Coupled Jacobsthal Sequence

Suman Jain*, Amitava Saraswati** and Kiran Sisodia***
*Government College, Barnagar, Vikram University, Ujjain, (MP) India.
**Department of Mathematics, St. Paul's Indore, (MP) India.
***Department of Mathematics, School of Studies, Vikram University, Ujjain, (MP) India

(Recieved 28 March 2012, Accepted 18 April 2012)

Abstract

In this paper we have introduced interlinked coupled recurrence relation of Jacobsthal second order sequences and deduced some of its properties.

Subject Classification MSC(2000) 11B37, 11B39, 11B99
Keywords : Fibonacci numbers, Jacobsthal numbers, Fibonacci Sequence, Jacobsthal Sequence, Jacobsthal-Lucas Sequence, 2F Sequence.

I. INTRODUCTION

Atanassov [9] introduced the interlinked second order recurrence relation by constructing two sequences $\{\alpha\}_{i=0}^{\infty}$ and $\{\beta\}_{i=0}^{\infty}$ naming them as $2-\mathrm{F}$ sequences.

According to the scheme, $\alpha_{n+2}=\beta_{n+1}+\beta_{n}, n \geq 0$

$$
\beta_{n+2}=\alpha_{n+1}+\alpha_{n}, n \geq 0
$$

Taking, $\alpha_{0}=a, \beta_{0}=b, \alpha_{1}=c, \beta_{1}=d$, where a, b, c, d are integers, he extended his research in the same direction which can be seen in [10], [11] and [12]. Hirschhorn in [14] and [15] present explicit solutions to the longstanding problems on the second and third order recurrence relations posed by Atanassov [9]. Recently Singh, Sikhwal and Jain deduced coupled recurrence relations of order five [4]. Carlitz, et. el, [13] had also given a representation for a special sequence.

II. COUPLED JACOBSTHAL SEQUENCE

Here is an attempt to get similar relations using Jacobsthal sequence [7] defining it as

$$
\begin{aligned}
& J_{n+2}=J_{n+1}+2 J_{n} \text { where, } J_{\mathrm{o}}-0, J_{1}=1 \text { and } \\
& j_{n+2}=j_{n+1}+2 j_{n} \text { where } j_{\mathrm{o}}=2 \text { and } j_{1}=1, n \geq 0
\end{aligned}
$$

Applications to these two sequences to the curves are given in [3]. Moreover in [5] Horadam discussed the properties and has given the associated sequence with Jacobsthal numbers [6] and [8]. Recently Koken and Bozkurth in [1] and [2] have given some matrix properties of Jacobsthal numbers and Jacobsthal - Lucas numbers. Consequently Yilmaz and Bozkurt defined K - Jacobsthal numbers and described Binet's formula for the same [16].

We have introduced coupled order recurrence relations for Jacobsthal and Lucas - Lucas Jacobsthal numbers and called them as $2-\mathrm{J}$ sequences.

Scheme \# 2.1

$$
\begin{aligned}
& J_{n+2}=j_{n+1}+2 j_{n} \quad n \geq 0 \\
& j_{n+2}=J_{n+1}+2 J_{n} \quad n \geq 0 \\
& J_{o}=a, J_{1}=b, j_{o}=c, j_{1}=d \\
& \text { According to our scheme if }
\end{aligned}
$$

According to our scheme if we set $a=b$ and $c=d$ then the sequence $\left\{J_{i}\right\}_{i=0}^{\infty}$ and $\left\{j_{i}\right\}_{i=0}^{\infty}$ shall coincide with each other and the sequence $\left\{J_{i}\right\}_{i=0}^{\infty}$ shall become a generalized Jacobsthal sequence where,

$$
\begin{aligned}
& J_{0}(a, c)=a, J_{1}(a, c)=c \\
& J_{n+2}(a, c)=j_{n+1}(a, c)+j_{n}(a, c) \\
& J_{n}=a, b, d+2 c, b+2 a+2 d \\
& j_{n}=c, d, b+2 a, d+2 c+2 b,
\end{aligned}
$$

By examining the above terms we obtain the following properties :

Theorem 1:

For every integer $m \geq 0$
(a) $J_{4 m}\left|j_{0}=j_{4 m}\right| J_{0}$
(b) $J_{4 m+1}+j_{1}=j_{4 m+1}+J_{1}$
(c) $J_{4 m+3}+j_{0}+j_{1}=j_{4 m+3}+J_{0}+J_{1}$

