
I. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a complete metric space and let B(X) be
the set of all non-empty subsets of X. The function δ(A, B)
with A and B in B(X) is defined by

δ (A, B) = sup{d(a, b) : a ε A, b ε B}

If A consists of a single point a, we write δ (A, B) =
δ (a, b) and if B also consists of a single point b, we write
δ (A, B) = δ (a, b) = d(a, b). It follows immediately from the
definition that

δ (A, B) = δ (B, A) ≥ 0,

δ (A, B) ≤ δ (A, C) + δ (C, B)

for all A, B, C in B(X).

Related fixed point theorems on three complete metric
spaces have been studied by Fisher and Rao [4,6,7] Nung
[5], Jain and Rao [1- 3]. In this paper, we prove a related
fixed point theorem for three mappings. Not of all which are
necessary continuous on three metric spaces.

II. MAIN RESULTS

According to Fisher and Rao [4]

2.1. Theorem :

Let (X, d), (Y, ρ ) and (Z, σ ) be three metric spaces and
T : X → Y, S : Y → Z, and R : Z →X mappings satisfying
the inequalities :

d(R Sy, RSTx) ≤ max {d (x, RSy), d (x, RSTx), ρ (y, Tx),
ρ (y, TRSy), ρ (Tx, TRSy)}

for all x in X and y in Y with y ≠ Tx,

ρ (TRz, TRSy) ≤ max{ ρ (y, TRz), ρ (y, TRSy), σ(z, Sy),
σ (z, STRz), σ (Sy, STRz)}

for all y in Y and z in Z with z ≠ Sy, and

σ (STx, STRz) ≤ max{σ (z, STx), σ (z, STRz), d(x,Rz),
d(x, RSTx), d(Rz, RSTx)}

for all x in X and z in Z with x ≠ Rz. Further, assume
one of the following conditions:

(a) (X, d) is compact and RST is continuous,
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(b) (Y, ρ) is compact and TRS is continuous,

(c) (Z, σ) is compact and STR is continuous.

Then RST has a unique fixed point w in X, TRS has a
unique fixed point u in Y and STR has a unique fixed point
v in Z. Further Su = v, Rv = w and Tw = u.

Our Result:
2.2. Theorem :

 Let (X, d), (Y, δ ) and (Z, µ ) be three metric spaces
and A : X → Y, B : Y → Z, and C : Z → X be mappings
satisfying the inequalities:

d(ABz, ABCx) ≤ max{d (x, ABz), d(x, ABCx),
δ(z, Cx), δ(z, CBAz)} ...(1)

for all x in X and z in Z with z ≠ Cx,

δ(BCx, BCAy) ≤ max {δ (y, BCx), δ(y, BCAy), µ(x, By),

µ(x, ABCx)}  ...(2)

for all y in Y and x in X with x ≠ Ay, and

µ(CAy, CABz) ≤ max {µ (z, CAy), µ(z, CABy),
d(y, Az) d(y, BCAy)}     ...(3)

for all y in Y and z in Z with y ≠ Bz. Further, assume one of
the following conditions :

(a) (X, d) is compact and ABC is continuous,

(b) (Y, δ ) is compact and BCA is continuous,

(c) (Z, µ) is compact and CAB is continuous.

Then ABC has a unique fixed point α in X, BCA has a
unique fixed point β in Y and CAB has a unique fixed point
γ in Z.

