
I. INTRODUCTION

Banach [1992] Proved a fixed point theorem for
contraction mapping in complete Metric space. It is well
known as a Banach Fixed point theorem.

Every contraction mapping of a complete metric space
X into itself has a unique fixed point (Bonsall 1962).

Aage and Salunke [4] proved the result on fixed point
in Dislocated and Dislocated Quasi-Metric space.

Dass and Gupta [2] generalized Banach's contraction
principle in Metric Space.

Rohades [3] introduced a partial ordering for various
definitions contractive mappings.

Hilzer and Seda introduced the notion of Dislocated
Metric Space [8, 9] and generalized the Banach  contraction
principle in such spaces.

Zeyada et al. [6] generalized the result of Hitzler and
Seda. Also Zoto [7] gives some new results in Dislocated
and Dislocated Quasi Metric Space.

This object is to prove some fixed point theorem for
continuous contraction mapping defined by Aage and
Salunke [4] and Dass and Gupta [2] in Dislocated Quasi
Metric Spaces.

II. PRELIMINARIES

Definition 1. Let X be a nonempty set and let

: [0, ]d X X× → ∞  be a function satisfying following

conditions.

(i) d(x, y) = d(y, x) = 0 implies y = x

(ii) d(x, y) < d(x, z) + d(z, y) ∀ x, y, z ∈X.

Then d is called dislocated quasi Metric space on X, if
d satisfies d(x, y) then it is called dislocated metric space.
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Definition 2. A sequence [Xn] is dq Metric Space.
(Dislocated Quasi Metric Space) (X, d) is called Cauchy

sequence if for 00, ,an Nε > ∃ ∈  such that 0, .m n n∀ >

( , )  or ( , )m n n md x x d x x⇒ < ε < ε

i.e., min{ ( , ), ( , )}m n n md x x d x x < ε

Definition 3. A sequence [xn] dislocated Quasi
convergence to x if

Lt. ( , ) Lt. ( , ) 0n nn d x x n d x x→ ∞ = → ∞ =

In this case x is called a dq limit of [Xn] we write

.nx x→

Definition 5. Let (X, d) be a dq Metric Space. A map

:T X X→ is called contraction if there exists 0 < x < 1
such that

( , ) ( , ) ,d Ty Tx d x y x y X< λ ∀ ∈

Definition 6.  A dq Metric Space (X, d) is called
complete if every cauchy sequence in it is a dq convergent.

III. MAIN RESULT

Let (X, d) be a dq Metric Space and f : ,X X→ is
continuous contraction mapping. Satisfying the following
condition :
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then ƒ has a unique fixed point.
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Proof

Let [Xn] be sequence in X, defined as follows :

Let 0 0 1 1 2 1, ( ) , ( ) ,..., ( )n nx X f x x f x x f x x +∈ = = =

Consider

1 1( , ) ( , )n n n nd x x d fx fx+ −=
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1 1 1( , ) ( , ) ( , )n n n n n nd x x d x x d x x+ − +≤ λ + ρ + δ

1 1 1 1( , ) ( , ) ( , ) ( , )n n n n n n n nd x x d x x d x x d x x+ + + −− λ − δ ≤ ρ

1 1(1 ) ( , ) ( , )n n n nd x x d x x+ −− λ − δ ≤ ρ

1 1(1 ) ( , ) ( , )
(1 )n n n nd x x d x x+ −

ρ− λ − δ ≤
− λ − δ

Let (1 )

ρα =
− λ − δ  with 0 1≤ α <

Then 1 1( , ) ( , )n n n nd x x d x x+ −≤ α

Similarly we get

1 2 1( , ) ( , )n n n nd x x d x x− − −≤ α

Then 2
1 2 1( , ) ( , )n n n nd x x d x x+ − −≤ α

Continuing this process n time, then we get

1 1( , ) ( , )n
n n n nd x x d x x+ −≤ α

Since 0 1, 0 asn n≤ α < α → → ∞

Hence [Xn] is a dq sequence in the complete dislocated
Quasi Metric Space X.

Thus [Xn] is a Dislocated Quasi sequence converges to
x0.

Since f is continuous then we have

0 1 0( )Lt. , ( ) Lt.n nf x n f x n x x+→ ∞ = → ∞ =

Thus f(x0) = x0

Hence f has fixed point.

Uniqueness  :

Let x be a fixed point of f.

Then d(x, x) = d(fx, fx) ( ) ( , )d x x≤ λ + ρ + δ

Which gives d(x, x) = 0, since 0 1≤ λ + ρ + δ <

As x is fixed point f.

Again let y be another fixed point of f,

i.e. fy = y

( , ) ( , ) ( ) ( , )x yd x y d f f d x y= ≤ ρ + δ

Which gives ( , ) 0,d x y ≤ since 0 ( ) 1≤ ρ + δ <

But ( , ) 0d x y ≥

Hence d(x, y) = 0, which implies x = y.

Which is a contraction.

Thus fixed point of f is unique.
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