rho)$ and (Z, σ) be three metric spaces and $T: X \rightarrow Y, S: Y \rightarrow Z$, and $R: Z \rightarrow X$ mappings satisfying the inequalities :

$$
\begin{array}{r}
d(R S y, R S T x) \leq \max \{d(x, R S y), d(x, R S T x), \rho(y, T x), \\
\rho(y, T R S y), \rho(T x, T R S y)\}
\end{array}
$$

for all x in X and y in Y with $y \neq T x$,
$\rho(T R z, T R S y) \leq \max \{\rho(y, T R z), \rho(y, T R S y), \sigma(z, S y)$,

$$
\sigma(z, S T R z), \sigma(S y, S T R z)\}
$$

for all y in Y and z in Z with $z \neq S y$, and
$\sigma(S T x, S T R z) \leq \max \{\sigma(z, S T x), \sigma(z, S T R z), d(x, R z)$, $d(x, R S T x), d(R z, R S T x)\}$
for all x in X and z in Z with $x \neq R z$. Further, assume one of the following conditions:
(a) (X, d) is compact and $R S T$ is continuous,
(b) (Y, ρ) is compact and $T R S$ is continuous,
(c) (Z, σ) is compact and $S T R$ is continuous.

Then $R S T$ has a unique fixed point w in $X, T R S$ has a unique fixed point u in Y and $S T R$ has a unique fixed point v in Z. Further $S u=v, R v=w$ and $T w=u$.

Our Result:

2.2. Theorem :

Let $(X, d),(Y, \delta)$ and (Z, μ) be three metric spaces and $A: X \rightarrow Y, B: Y \rightarrow Z$, and $C: Z \rightarrow X$ be mappings satisfying the inequalities:

$$
\begin{equation*}
d(A B z, A B C x) \leq \max \{d(x, A B z), d(x, A B C x) \tag{z,Cx}
\end{equation*}
$$

for all x in X and z in Z with $z \neq \mathrm{Cx}$,

$$
\delta(B C x, B C A y) \leq \max \{\delta(y, B C x), \delta(y, B C A y), \mu(x, B y)
$$

$$
\begin{equation*}
\mu(x, A B C x)\} \tag{2}
\end{equation*}
$$

for all y in Y and x in X with $x \neq A y$, and
$\mu(C A y, C A B z) \leq \max \{\mu(z, C A y), \mu(z, C A B y)$, $d(y, A z) d(y, B C A y)\}$
for all y in Y and z in Z with $y \neq B z$. Further, assume one of the following conditions :
(a) (X, d) is compact and $A B C$ is continuous,
(b) (Y, δ) is compact and $B C A$ is continuous,
(c) (Z, μ) is compact and $C A B$ is continuous.

Then $A B C$ has a unique fixed point α in $X, B C A$ has a unique fixed point β in Y and $C A B$ has a unique fixed point γ in Z.

Proof : Suppose (a) holds. Define $\lambda(x)=d(x, A B C x)$ for $x \in X$. Then there exists ' a ' in X such that

$$
\lambda(a)=d(a, A B C a)=\inf \{\lambda(x): x \in X\}
$$

Suppose

$$
\begin{aligned}
& A B C A B C A B C a \neq A B C A B C a, \text { Then } \\
& B C A B C A B C a \neq B C A B C a, \\
& C A B C A B C a \neq C A B C a, \\
& A B C A B C a \neq A B C a, \\
& B C A B C a \neq B C a, \\
& C A B C a \neq C a, \quad A B C a \neq a
\end{aligned}
$$

From (1), with $z=C A B C a, x=A B C A B C a$, we have $d(A B C A B C a, A B C A B C A B C a) \leq \max \{d(A B C A B C a, A B C A B C a)$,
$\delta(A B C A B C a, ~ A B C A B C A B C a)$,
δ (CABCa, CABCABCa),
δ (CABCa, CABCABCa),
$\delta(C A B C A B C a, C A B C A B C a)\}$
so that
$\lambda(A B C A B C a) \leq \delta(C A B C a, C A B C A B C a)$
From (2), with $x=A B a, y=B C A B a$, we have $\delta(B C A B a, B C A B C A B a) \leq \max \{\delta(B C A B a, B C A B a)$, $\delta(B C A B a, B C A B C A B a)$, $\mu(A B a, A B C A B a)$, $\mu(A B a, A B C A B a)$, $\mu(A B C A B a, A B C A B a)\}$
so that $\delta(B C A B a, B C A B C A B a) \leq \mu(A B a, A B C A B a)$
From (3) with $y=a, z=C A a$, we have
$\mu(C A a, C A B C A a) \leq \max \{\mu(C A a, C A a), \mu(C A a, C A B C A a)$, $d(a, B C A a), d(a, B C A a), d(B C A a, B C A a)\}$
so that $\mu(C A a, C A B C A a) \leq \lambda(a)$
From (4), (5) and (6), we have $\lambda(A B C A B C a)<\lambda(a)$, contradicting the existence of a.