Proof : Suppose (a) holds. Define λ(x) = d(x, ABCx) for
x ε X. Then there exists ‘a’ in X such that

λ (a) = d(a, ABCa) = inf {λ (x) : x ε X}

Suppose

ABCABCABCa ≠ ABCABCa, Then

BCABCABCa ≠ BCABCa ,

CABCABCa ≠ CABCa ,

ABCABCa ≠ ABCa ,

BCABCa ≠ BCa ,

CABCa ≠ Ca , ABCa ≠ a
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From (1), with z = CABCa, x = ABCABCa , we have

d(ABCABCa, ABCABCABCa) ≤ max{d(ABCABCa, ABCABCa),

δ (ABCABCa, ABCABCABCa),

δ (CABCa, CABCABCa),

δ (CABCa, CABCABCa),

δ (CABCABCa, CABCABCa)}
...(4)

so that

λ (ABCABCa) ≤ δ (CABCa, CABCABCa)

From (2), with x = ABa, y = BCABa, we have

δ (BCABa, BCABCABa) ≤ max{ δ (BCABa, BCABa),

δ (BCABa, BCABCABa),

µ (ABa, ABCABa),

µ (ABa, ABCABa),

µ (ABCABa, ABCABa)}       ...(5)

so that δ (BCABa, BCABCABa) ≤ µ (ABa, ABCABa)

From (3) with y = a, z = CAa , we have

µ (CAa, CABCAa) ≤ max{µ (CAa , CAa), µ (CAa, CABCAa),

 d (a, BCAa), d(a, BCAa), d(BCAa, BCAa)}
...(6)

so that µ (CAa, CABCAa) ≤ λ (a)

From (4), (5) and (6), we have λ (ABCABCa) < λ (a),
contradicting the existence of a.

Hence, ABCABCABCa = ABCABCa.

Putting ABCABCa = w in X we have,

ABCα  = α
Now let CTα = β in Y and B β = γ in Z. Then A γ = AB

β = ABCα = α, and it follows that

BCA γ = BCα = B β = γ
and             CAB β = CA γ = Cα = β

To prove uniqueness, suppose that ABC has a second
distinct fixed point α0 in X then,

           ABC α ≠ ABCα0, BCα ≠ BCα0; Cα ≠ Cα0:

Using (1), with z = Cα, x = α0, we get

dABCα, ABCα0) ≤ max{d(α0,ABCα), d(α0, ABCα0),

δ (Cα, Cα0), δ(Cα, CABCα), δ(Cα0, CABCα)}
...(7)

so that d(α, α0) ≤ δ (Cα, Cα0)

Using (2) with x = BCα, y = Cα0, we get

δ (CABCα, CABCα0) ≤ max{δ (Cα0, CABCα), δ (Cα0, CABCα0),

µ (BCα, BCα0), µ(BCα, BCABCα),

µ (BCα0, BCABCα)}             ...(8)

so that δ (Cα, Cα0) < µ (BCα, BCα0)

Using (3) with x = α, z = CAα0, we get

µ (CAα, CABCAα0) ≤ max{µ (CAα0, CA≤α), µ(CAα0, CABCAα0),

d(α,BCAα0), d(α, BCAα), d(BCAα0, BCAα)} ...(9)

so that µ  = (CAα , CAα0) ≤ d(α, α0)

From (7), (8) and (9), we have d(α, α0) < d(α, α0) so
that α = α0, proving the uniqueness of α.

Similarly, we can show that γ is the unique fixed point
of CAB and β is the unique fixed point of CAB.

It follows similarly that the theorem holds if  (b) or (c)
holds instead of (a).

Now, we give the following example to illustrate our
theorem.

Example. Let X = [1, 2]; Y = [2, 3); Z = (3, 4], and let
d = δ = µ  be the usual metric for the real numbers. Define
A : X → Y, B : Y → Z and C : Z → X by :

Ax = { 1      if x ε [1, 3/2)

{ 5/2  if x ε (3/2,2]

By = {4 y ε Y,

Cz = { 7/4  if z ε  (3,7/2]

{2     if z ε (7/2,4]

Here Y and Z are not compact spaces and A and B are
not continuous. However, all the conditions of Theorem 2.1
are satisfied. Clearly,

ABC(1) = 1; CAB(5/2) = 5/2; BCA(4) = 4; B(5/2) = 4 ;
A 4 = 2 and C 1, 5/2.
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