Proofs :
For (c) the statement is obviously true for $n=0$.
Assuming that the statement is true for some integer, $n \geq 1$, by the given scheme (1)

$$
\begin{aligned}
J_{4 m+3}+ & j_{0}+j_{1}=j_{4 m+2}+2 j_{4 m+1}+j_{0}+j_{1} \\
& =J_{4 m+1}+2 J_{4 m}+2 j_{4 m+1}+j_{0}+j_{1} \\
& =J_{4 m+1}+j_{4 m+2}+j_{4 m+1}+J_{1}+J_{0} \\
& \quad \text { (by inductive hypothesis) } \\
& =J_{4 m+1}+J_{4 m+2}+j_{4 m+1}+j_{1}+j_{0} \\
& =j_{4 m+2}+j_{1}+j_{0}
\end{aligned}
$$

Hence the statement is true for all integers $n \geq 0$
Similar proofs can be given for parts (a) and (b). Adding the first n terms of $\left\{J_{i}\right\}_{i=0}^{\infty}$ and $\left\{J_{i}\right\}_{i=0}^{\infty}$ yield the following results.

Theorem 2:

For all integers $k \geq 0$
(a) $j_{3 k+5}=\Sigma_{i=1}^{3 k} J_{3 k+i}+\Sigma_{i=-1}^{k+1} j_{3 k+i}+\Sigma_{i=1}^{2 k} j_{3 k+i}+j_{3 k-i}$
(b) $J_{3 k+5}=\Sigma_{i=1}^{3 k} j_{3 k+i}+\Sigma_{i=-1}^{k+1} J_{3 k+i}+\Sigma_{i=1}^{2 k} j_{3 k+i}+j_{3 k-i}$

Proof (a):

$$
\begin{aligned}
& j_{3 k+5}=J_{3 k+4}+2 J_{3 k+3} \\
= & j_{3 k+3}+2 j_{3 k+2}+2 J_{3 k+3} \text { by }(1) \\
= & J_{3 k+2}+2 J_{3 k+1}+2 j_{3 k+2}+2 j_{3 k+2}+4 j_{3 k+1} \\
= & J_{3 k+2}+2 J_{3 k+1}+2 j_{3 k+2}+2 J_{3 k+3} \\
= & \Sigma_{i=1}^{3 k} J_{3 k+i}+J_{3 k+1}+J_{3 k+3}++2 j_{3 k+2} \\
= & \Sigma_{i=1}^{3 k} J_{3 k+i}+J_{3 k+1}+2 J_{3 k+2}++2 j_{3 k+1}+j_{3 k+2} \text { by } \\
= & \Sigma_{i=1}^{3 k} J_{3 k+i}+j_{3 k}+2 j_{3 k-1}+2 j_{3 k+2}+2 j_{3 k+1}+j_{3 k+2} \\
= & \Sigma_{i=1}^{3 k} J_{3 k+i}+\Sigma_{i=-1}^{k+1} j_{3 k+i}+j_{3 k-i}+j_{3 k+1}+j_{3 k+2} \\
= & \Sigma_{i=1}^{3 k} J_{3 k+i}+\Sigma_{i=-1}^{k+1} j_{3 k+i} \Sigma_{i=1}^{2 k} J_{3 k+i}+j_{3 k-i}
\end{aligned}
$$

The proof of (b) is similar to the proof of (a), hence omitted for the sake of brevity. Adding the first n terms with even or odd subscripts for each sequence $\left\{J_{i}\right\}_{i=0}^{\infty}$ and $\left\{j_{i}\right\}_{i=0}^{\infty}$ we obtain more results which are similar to those obtained when one adds the first n terms of the Fibonacci sequence with even or odd subscripts. That is,
(i) $\Sigma_{i=0}^{k} j_{i}+j_{1}=J_{2 k}$
(ii) $\Sigma_{i=0}^{2 k} j_{i}+j_{2 k}=j_{0}+J_{2 k+1}$
(iii) $\sum_{i=0}^{3 k} j_{i}+j_{3 k}+j_{3 k-2}=J_{3 k-1}+J_{3 k+2}$
(iv) $\Sigma_{i=0}^{4 k} j_{i}+j_{4 k}+j_{4 k-2}=j_{0}+J_{4 k-1}+J_{4 k+1}$
(v) $\Sigma_{i=0}^{5 k} j_{i}+j_{5 k}+j_{5 k-2}+j_{5 k-3}=j_{0}+J_{5 k-2}+J_{5 k-3}+J_{5 k+1}$

Proofs are omitted for the sake of brevity

After deriving relations between interlinked coupled recurrence relations using Jacobsthal and Lucas - Jacobsthal sequences we now derive some more relations between arbitrary coupled Integer sequences of the Jacobsthal progeny.