Hence, $A B C A B C A B C a=A B C A B C a$.
Putting $A B C A B C a=w$ in X we have,

$$
A B C \alpha=\alpha
$$

Now let $C T \alpha=\beta$ in Y and $B \beta=\gamma$ in Z. Then $A \gamma=A B$ $\beta=A B C \alpha=\alpha$, and it follows that

$$
B C A \gamma=B C \alpha=B \beta=\gamma
$$

and

$$
\mathrm{CAB} \beta=C A \gamma=C \alpha=\beta
$$

To prove uniqueness, suppose that $A B C$ has a second distinct fixed point $\alpha 0$ in X then,
$\mathrm{ABC} \alpha \neq A B C \alpha 0, B C \alpha \neq B C \alpha 0 ; \mathrm{C} \alpha \neq \mathrm{C} \alpha 0:$
Using (1), with $z=C \alpha, x=\alpha 0$, we get
$d A B C \alpha, A B C \alpha 0) \leq \max \{d(\alpha 0, A B C \alpha), d(\alpha 0, A B C \alpha 0)$,
$\delta(\mathrm{C} \alpha, C \alpha 0), \delta(C \alpha, C A B C \alpha), \delta(C \alpha 0, C A B C \alpha)\}$
so that $\quad d(\alpha, \alpha 0) \leq \delta(C \alpha, C \alpha 0)$
Using (2) with $x=B C \alpha, y=C \alpha 0$, we get $\delta(C A B C \alpha, C A B C \alpha 0) \leq \max \{\delta(C \alpha 0, C A B C \alpha), \delta(C \alpha 0, C A B C \alpha 0)$,

$$
\begin{align*}
& \mu(B C \alpha, B C \alpha 0), \mu(B C \alpha, B C A B C \alpha) \\
& \mu(B C \alpha 0, B C A B C \alpha)\} \tag{8}
\end{align*}
$$

so that $\quad \delta(C \alpha, C \alpha 0)<\mu(B C \alpha, B C \alpha 0)$

Using (3) with $x=\alpha, z=C A \alpha 0$, we get
$\mu(C A \alpha, C A B C A \alpha 0) \leq \max \{\mu(C A \alpha 0, C A \leq \alpha), \mu(C A \alpha 0, C A B C A \alpha 0)$, $d(\alpha, B C A \alpha 0), d(\alpha, B C A \alpha), d(B C A \alpha 0, B C A \alpha)\}$
so that $\quad \mu=(C A \alpha, C A \alpha 0) \leq d(\alpha, \alpha 0)$
From (7), (8) and (9), we have $d(\alpha, \alpha 0)<d(\alpha, \alpha 0)$ so that $\alpha=\alpha 0$, proving the uniqueness of α.

Similarly, we can show that γ is the unique fixed point of $C A B$ and β is the unique fixed point of $C A B$.

It follows similarly that the theorem holds if (b) or (c) holds instead of (a).

Now, we give the following example to illustrate our theorem.

Example. Let $X=[1,2] ; Y=[2,3) ; Z=(3,4]$, and let $d=\delta=\mu$ be the usual metric for the real numbers. Define $A: X \rightarrow Y, B: Y \rightarrow Z$ and $C: Z \rightarrow \mathrm{X}$ by :

$$
\begin{aligned}
A x= & \{1 \quad \text { if } x \in[1,3 / 2) \\
& \{5 / 2 \text { if } x \in(3 / 2,2] \\
\mathrm{By}= & \{4 y \in \mathrm{Y}, \\
C z= & \{7 / 4 \text { if } z \varepsilon(3,7 / 2] \\
& \{2 \quad \text { if } z \in(7 / 2,4]
\end{aligned}
$$

Here Y and Z are not compact spaces and A and B are not continuous. However, all the conditions of Theorem 2.1 are satisfied. Clearly,

$$
A B C(1)=1 ; C A B(5 / 2)=5 / 2 ; B C A(4)=4 ; B(5 / 2)=4 ;
$$ $A 4=2$ and $C 1,5 / 2$.

REFERENCES

[1]. Jain, R.K., Sahu, H.K. and Fisher, B. Related fixed point theorems for three metric spaces, Novi Sad J. Math. 26, 11(17, 1996).
[2]. Jain, R.K., Sahu, H.K. and Fisher, B.A. Related fixed point theorem on three metric spaces, Kyungpook Math. J. 36, 151-154 (1996).
[3]. Jain, R.K. Shrivastava, A.K. and Fisher, B. Fixed point theorems on three complete metric spaces, Novi Sad J. Math. 27, 27-35, (1997).
[4]. Rao, K.P. and Fisher, B.A related fixed point theorem for three metric spaces, Hacettepe J. Math. and Stat. 31, 19-24, (2002).
[5]. Nung, N.P. A fixed point theorem in three metric spaces, Math. Sem. Notes, Kobe Univ. 11,77-79, (1983).
[6]. Rao, K.P. R., Srinivasa Rao, N. and Hari Prasad, B.V.S.N. Three fixed point results for three maps, J. Nat. Phy. Sci. 18, 41-48, (2004).
[7]. Rao K.P.R., Hari Prasad, B.V.S.N. and Srinivasa Rao, N. Generalizations of some fixed point theorems in complete metric spaces, Acta Ciencia Indica, Vol. XXIX, M. No. 1, 31-34, (2003).