III. ARBITRARY INFINITE SEQUENCES

We consider two second order arbitrary infinite sequences $\left\{a_{i}\right\}_{i=0}^{\infty}$ and $\left\{b_{i}\right\}_{i=0}^{\infty}$ with the initial values a, c and $b, d \in R$

Out of the many schemes that emerge we study two of them

Scheme \# 3.1
$a_{n+2}=b_{n+1}+2 a_{n}: b_{n+2}=a_{n+1}+2 b_{n}, n \geq 0$
$a_{0}=a, b_{0}=b, a_{1}=c, b_{1}=d$
Setting, $a-b, c-d$, the sequence $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ coincides and forms a generalized Jacobsthal sequence J_{i}.

Consider,

n	a_{n}	b_{n}
0	a	b
1	c	d
2	$d+2 a$	$c+2 b$
3	$3 c+2 b$	$3 d+2 a$

Theorem 3:

$a_{n}-b_{n}=(-1)^{n-1}\left(a_{1}-b_{1}\right) J_{n}+(-1)^{n} .2 .\left(a_{0}-b_{0}\right) J_{n-1}$

Proof :

Using the principle of mathematical induction we get, for $n=2 a_{2}-b_{2}=(d+2 a)-(c+2 b)$

$$
\begin{aligned}
& =-(c-d)+2(a-b) \\
& =(-1)^{2-1}(c-d) \cdot 1+(-1)^{2}, 2 \cdot(a-b) \cdot 1 \\
& =(-1)^{2-1} \cdot\left(a_{1}-b_{1}\right) \cdot J_{2}+(-1)^{2} \cdot 2\left(a_{0}-b_{0}\right) \cdot J_{2-1}
\end{aligned}
$$

If the statement is true for $n=k$
that is, $a_{k}-b_{k}=(-1)^{k-1}\left(a_{1}-b_{1}\right) J_{k}+(-1)^{k}$. 2. $\left(a_{0}-b_{0}\right)$ -J_{k-1}

Hence for $n=k+1$, we get

$$
\begin{aligned}
& (1)^{k+1-1}\left(a_{1} b_{1}\right) J_{k+1} \mid(1)^{k+1} 2 \cdot\left(a_{0} b_{0}\right) J_{k+1-1} \\
& =(-1)^{k}\left(a_{1}-b_{1}\right) J_{k}+(-1)^{k+1} \cdot 2 \cdot\left(a_{0}-b_{0}\right) J_{k} \\
& =(-1)^{k}\left(a_{1}-b_{1}\right)\left(J_{k}+2 J_{k-1}\right)+(-1)^{k+1}\left(a_{0}-b_{0}\right)\left(2 J_{k-1}\right. \\
& +(-1)^{k}\left(a_{1}-b_{1}\right)\left(J_{k}\right)+(-1)^{k}\left(a_{1}-b_{1}\right)\left(2 J_{k-1}\right) \\
& +(-1)^{k+1}\left(a_{0-2}-b_{0}\right)\left(2 J_{k-1}\right)+(-1)^{k+1}\left(a_{0}-b_{0}\right)\left(4 J_{k-2}\right) \\
& =-\left[(-1)^{k-1}\left(a_{1}-b_{1}\right)\left(J_{k}\right)+(-1)^{k}\left(a_{0}-b_{0}\right)\left(2 J_{k-1}\right)\right] . \\
& \quad+(-1)^{2}\left[(-1)^{k-2} .\right. \\
& \left.\left(a_{1}-b_{1}\right)\left(J_{k-1}\right)+(-1)^{k-1}\left(a_{0}-b_{0}\right)\left(2 J_{k-2}\right)\right] \\
& =-\left(a_{k}-b_{k}\right)+2\left[a_{k-1}-b_{k-1}\right] \\
& -a_{k+1}-b_{k+1}
\end{aligned}
$$

Scheme 3.2
$a_{n+2}=a_{n+1}+2 a_{n}: b_{n+2}=b_{n+1}+2 b_{n}, n \geq 0$
:

Consider , | n | a_{n} | b_{n} |
| :---: | :---: | :---: |
| 0 | a | b |
| 1 | c | d |
| 2 | $c+2 a$ | $d+2 b$ |
| 3 | $3 c+2 a$ | $3 d+2 b$ |

Theorem 4

$a_{n}-b_{n}=J_{n}\left(a_{1}-b_{1}\right)+2 J_{n-1}\left(a_{0}-b_{0}\right)$
Using the principal of mathematical induction we get,
for $n=2$

$$
a_{2}-b_{2}=(c-d)+2(a-b)
$$

$=J_{2}\left(a_{1}-b_{1}\right)+2 J_{1}\left(a_{0}-b_{0}\right)$
Now, supposing that the statement is true for $n=k$
$a_{k}-b_{k}=J_{k}\left(a_{1}-b_{1}\right)+2 J_{k-1}\left(a_{0}-b_{0}\right)$

Thus, for, $n=k+1$, we get
$J_{k+1}\left(a_{1}-b_{1}\right)+2 J_{k+1-1}\left(a_{0}-b_{0}\right)$
$=\left[J_{k}+2 J_{k-1}\right]\left(a_{1}-b_{1}\right)+2 \cdot\left[J_{k-1}+2 J_{k-2}\right]\left(a_{0}-b_{0}\right)$
$=J_{k}\left(a_{1}-b_{1}\right)+2 J_{k-1}\left(a_{1}-b_{1}\right)+2 \cdot J_{k-1}\left(a_{0}-b_{0}\right)$ $+4 . J_{k-2}\left(a_{0}-b_{0}\right)$
$=J_{k}\left(a_{1}-b_{1}\right)+2 J_{k-1}\left(a_{0}-b_{0}\right)+2\left[J_{k-1}\left(a_{1}-b_{1}\right)\right.$ $\left.+2 J_{k-2}\left(a_{0}-b_{0}\right)\right]$
$=\left(a_{k}-b_{k}\right)+2\left[a_{k-1}-b_{k-1}\right]$
$=\left[a_{k}+2 a_{k-1}\right]-\left[b_{k}+2 b_{k-1}\right]$
$=a_{k+1}-b_{k+1}$.

REFERENCES

[1] Horadam, A.F., Associated Sequences of General Order, The Fibonacci Quarterly, Vol. 31(2): 166-172(1993).
[2] Horadam, A.F., Jacobsthal Representation of Numbers, The Fibonacci Quarterly, Vol. 36, 40-54(1996).
[3] Horadam, A.F., Jacobsthal and Pell Curves, The Fibonacci Quarterly, Vol. 26(1): 79-83(1988) .
[4] Singh, B., Sikhwal, O.P. and Jain S., Coupled Fibonacci Sequence of Fifth Order And Some Properties, Int. Journal of Math Analysis, Vol. 4(25): 1247-1254(2010).
[5] Tasci, D. and Kilic, E., On The Order k-Generalized Lucas Numbers, App. Math. Comp., 195, 3: 637-641(2004).
[6] Ken, F.K., and Bozkurt, D., On The Jacobsthal Numbers By Matrix Method, Int. Journal of Contemp. Math and Science, Vol. 3(13): 605-614(2008).
[7] Ken, F.K., and Bozkurt, D., On The Jacobsthal-Lucas Numbers By Matrix Methods, Int. Journal of Contemp. Math and Science, Vol. 3(33): 1629-1694(2009).
[8] Fatih, Yilmaz and D., Bozkurt, The Generalized k-Jacobsthal Numbers, Int. Journal of Contemp. Math and Science, Vol. 4(34): 1685-1694(2009).
[9] Atanassov, K., On A Second New Generalization of The Fibonacci Sequence, The Fibonacci Quarterly, Vol. 24(4): 362-365(1986).
[10] Atanassov, K., On A Generalization of The Fibonacci Sequence In Case of Three Sequences, The Fibonacci Quarterly, No. 27: 7-10(1989).
[11] Atanassov, K.T., V. Atanassov, A. G. Shannon \& J. C. Turner, New Visual Perspective on Fibonacci Numbers, World Scientific Publication (2002).
[12] Atanassov, K., Remark On A New Direction For A Generalization of The Fibonacci Sequence, The Fibonacci Quarterly, Vol. 33, 249-250(1995).
[13] Carlitz, L., Scoville, R. and V. Hoggatt Jr., Representation For A Special Sequence, The Fibonacci Quarterly,Vol. 10, (5): 499-518, 550(1972).
[14] Hirschhornm, M.D., Coupled Third Order Recurrences, The Fibonacci Quarterly, 44, 26-31(2006).
[15] Hirschhorn, M.D., Coupled Second Order Recurrences, The Fibonacci Quarterly, 44, (2006).
[16] Hoggatt, V., Fibonacci And Lucas Numbers, Palo Alto, Houghton-Miffin (1969).

